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Abstract 
Anti-patterns are poor solutions to recurring design problems. They occur in object-oriented 
systems when developers unwillingly introduce them while designing and implementing the classes 
of their systems. Several empirical studies have highlighted that anti-patterns have a negative 
impact on the comprehension and maintainability of a software systems. Consequently, their 
identification has received recently more attention from both researchers and practitioners who have 
proposed various approaches to detect them. This chapter discusses on the approaches proposed in 
the literature. In addition, from the analysis of the state of the art, we will (i) derive a set of 
guidelines for building and evaluating recommendation systems supporting the detection of anti-
patterns; and (ii) discuss some problems that are still open, to trace future research directions in the 
field. For this reason, the chapter provides a support to both researchers, who are interested in 
comprehending the results achieved so far in the identification of anti-patterns, and practitioner, 
who are interested in adopting a tool to identify anti-patterns in their software systems. 
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1. Anti-pattern: Definitions and Motivations 
 

During lifecycle, a software system undergoes continuous changes aiming at maintaining high its 
business level [36]. Unfortunately, these changes are often made by developers in a rush due to 
market/customers constraints. As a consequence, source code quality is often neglected with the 
risk of introducing code bad smell (or simply code smells or smells) [24], i.e., symptoms of possible 
design problems in source code. For example, developers might add several responsibilities to a 
class feeling that it is not required to include them in separate classes. As a result, the class grows 
rapidly and when the added responsibilities grow and breed, the class becomes too complex and its 
quality deteriorates. Such classes are know as Large Class [24] and could be the cause of a design 
problem in source code, i.e., anti-pattern1. Fowler [24] and Brown et al. [13] defined a catalogue of 
more than 30 anti-patterns. For each anti-pattern, they reported the definition of the anti-pattern as 
well as specific refactoring operations aimed at removing it in order to improve the quality of 
source code.  

Even if there is anecdotal evidence that design problems (such as anti-patterns) negatively 
impacts software comprehension and maintenance, in the last decade, anti-patterns have been the 
subject of empirical studies aiming at empirically analyzing their impact on software 
maintainability. We now have empirical evidence that code containing code smells or participating 
in anti-patterns is significantly more change-prone than “clean” code [31]. Also, code participating 
in anti-patterns has a higher fault-proneness than the rest of the system code [31][37].  

Other studies aimed at understanding the impact of anti-patterns on program comprehension [1] 
showed that the presence of an anti-pattern in the source code does not decrease the developers’ 
performance, while a combination of anti-patterns results in a significant decrease of their 
performance [1][61]. While the results of this study indicates that single anti-patterns are not 
harmful, they also reveals that anti-patterns are quite diffuse in software systems and very often 
code components are affected by more than one anti-pattern. In addition, we have empirical 
evidence that the number of anti-patterns in software systems increases over time and only in few 
cases they are removed through refactoring operations [3][17].   

All these findings suggest that code smells and anti-pattern need to be carefully detected and 
monitored and, whenever necessary, refactoring operations should be planned and performed to 
deal with them. Unfortunately, the identification and the correction of design flaws in large and 
non-trivial software systems can be very challenging. These observations call for recommendation 
systems supporting the software engineer in (i) identifying anti-patterns and (ii) designing and 
applying a refactoring solution to remove them. 

In this chapter, we will focus on the analysis of different techniques aimed at detecting anti-
patterns in source code2. By analyzing these approaches we will derive a set of guidelines for 
building and evaluating recommendation systems supporting the detection of anti-patterns. In 
addition, we will also discuss some problems that are still open, to trace future research directions 
in the field.  
 

2. Methods for the Detection of Anti-Patterns 
 

Among the 30+ anti-patterns defined in the literature [13][24], only for a subset of them we have 
approaches and tools for their automatic identification. Table 1 reports the list of such anti-patterns, 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1!Very often code bad smells and anti-pattern are used as synonym. However, the scenario we report allows to 
understand the difference between code smells and anti-patterns. Specifically, code smell represents something 
“probably wrong” in the code, while an anti-pattern is certainly a design problem in source code. In other words, a code 
smell might indicate an anti-pattern. 
2!The interested reader can find a survey on recommendation systems supporting refactoring operations in the Chapter 
15 of the book “Recommendation Systems in Software Engineering” [51]. 
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while in the next sections we discuss in details each of them. Specifically, for each anti-pattern we 
present (i) its definition; (ii) the approaches proposed for its identification; and (iii) the results of the 
empirical evaluation conducted to assess the detection accuracy of the approaches proposed in the 
literature. 
 

2.1 Blob 
 
Definition. The Blob, also named God Class, is a class implementing different responsibilities, 
generally characterized by the presence of a high number of attributes and methods, which 
implement different functionalities, and by many dependencies with data classes (i.e., classes 
implementing only getter and setter methods) [24]. 
 

Anti-pattern Description References 

Blob (God Class) A class having huge size and implementing 
different responsibilities. 

[32][41][44][47][48] 

Feature Envy A method making too many calls to methods of 
another class to obtain data and/or functionality. 

[5][8][48][57] 

Duplicate Code Classes that show the same code structure in 
more than one place. 

[11][12][28][30][59] 

Refused Bequest A class inheriting functionalities that it never 
uses. 

[39] 

Divergent Change A class commonly changed in different ways for 
different reasons. 

[48][52][53] 

Shotgun Surgery A class where a change implies cascading 
changes in several related classes. 

[48][52] 

Parallel Inheritance 
Pair of classes where the addition of a subclass in 
a hierarchy implies the addition of a subclass in 
another hierarchy. 

[48] 

Functional Decomposition A class implemented following a procedural-
style. 

[44] 

Spaghetti Code A class without structure that declare long 
methods without parameters 

[44] 

Swiss Army Knife A class that exhibits high complexity and offers 
a large number of different services. 

[44] 

Type Checking A class that shows complicated conditional 
statements. 

[58] 

Table 1 List of anti-patterns for which a detection strategy has been proposed in the literature 

Detection strategies. The problem to identify classes affected by the Blob anti-pattern has been 
analyzed under three perspectives. First, researchers focused their attention on the definition of 
heuristic-based approaches that exploit several software quality metrics (e.g., cohesion and coupling 
[19]). For instance, DECOR (DEtection and CORrection of Design Flaws) [44], use a set of rules, 
called “rule card”3, describing the intrinsic characteristics of a class affected by Blob (see Figure 1). 
As described in the rule card, DECOR detects a Blob when the class has an LCOM5 (Lack of 
Cohesion Of Methods) [19] higher than 20, a number of methods and attributes higher than 20, a 
name that contains a suffix in the set {Process, Control, Command, Manage, Drive, System}, and it 
has an one-to-many association with data classes. 

Beside DECOR, other approaches rely on metrics to identify Blobs in source code. For example, 
Marinescu [41] presented a detection strategy able to identify Blobs looking at deviations from 
good design principles (see Figure 2). Specifically, for each class a combination of cohesion and 
coupling metrics is computed and Blobs are identified as classes that exhibit an overall quality 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 http://www.ptidej.net/research/designsmells/ 
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lower than other classes (absolute and relative thresholds are used in order to discriminate between 
Blobs and “clean” classes). 
  

 
Figure 1 Rule Card for the Blob identification in DECOR [44] 

!"#$%&'' ! = !!′ ! !! ⊆ !,∀!! ∈ !′
!"# ! ,!"#$%&'() 25% ∧ !"#$ ! ,!"#ℎ!"#ℎ!" 1 ∧ (!"",!"##"$%&'()* 25% )!

!"#$%&'' ! = !!′ ! !! ⊆ !,∀!! ∈ !′
!"#$ ! ,!"#ℎ!"#ℎ!" 1 ∧ ( !"# ! ,!"#$%&'() 25% ∨ (!"",!"##"$%&'()* 25% ))!

Figure 2: Detection strategy to identify Blobs proposed by Marinescu [41] 

Although Blob can be detected solely using structural properties, historical analysis can aid the 
identification of complementary, additional useful information. In fact, as the Blob is a class that 
centralizes most of the system’s behavior, is possible to think that despite the kind of change a 
developer has to perform in a software system, if a Blob class is present, it is very likely that 
something will need to be changed in it [48]. This conjecture is on the basis of HIST (Historical 
Information for Smell deTection) [48]. In HIST, Blobs are detected as classes modified in more 
than α% of commits involving at least one another class. The parameter α has been empirically 
evaluated, and a value that provides good detection accuracy is α = 8. 

The approaches reported above classify classes strictly as being or not anti-patterns, while an 
accurate analysis for the borderline classes is missing [32]. To mitigate such a problem, it is 
possible to build an identification model able to assign a probability that a class is affected by a 
Blob. Specifically, the DECOR identification rule card can be translated into a Bayesian Network 
using a discretization of the metric values. Then, a probability that a class is affected by a Blob is 
computed [32]. On the same line, Oliveto et al. [47] proposed the identification of Blobs by 
building the signature of Blobs. Given a set of Blobs is possible to derive their signature 
(represented by a curve) that synthetize the quality of the class. Specifically, each point of the curve 
is the value of a specific quality metrics (e.g., the CK metric suite). Then, the identification of Blob 
is simply obtained by comparing the curve (signature) of a class given in input with the (curves) 
signatures of the previous identified Blobs. The higher the similarity, the higher the likelihood that 
the new class is a Blob as well.  

Blob classes could be also detected indirectly. There are approaches used to recommend Extract 
Class Refactoring (ECR) operations, which are operations specialized for removing Blob from a 
software system [47]. For instance, Fokaefs et al. [23] proposed an approach that takes in input a 
software system and suggests a set of ECR operations. In other words, the tool suggests to split a set 
of classes in several classes in order to have a better distribution of the responsibility. Clearly, the 
original classes are candidate Blob. The approach proposed by Fokaefs et al. [23] formulated the 
detection of ECR operations (and thus, indirectly, of Blobs) as a cluster analysis problem, where it 

RULE_CARD: Blob { 
  RULE: Blob {ASSOC: associated FROM: mainClass ONE  
         TO: DataClass MANY} 
  RULE: mainClass {UNION LargeClassLowCohesion ControllerClass} 
  RULE: LargeClassLowCohesion {UNION LargeClass LowCohesion} 
  RULE: LargeClass {(METRIC: NMD + NAD, VERY_HIGH, 20)} 
  RULE: LowCohesion {(METRIC: LCOM5, VERY_HIGH, 20)}  
  RULE: ControllerClass {UNION (SEMANTIC: METHODNAME,  
 {Process, Control, Command, Manage, Drive, System}), 
 (SEMANTIC: CLASSNAME,  {Process, Control, Command,  
 Manage, Drive, System}} 
  RULE: DataClass {(STRUCT: METHOD_ACCESSOR, 90)} 
}; 
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is necessary to identify the optimal partitioning of methods in different classes. In particular, for 
each class they analyze the structural dependencies between the entities of a class, i.e., attributes 
and methods, in order to build, for each entity, the entity set, i.e., the set of methods using it. The 
Jaccard distance between all couples of entity sets of the class is computed in order to cluster 
together cohesive groups of entities that can be extracted as separate classes. The Jaccard distance is 
computed as follows: 

!"##"$% !! ,!! = 1− ! !! !∩ !!!! !∪ !! !
 

where Ei and Ej are two entity sets, the numerator is the number of common entities between the 
two sets and the denominator is the total number of unique entities in the two sets. If splitting the 
class in separate classes the overall quality (in terms of cohesion and coupling) of the system 
improves, the approach proposed the splitting as a candidate ECR operation. In other words, a Blob 
has been identified. The approach proposed by Fokaefs et al. [23] has been implemented as an 
Eclipse plug-in, called JDeodorant4.  
 
Analysis of the detection accuracy. All the approaches described above have been empirically 
evaluated in order to understand the accuracy of the suggestions provided to the software engineer.  
DECOR has been empirically validated first on an open source system, called Xerces5, and then on 
other 8 systems [44]. Overall, the precision of the approach is 88.6%, while the recall reaches 100% 
[44]. Regarding the detection strategy proposed by Marinescu, the empirical study revealed 60% of 
accuracy [41]. As for HIST, the accuracy has been evaluated in terms of precision and recall on 8 
open source systems. The study showed that the overall precision of HIST is 76%, while the recall 
is 61% [48]. More importantly, HIST has been compared with DECOR showing that the historical 
analysis can support the software engineer better than the structural ones. Oliveto et al. [47] 
provided a comparison of their approach based on the signature of Blobs with DECOR [44] and the 
approach based on Bayesian Belief Network proposed by Kholm et al. [32]. The study revealed that 
the accuracy of their approach generally outperform the other ones. Finally, the benefits of 
JDeodorant have also been empirically analyzed. The empirical evaluation indicated that the 
refactoring operations provided by JDeodorant are meaningful and they approximate the refactoring 
operations previously performed by three developers with 67% precision and 82% recall [23]. 
Clearly, the accuracy of the refactoring operations identified represents a good proxy for the 
accuracy of the identification of Blobs. 
 

2.2 Feature Envy 
 
Definition: A method suffers of the Feature Envy anti-pattern if it is more interested in another 
class (also named envied class with respect the one it actually is in). It is often characterized by a 
large number of dependencies with the envied class [24]. Usually, this negatively influences the 
cohesion and the coupling of the class in which the method is implemented. In fact, the method 
suffering of Feature Envy reduces the cohesion of the class because it likely implements different 
responsibilities with respect to those implemented by the other methods of the class and increases 
the coupling, due to the many dependencies with methods of the envied class. 

Detection strategies. A first simple way to detect Feature Envy in source code is to traverse the 
Abstract Syntax Tree (AST) of a software system in order to identify, for each field, the set of the 
referencing classes [5]. So, using a threshold it is possible to discriminate the fields having too 
many references with other classes.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!http://www.jdeodorant.com 
5 http://xerces.apache.org!
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Although the Feature Envy is one of the most studied anti-patterns in literature, the only 
automatic approach defined to detect it is the one proposed by Palomba et al. [48], namely HIST. 
The conjecture is that a method affected by Feature Envy changes more often with the envied class 
than with the class it is actually in. Given this conjecture, HIST identifies methods affected by this 
anti-patterns as those involved in commits with methods of another class of the system β% more 
than in commits with methods of their class. The parameter β underwent an empirical calibration 
that showed how better performance can be obtained with β = 70. 

Despite the lacking of automatic techniques to detect this kind of anti-pattern, there are several 
approaches able to identify Move Method Refactoring (MMR), i.e., operations aimed at removing 
the Feature Envy anti-pattern [8][57]. In some way, these approaches can aid the software engineer 
also in the identification of the Feature Envy: if the suggestion proposed by the refactoring tool is 
correct, then an instance of the Feature Envy anti-pattern is present in the source code. 

Besides ECR operations, JDeodorant also support MMR operations. The underlined approach 
uses a clustering analysis algorithm (see Figure 3). 

!
Figure'3')'Algorithm'used'by'JDeodorant'for'the'identification'of'Move'Method'Refactoring'operations'[57]'

Given a method m, the approach forms a set of candidate target classes where m should be moved 
(set T in Figure 3). This set is obtained by examining the entities (i.e., attributes and methods) that 
m accesses from the other classes (entity set S in Figure 3). In particular, each class in the system 
containing at least one of the entities accessed by m is added to T. Then, the candidate target classes 
in T are sorted in descending order according to the number of entities that m accesses from each of 
them (sort(T) in Figure 3). In the following steps each target class Ti is analyzed to verify its 
suitability to be the recommended class. In particular, Ti must satisfy three conditions to be 
considered in the set of candidate suggestions: (i) Ti is not the class m currently belongs to, (ii) m 
modifies at least one data structure in Ti, and (iii) moving m in Ti satisfies a set of behavior 
preserving preconditions [57]. The set of classes in T satisfying all the conditions above are put in 
the suggestions set (see Figure 3). If suggestions is not empty, the approach suggests to move m in 
the first candidate target class following the order of the sorted set T. On the other side, if 
suggestions is empty, the classes in the sorted set T are again analyzed by applying milder 
constraints than before. In particular, if a class Ti is the m owner class, then no refactoring 
suggestion is performed and the algorithm stops. Otherwise, the approach checks if moving the 
method m into Ti satisfies the behavior preserving preconditions. If so, the approach suggests to 
move m into Ti. Thus, an instance of the Feature Envy anti-pattern is identified.  

extractMoveMethodRefactoringSuggestions(Method m) 
 T = {} 
 S = entity set of m 
 for i = 1 to size of S 
  entity = S[i] 
  T = T ∪ {entity.ownerClass} 
 sort(T) 
 suggestions = {} 
 for i = 1 to size of T 

if(T[i] ≠ m.ownerClass ∧ modifiesDataStructureInTargetClass(m, T[i]) ∧ 
preconditionsSatisfied(m, T[i])) 

   suggestions = suggestions ∪  
{moveMethodSuggestions(m ⟶ T[i])} 

  if(suggestions ≠ ∅) 
   return suggestions 
  else  
   for i = 1 to size of T 
    if(T[i] = m.ownerClass 
     return {} 
    else if preconditionsSatisfied(m, T[i]) 
     return moveMethodSuggestions(m ⟶ T[i]) 
  return {} 
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This technique uses structural information to suggest MMR operations. However, there are cases 
where the Feature Envy and the envied class are related by a conceptual linkage rather than a 
structural one. Here the lexical properties of source code can aid in the identification of the right 
refactoring to perform. This is the reason why Bavota et al. presented MethodBook [8], in which 
methods and classes play the same role of the people and groups, respectively, in Facebook6. In 
particular, methods represent people, and so they have their own information as, for example, 
method calls or conceptual relationships with the other methods in the same class as well as the 
methods in the other classes. To identify the envied class, MethodBook use Relational Topic Model 
(RTM). Following the Facebook metaphor, the use of RTM is able to identify “friends” of the 
method under analysis. If the class having the highest number of “friends” of the considered method 
is not the current owner class, a refactoring operation is suggested (i.e., a Feature Envy is detected). 
 
Analysis of the detection accuracy. The evaluation on the detection algorithm provided by HIST 
has been conducted on 8 open source systems in terms of precision and recall [48]. The results 
show that HIST is able to suggest candidate Feature Envy anti-patterns with a precision of 71% and 
a recall of 81%. HIST has also been compared with the tool JDeodorant and the results have shown 
that the precision of the two approaches are comparable (71% against 68%), while the recall of 
HIST is quite higher than the one achieved by JDeodorant (81% against 60%) [48]. Also 
MethodBook has been compared with JDeodorant on 6 open source systems. The comparison 
performed with JDeodorant highlighted that Methodbook is generally more precise than 
JDeodorant, providing less suggestions to the developers of an average higher quality. However, the 
results also clearly highlighted that JDeodorant is able to identify good refactoring operations (and 
thus correct instances of Feature Envy) that are missed by Methodbook [8]. 
 

2.3 Duplicate Code 
 
Definition: Classes that show the same code structure in more than one place in the system are 
affected by Duplicate Code anti-pattern. Code duplication is a potentially serious problem that 
affects the maintainability of a software system, but also its comprehensibility. The problem of the 
identification of code duplication is very challenging simply because, during the evolution, different 
copies of a feature suffer different changes and this affect the possibility of the identification of the 
common functionality provided by different copied features. Moreover, having duplicate 
components in source code implies the increase of the effort in the maintenance of a system because 
when a change request involving such duplicate components is received, developer needs to modify 
several times the same feature because several copies are disseminated in different places. For all 
these reasons the problem of finding duplicate code, has been recognized as a potentially serious 
problem affecting the stability of an application, but also its fault-proneness [29]. 
 
Detection strategies. In the literature several approaches for clone detection have been proposed. It 
is worth noting that a semantic detection of clones could be very hard to perform and, in general, 
this is an undecidable problem. This is the reason why most of the proposed techniques focus their 
attention on the detection of syntactic or structural similarity of source code. For example, the AST 
of the given program is built in order to find matches of sub-trees in [11][12][59]. Alternatively, 
Kamiya et al. [30] introduced the tool CCFinder, where a program is divided in lexemes and the 
token sequences are compared in order to find matches between two subsequences.  

However, such approaches appear to be ineffective in cases where duplicated code suffers 
several modifications during its evolution. To mitigate such a problem, Jiang et al. [28] introduced 
DECKARD, a technique able to identify clones using a mix of tree-based and syntactic-based 
approaches. The process they follow can be summarized as follow: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6!https://www.facebook.com!
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1. Given a program, a parser translates source code into parse tree; 
2. Syntactic trees are processed in order to produce a set of vectors capturing the syntactic 

information of parse tree; 
3. The Euclidean distances are performed. Thus, the vectors are clustered; 
4. Heuristics are applied to detect clones. 

 
Analysis of the detection accuracy. The detection methods based on AST [11][12] have been 
applied on one process-control system written in C, having 400 KLOC. The authors found that most 
of detected clones were of small size and they were functions performing the same operations in 
different places. The main problem of this approach is that it is able to determine only exact tree 
match. The empirical evaluation conducted on DECKARD involved large systems as JDK and the 
Linux kernel, and showed that the tool performs significantly better than the other state-of-art 
technique to detect clones [28]. 
 

2.4 Refused Bequest 
 
Definition: In Object Oriented development, one of the key features aiming at reducing the effort 
and the cost in software maintenance is inheritance [24]. For example, if there is something wrong 
in the definition of an attribute inherited by some children classes, such attribute needs to be 
changed only in the parent of such classes. However, it is not uncommon that developers make 
improper use of the concept of inheritance, especially in the cases where other kind of relationships 
would be more correct. The Refused Bequest anti-pattern arises when a subclass does not support 
the interface of the superclass [24]. On one hand, this happens when a subclass overrides a lot of 
methods inherited by its parent, on the other hand the relationship of inheritance can be wrong also 
if the subclass does not override the methods inherited from the parent, but never uses them or such 
methods are never called by the clients of the subclass. In some cases, this anti-pattern simply 
means that the relationship of inheritance is wrong, namely the subclass is not a specialization of 
the parent. 
 
Detection strategies. A simple naive-method to estimate the presence of Refused Bequest anti-
pattern in a software system is by looking for classes having the following characteristics: (i) the 
class is in a hierarchy; and (ii) the class overrides more than γ% of the methods defined by the 
parent. However, such a method does not take into account the semantics established by an “is-a” 
relationship between two classes of the system. For this reason, Ligu et al. [39] introduced the 
identification of Refused Bequest using a combination of static source code analysis and dynamic 
unit test execution. In particular, the approach identifies classes affected by this anti-pattern by 
looking at the classes that really “wants to support the interface of the superclass” [24]. If a class 
does not support the behavior of its parent, a Refused Bequest is detected. In order to understand if 
a method of a superclass is actually called on subclass instances by other classes of the system, Ligu 
et al. [39] intentionally override these methods introducing an error in the new implementation 
(e.g., division by zero). If there are classes in the system invoking the method, then a failure will 
occurs. Otherwise, if the execution of all the test cases does not lead to a failure, the inherited 
superclass methods are never used by the other classes of the system and, thus, an instance of 
Refused Bequest is found. The approach proposed by Ligu et al. [39] has been implemented as an 
extension of the JDeodorant Eclipse plugin [57]. 

Analysis of the detection accuracy. Unfortunately, the approach proposed by Ligu et al. [39] for 
the identification of Refused Bequest has not been empirically evaluated yet. The authors only 
applied the approach on one medium-size open source system in order to have a preliminary idea of 
its accuracy. 
 

2.5 Divergent Change 
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Definition: Fowler describes a Divergent Change as a class that is ”commonly changed in different 
ways for different reasons” [24]. Classes affected by this anti-pattern generally have low cohesion.  
 
Detection strategies. The definition of Divergent Change provided by Fowler suggests that 
structural techniques are not completely suitable to detect instances of such an anti-pattern. The 
reason is that in order to identify Divergent Change anti-patterns it is necessary to analyze how the 
system evolves over time. Only one approach provides an attempt to exploit structural information 
(i.e., coupling) to identify this anti-pattern [52]. In particular, using coupling information it is 
possible to build a Design Change Propagation Probability (DCPP) matrix. The DCPP is an n x n 
matrix where the generic entry Aij is the probability that a design change on the artifact i requires a 
change also to the artifact j. Such probability is given by the cdegree [53], i.e., an indicator of the 
number of dependencies between two artifacts. Once the matrix is built, a Divergent Change 
instance is detected if a column in the matrix contains high values for a particular artifact. In other 
words, high values on the columns of the matrix correspond to have an high number of artifacts 
related to the one under analysis and so the probability to have a Divergent Change increase.  

However, by looking at the definition, it is reasonable to think to detect this kind of anti-pattern 
using the historical information that a system can have (i.e., change log). The conjecture is that 
classes affected by this anti-pattern present different sets of methods each one containing methods 
changing together but independently from methods in the other sets. Such a conjecture has been 
implemented in HIST, that uses association rules discovery to detect a subsets of methods in the 
same class that often change together [48]. Once HIST detects these change rules between methods 
of the same class, the approach identifies Divergent Change as those containing at least two or more 
sets of methods with the following characteristics: 

1. The cardinality of the set is at least γ;  
2. All methods in the set change together, as detected by the association  rules;  
3. Each method in the set does not change with methods in other sets as detected by the 

association rules.  
 
Analysis of the detection accuracy. Unfortunately, there is not a real empirical evaluation of the 
approach based on structural information to detect Divergent Change anti-pattern. The authors of 
this approach only proposed two example scenarios in which the defined approach is able to detect 
instances of Divergent Change [52][53]. They planned to make an empirical study in order to 
validate their technique in a real context. Regarding HIST, the evaluation was focused on the 
accuracy of the detection algorithm, but also on its behavior when compared with a static approach 
using solely structural information (i.e., methods’ calls). The results indicated that HIST has higher 
precision (73% vs. 20%) and recall (79% vs. 7%) than the technique that exploits only structural 
information [48].  
 

2.6 Shotgun Surgery 
 
Definition. This anti-pattern appears when “every time you make a kind of change, you have to 
make a lot of little changes to a lot of different classes” [24]. As for Divergent Change, also in this 
case finding a purely structural technique able to provide an accurate detection of this anti-pattern is 
rather challenging.  
 
Detection strategies. There are only two approaches able to identify this anti-pattern in the source 
code: the first is proposed by Rao and Raddy [52] and it is based on the DCPP matrix, the second is 
included in HIST and relies on historical information [48]. As for the former, after the construction 
of the DCPP matrix (as for the identification of Divergent Change) the approach detects instances 
of Shotgun Surgery in a way complementary to that for the Divergent Change detection. In fact, if a 
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row of the matrix contains high values for an artifact, it means that there is high probability that a 
change involving the artifact impact on more than one artifact. Regarding the latter, HIST 
implements the following conjecture: “a class affected by Shotgun Surgery contains at least one 
method changing together with several other methods contained in other classes” [48]. As for the 
Divergent Change, association rule discovery allows to identify a set of methods belonging to 
different classes often changing together. Thus, a class is affected by Shotgun Surgery if it contains 
at least one method that changes with methods contained in more than δ different classes. The 
parameter δ has been empirically calibrated and the empirical analysis revealed that the best 
performance are achieved with δ = 3. 
 
Analysis of the detection accuracy. The empirical evaluation of the approach based on the DCCP 
matrix was only planned and not available yet [52]. Instead, the detection algorithm of HIST has 
been validated on 8 open source systems in terms of accuracy. The results showed that on one hand, 
the first point highlighted is that this anti-pattern is not quite common (only 4 instances on the 8 
systems), on the other hand HIST was able to detect all the instances found, reaching a precision 
and a recall of 100% [48]. 
 

2.7 Parallel Inheritance Hierarchies 
 
Definition. Fowler defined the Parallel Inheritance as a special case of Shotgun Surgery, where 
“every time you make a subclass of one class, you also have to make a subclass of another” [24]. 
 
Detection strategies. Since this anti-pattern is considered a special case of Shotgun Surgery, it is 
reasonable to think that, also in this case, detecting it using structural properties of source code 
might be very challenging. The only technique able to identify instances of Parallel Inheritance 
Hierarchies is the one included in HIST [48] that relies on historical information. Following the 
definition provided by Fowler, HIST detects the Parallel Inheritance Hierarchies as pairs of classes 
for which the addition of a subclass for one class implies the addition of a subclass for the other 
class. Also in this case, association rule discovery is used to mine pairs of classes that respect this 
rule [48]. 
 
Analysis of the detection accuracy. HIST has been evaluated in terms of precision and recall and 
compared with a static technique constructed by the authors of HIST for providing some insights 
about the usefulness of historical analysis when detecting this anti-pattern. Such a technique 
exploits lexical properties of source code and it is based on the heuristic provided by Fowler for the 
identification of this anti-pattern: “You can recognize this smell because the prefixes of the class 
names in one hierarchy are the same as the prefixes in another hierarchy.” [24]. The results 
showed that HIST reaches 61% of precision and recall, while the lexical-based technique identifies 
instances of Parallel Inheritance Hierarchies with a recall of 45%. Also, only 17% of the correct 
instances are detected by both the approaches, while 43% of instances are identified only by HIST, 
the remaining 40% only by the lexical-based technique. This result highlights that the combination 
of structural/lexical and historical analysis could be worthwhile for detecting this kind of anti-
pattern. 
 

2.8 Functional Decomposition 
 
Definition. A class in which inheritance and polymorphism are poorly used, declaring many private 
fields and implementing few methods [13]. It can be symptom of procedural-style programming. 
The concepts of Object Oriented development are not always clear to developers working for the 
first time using such a paradigm. Indeed, a developer with high experience in functional paradigm 
tends to apply procedural rules in the development of Object Oriented software, producing errors in 
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the design of the application. The anti-pattern coined as Functional Decomposition is the most 
common anti-pattern appearing in these cases. Brown et al. [13] define Functional Decomposition 
as ”a main routine that calls many subroutines”. 
 
Detection strategies. In order to detect this anti-pattern, some heuristics have been proposed. For 
example, knowing that usually a routine is called with a name invoking its function, it is not 
surprising to find an instance of Functional Decomposition in classes called with prefix as Make or 
Execute. At the same time, also heuristics based on the structure of a class can support the 
identification of this anti-pattern. For instance, a functional class can have many dependencies with 
classes composed by a very few number of methods addressing a single function.  

 
Figure'4')'Rule Card for the Functional Decomposition identification in DECOR [44]'

The only approach able to identify this anti-pattern is DECOR [44]. To infer the presence of the 
anti-pattern, DECOR uses a set of structural properties together to lexical analysis of the name of a 
class (see the rule card in Figure 4). Given a class, such class is affected by Functional 
Decomposition if it is a main class (a class generally characterized by a procedural name, e.g., 
Display, in which inheritance and polymorphism are poorly used) having many dependencies with 
small classes (classes with a very few number of methods and many private fields) [44]. 
 
Analysis of the detection accuracy. The accuracy of the detection algorithm implemented in 
DECOR has been preliminary validated on Xerces showing that the precision of the approach 
reaches 52%, while it has a recall of 100%. Then, the study was replicated on other 8 systems and 
the results confirmed those achieved in the preliminary evaluation [44]. 
 

2.9 Spaghetti Code 
 
Definition. Classes affected by this anti-pattern are characterized by complex methods, with no 
parameters, interacting between them using instance variables. As for the Functional 
Decomposition anti-pattern, this is also a symptom of procedural-style programming [13]. 

Detection strategies. The Spaghetti Code anti-pattern describes source code difficult to 
comprehend by a developer, often without a well-defined structure and with several long methods 
without any parameter. From a lexical point of view, classes affected by this anti-pattern have 
usually procedural names. 

DECOR [44] is also able to identify Spaghetti Code, once again by using a specific rule card that 
describes the anti-pattern through structural properties. As you can see in Figure 5 DECOR 
classifies the anti-pattern using only software metrics able to identify the specific characteristic of 
classes affected by this anti-pattern. This is possible simply because the Spaghetti Code does not 
involve any relationships with other classes, but it is a design problem concentrated in a single class 

RULE_CARD: FunctionalDecomposition { 
  RULE: FunctionalDecomposition {ASSOC: associated FROM:  
    mainClass ONE TO: aClass MANY} 
  RULE: mainClass {UNION NoInheritPoly FunctionClass} 
  RULE: NoInheritPoly {INTER NoInheritance NoPolymorphism} 
  RULE: NoInheritance {(METRIC: DIT, SUP_EQ, 1, 0)} 
  RULE: NoPolymorphism {(STRUCT: DIFFERENT_PARAMETER)}  
  RULE: FunctionClass {(SEMANTIC: CLASSNAME, {Make, Create,  
   Creator, Execute, Exec, Compute, Display, Calculate}} 
  RULE: aClass {INTER ClassOneMethod FieldPrivate} 
  RULE: ClassOneMethod {(STRUCT: ONE_METHOD)} 
  RULE: FieldPrivate {(STRUCT: PRIVATE_FIELD, 100)} 
}; 
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having procedural characteristics. Specifically, in DECOR instances of Spaghetti Code are found 
looking for classes having at least one long method, namely a method composed by a large number 
of LOC and declaring no parameters. At the same time, the class does not present characteristics of 
Object Oriented design. For example, the class does not use the concept of inheritance and should 
use many global variables. 

 
Figure'5')'Rule Card for the Spaghetti Code identification in DECOR [44]'

Analysis of the detection accuracy. The empirical evaluation of DECOR indicated that the 
number of instances correctly detected by DECOR reaches 61%. However, a better detection of this 
kind of anti-pattern could be possible through the use of some lexical rules. Since a class affected 
by Spaghetti Code is a class built through procedural thinking, the use of lexical rules can be 
complementary to the structural rules used by DECOR. For example, the same strategy applied for 
Functional Decomposition can be applied here: checking the prefix of the class name can aid the 
identification of this anti-pattern.  
 

2.10 Swiss Army Knife 
 
Definition. A Swiss Army Knife is a class that exhibits high complexity and offers a large number 
of different services. This type of anti-pattern is slightly different from a Blob, because in order to 
address the different responsibilities, it exposes high complexity, while a Blob is a class that 
monopolizes processing and data of the system. 

Detection strategies. A class affected by the Swiss Army Knife is a class that provides answer to a 
large range of needs. Generally, this anti-pattern arises when a class has many methods with high 
complexity and the class has a high number of interfaces. For example, a utility class exposing high 
complexity and addressing many services is a good candidate to be a Swiss Army Knife. The 
definition of this anti-pattern could seem very similar to the one given for the Blob. However, there 
is a slight difference between the two anti-patterns: the Blob is a class that monopolize most of 
processing and data of the system, having a “selfish behavior” because it works for itself, while a 
Swiss Army Knife is a class that provides services to other classes. 

The characteristics of this anti-pattern suggest that structural information can be useful for its 
detection. In particular, a mix of software complexity metrics and semantic checks in order to 
identify the different services provided by the class could be used for the detection. Once again, 
DECOR is able to detect this anti-pattern through a rule card [44]. In the case of Swiss Army Knife, 
the rule card characterizes the anti-pattern on the Number of Interfaces metric, which is able to 
identify the number of services provided by a class. If the metric exceeds a given threshold, a Swiss 
Army Knife is detected.  
 

RULE_CARD: SpaghettiCode { 
  RULE: SpaghettiCode {INTER: NoInheritanceClassGlobalVariable  
     LongMethodMethodNoParameter} 
  RULE: LongMethodMethodNoParameter {INTER LongMethod  
     MethodNoParameter} 
  RULE: LongMethod { (METRIC: METHOD_LOC, VERY_HIGH, 0) } 
  RULE: MethodNoParameter { (STRUCT: METHOD_NO_PARAM) } 
  RULE: NoInheritanceClassGlobalVariable {INTER NoInheritance  
     ClassGlobalVariable}  
  RULE: NoInheritance { (METRIC: DIT, INF_EQ, 2, 0) } 
  RULE: ClassGlobalVariable {INTER ClassOneMethod FieldPrivate} 
  RULE: ClassOneMethod { (STRUCT: GLOBAL_VARIABLE, 1) } 
}; 



PALOMBA ET AL. 
!
Analysis of the detection accuracy. The accuracy of DECOR has been empirically validated on 9 
open source systems in terms of precision and recall. Results showed that the recall reaches 100%, 
while the precision obtained was not so high (i.e., 41%) [44]. This result suggests that the use of 
lexical properties together with the structural ones could produce a more accurate detection tool. 

2.11 Type Checking 
 
Definition. A class that shows complicated conditional statements making the code difficult to 
understand and maintain. One of the most common situation in which a programmer linked to 
procedural languages can fall down using Object Oriented programming is the misunderstanding or 
lack of knowledge on  how to use OO mechanisms such as polymorphism. This problem manifests 
itself especially when a developer uses conditional statements to dynamically dispatch the behavior 
of the system instead of polymorphism. Such a problem is known as Type Checking anti-pattern 
and, as for all the anti-patterns, in the maintenance phase this problem can grow up, creating 
problems to the developers.  
 
Detection strategies. For the identification of symptoms of such anti-pattern, a simple heuristic can 
be used: when you see long and intricate conditional statements, then you have found a Type 
Checking candidate. Tsantalis et al. [58] proposed a technique to identify and refactor instances of 
this anti-pattern implemented in the JDeodorant Eclipse plugin. In particular, their detection 
strategy takes into account two different cases: in the first case, an attribute of a class represents a 
state and, depending on its value, different branches of the conditional statements are executed. 
Thus, if in the analyzed class, there is more than one condition involving the attribute, a candidate 
of Type Checking is found. In the second case, a conditional statement involves RunTime Type 
Identification (RTTI) in order to cast the type of a class in another to invoke methods on the last 
one. For example, this is the case of two classes involved in a hierarchy where the relationship is 
not exploited by using polymorphism. In such case, RTTI often arises in the form of an if/else if 
statement in which there is one conditional expression for each control on the type of a class. 
However, if the RTTI involves more than one conditional expression, a candidate of Type Checking 
is found. 
 
Analysis of the detection accuracy. The Type Checking detection technique proposed by Tsantalis 
et al. [58] has been evaluated on three teaching examples in the textbooks by Demeyer et al. [21] 
and Fowler et al. [24] and it is able to correctly detect the instances reported by the authors of these 
books. 
 

3. A New Frontier of Anti-patterns: Linguistic Anti-Patterns 
 

There are several empirical studies in literature showing how linguistic aspects of source code 
can cause misunderstanding during the development of a software system. Indeed, the lack of 
comments, ambiguous selected identifiers and poor coding standards increase the risk to have 
problems during maintenance (see e.g., [16][22][33][34][42][55]). Based on these observations, 
Arnaudova et al. [4] defined the linguistic anti-patterns (LAs), a new family of source code design 
problems that, as for the other anti-patterns in literature, could be described in terms of symptoms 
and consequences. Whereas “design” anti-patterns represent recurring, poor design choices, 
linguistic anti-patterns represent recurring, poor naming and commenting choices [4]. The first 
catalogue of this new family of anti-pattern contains six categories of linguistic design problems. 
Their detection has been done using linguistic heuristics, which depend on the type of anti-pattern 
defined. The section reports a brief introduction for each category of this kind of anti-patterns. 
 

3.1 Does more than it says 
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This linguistic anti-pattern arises when there is a contradiction between the signature of the 

method and what the method really does. In particular, the method does more with respect to what 
the signature suggests. One of the examples provided by Arnaudova et al. [4] regards the use of the 
verb is in the name of a method. It suggests that the method performs an action returning a Boolean 
value. Thus, having an “is” method performing more than returning a Boolean value could be 
destabilizing for a developers. An example of such anti-pattern is provided in the Listing 1. 

!
Listing 1 - An example of Does more than it says linguistic anti-pattern [4]  

The method isValid() of the class DelayedValidity from the system Cocoon 2.2.0 should return a 
Boolean value, but it performs more than checking if a component of that class is valid or not. In 
such cases, the rational behind the choice to design the method in this way should be included in the 
method summary or in the low-level documentation. In addition, a rename of the method is highly 
recommended.  

The identification of such anti-pattern is based on the identification of all the methods with a 
signature not conforming to the standard guidelines provided in the catalogue defined by 
Arnaudova et al. [4]. 

 
Listing 2 - An example of Says more than it does linguistic anti-pattern [4] 

 
3.2 Says More than it Does 

public int isValid () {  
final long currentTime = System.currentTimeMillis();  
if ( currentTime <= this.expires ) {  

 // The delay has not passed yet 
 // assuming source is valid. 
  return SourceValidity.VALID;  
 } 
 
 // The delay has passed, 
 // prepare for the next interval. 
 this.expires = currentTime + this.delay;  
 return this.delegate.isValid(); 
} 

protected void getMethodBodies  
 (CompilationUnitDeclaration unit, int place) {  
 // fill the methods bodies in order 
 // for the code to be generated 
 if ( unit.ignoreMethodBodies ) { 
  unit.ignoreFurtherInvestigation = true;  
  return;  
  // if initial diet parse did not  
  // work, no need to dig into method bodies. 
 } 
 
 if ( place < parseThreshold )  
  return ; // work already done... 
 
 // real parse of the method... 
 parser.scanner.setSourceBuffer(unit.compilationResult 
   .compilationUnit.getContents()); 
 if (unit.types != null) { 
  for (int i = unit.types.length; ‚àí‚àíi >= 0;) 
   unit.types[i].parseMethod(parser , unit); 
 }  
} 
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This anti-pattern occurs when a method has a signature evoking a liar behavior and the method 
body does not what the signature says [4]. For example, when a method has a name composed by 
the verb get, a developer might think that this method returns the value of an object instance 
variable. Listing 2 is provided a case where a “get” method does return nothing. Also in this case, 
method summary should contain the rationale of this method. However, a renaming should be 
applied. Also in this case, the identification of methods affected by this kind of anti-pattern could be 
done exploiting the definition provided in the catalogue. 
 

3.3 Does the Opposite 
 

This anti-pattern has been defined as “the intent of the method suggested by its name is in 
contradiction with what it returns” [4]. To understand this kind of anti-pattern, an example is 
provided in Listing 3. The name and return type of the method disable() are inconsistent. The 
reason is that the method disable returns an “enable” state. The problem with anti-pattern like this is 
that, if the documentation is missing, developers involved in maintenance operations can infer that 
the return type is a control state that can be enabled or disabled, while the method behavior is 
different. 

 
Listing 3 - An example of Does the opposite linguistic anti-pattern [4] 

In order to detect such anti-pattern, a set of heuristics can be applied. For instance, in the case of 
the example reported above, a contradiction is found looking at the method name and a part of its 
returned type. Using a thesaurus it is easy to derive that the two terms (i.e., disable and enable) are 
antonyms [4].  
 

3.4 Contains More than it Says 
 

The Contains more than it says anti-pattern appears when a variable of a class is declared as a 
single object, while its type is a collection of elements.  

 
Listing 4 - An example of Contains more than it says linguistic anti-pattern [4] 

Listing 4 shows an example in which the variable isReached is an array of integer values; while 
a developer expects that its type is a Boolean.  

A possible consequence is that a developer does not know that changing this variable, he 
changes multiple objects. Wrong uses in the declaration of variables in a class can be detected using 
a terms vocabulary, which contains information about the number of a name. 
 

3.5 Says More than it Contains 
 

/* Saves the current enable/disable state of 
 * the given control and its descendents in  
 * the returned object; 
 * the controls are all disabled. 
 * @param w the control 
 * @return an object capturing the enable/disable state */ 
 
 public static ControlEnableState disable (Control w){ 
  return new ControlEnableState (w); 
 } 

 int[] isReached; 
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This anti-pattern is exactly the opposite of the Contains more than it says [4]. In this case, a 
variable declared as multi-objects, contains only one object (Listing 5). Unlike what happens 
before, a developer performing maintenance activities on the class affected by this anti-pattern 
could think to change a collection of objects, while the real meaning of the variable is different. 
Also for this anti-pattern, wrong uses in the declaration of variables in a class can be detected using 
a thesaurus. 

 
Listing 5 - An example of Says more than it contains linguistic anti-pattern 

 
3.5 Contains the Opposite 

 
The goal of this anti-pattern is to find improper use of a variable in a class [4]. In particular, the 

anti-pattern aims at representing situations where a variable and its type are in contradiction, as 
shown in Listing 6.  

 
Listing 6 - An example of Contains the Opposite linguistic anti-pattern [4] 

Once again, this anti-pattern can be detected by checking a vocabulary in order to find when the 
name of a variable is exactly the opposite of one of the terms composing its type. 
 
4. Key Ingredients for Building an Anti-pattern Detection Tool 

 
This section describes some of the challenges that need to be addressed when building a tool able 

to detect anti-pattern in software systems. Specifically, there are two critical issues to deal with: 

• Extracting information from source code components in order to identify symptoms of poor 
design choices. This is a critical issue because there are different sources of information that 
can be exploited (e.g., structural or semantic relationship) and in several cases the choice of 
the type of information to be exploited depends on the kind of anti-pattern to be detected.  

• Define the algorithm to identify candidate anti-patterns. Each algorithm has strengths and 
weaknesses. On the basis of the anti-pattern under analysis, an algorithm ensuring a fair 
compromise of strengths and weaknesses must be chosen. 

In the following sections we present some guidelines on how to deal with these two issues. 
 

4.1 Identifying and extracting the characteristics of anti-patterns 
 

The first step in the identification of a specific anti-pattern regards the definition of its 
characteristics. Such characteristics should help in discriminating between components that are 
affected by the anti-pattern and “clean” components. As said before, there are different sources of 
information that can be used to extract source code properties that characterize a specific anti-
pattern. Most of the techniques existing in the literature exploit structural information extracted by 
statically analyzing the source code to capture characteristics that could help in the identification of 
an anti-pattern, such as, the number of calls between two source code entities, variable accesses, or 
inheritance relations. A second option is dynamic information, which takes into account call 
relationships between entities occurring during program execution. Finally, historical data (e.g., co-
changes) can be exploited to identify anti-patterns that are intrinsically characterized by how source 
code changes over time. Thus, in the following, we discuss all these sources of information. 

 private static boolean stats = true; 

MAssociationEnd start = null; 
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4.1.1 Extraction of Structural Properties using Code Analysis Techniques 

In this section we discuss the sources of information capturing structural properties (e.g., 
structural coupling) between code components. 
 
Method calls. The most obvious source of information that can be exploited to capture structural 
relationships between code components is the calls interaction. A measure capturing method call 
interactions is the Call-based Dependence between Methods (CDM) [9]. CDM has values in [0, 1]; 
the higher the number of calls between two methods, the higher the CDM value and thus, the 
coupling between methods. This source of information can be useful for identifying anti-patterns 
acting at both method (e.g., Feature Envy) and class (e.g., Swiss Army Knife) level. Method calls 
have been exploited for the detection of many anti-patterns. In particular, different researchers have 
used them to investigate the presence of Blob instances [23] [32] [47], but also to find instances of 
Feature Envy [8] [57], Refused Bequest [39], Type Checking [58], Divergent Change [52], and 
Shotgun Surgery [52]. 

The calls between methods belonging to different classes also represent a particularly useful 
property for the detection of anti-patterns. Indeed, classes having many call interactions co-operate 
to implement the same (or strongly related) responsibilities and thus, are highly coupled. This 
information is particularly important for detecting anti-patterns aimed at causing harms to the 
modularization of Object-Oriented systems, e.g., Inappropriate Intimacy [24]. There are many 
metrics available in literature to measure the coupling between classes based on their call 
interactions. Examples are the Information-Flow-based Coupling (ICP) [35], the Message Passing 
Coupling (MPC) [38] and the Coupling Between Object Classes (CBO) [38]. 
 
Shared Instance Variables. The instance variables shared by two methods are an important source 
of information for detecting anti-pattern (e.g., Blob) inherent to the cohesion of a class. This source 
of information has been successfully used for the detection of Blob [9] [44], Spaghetti Code [44], 
and Type Checking [58] instances.  In fact, they also represent a form of communications between 
methods (performed through shared data). Thus, methods sharing instance variables are more 
coupled than methods not sharing any data. A measure to capture this form of coupling between 
methods is the Structural Similarity between Methods (SSM) [26], used to compute the cohesion 
metric ClassCoh [26]. SSM has values in [0, 1]; the higher the number of instance variables the two 
methods share, the higher the SSM value and thus the coupling between methods. Another example 
of metric measuring the extent to which the methods of a class share instance is the Lack of 
Cohesion of Methods (LCOM) [19]. 
 
Inheritance Relationships. Inheritance dependencies among classes is another source of structural 
information to capture relationships between classes, and thus useful to identify anti-patterns 
involved in a hierarchy. Generally, the measurement of inheritance relationships between two 
classes is performed through a simple Boolean value: true if two classes have inheritance 
relationships or false otherwise. In the context of anti-pattern detection, inheritance relationships 
have been exploited to support the detection of Parallel Inheritance [48] and Refused Bequest [39]. 
 
4.1.2 Extraction of Lexical Properties through Natural Language Processing 

A source code component contains text, e.g., identifiers, methods’ names, and comments. Thus it 
can be considered as a textual document. Such a likeness has induced researchers to apply Natural 
Language Processing (NLP) techniques on source code in order to extract lexical properties. For 
example, Information Retrieval (IR) [6] techniques have been used to analyze the conceptual 
cohesion or coupling of classes. For instance, two methods are conceptually related if their 
(domain) semantics are similar, i.e., they perform conceptually similar actions. In order to compute 
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conceptual cohesion (or coupling), Marcus et al. [40] [50] proposed the use of Latent Semantic 
Indexing (LSI) [20], an advanced IR method that can be used to compute the textual similarity 
between the two methods. The higher the similarity between the methods of a class, the higher the 
conceptual similarity and thus the conceptual cohesion of the class. On the other hand, the higher 
the similarity between two classes, the higher the conceptual coupling between them. Empirical 
studies have indicated that conceptual metrics are orthogonal to structural ones. In other words, 
using NLP technique it is possible to identify specific properties of source code that are missed by 
looking only at structural information. 

In the context of anti-pattern detection, lexical properties play a crucial role in the identification 
of linguistic anti-patterns. For instance, a part of speech analysis is required to (i) identify whether a 
term is a noun, an adjective, an adverb or other parts-of-speech; (ii) distinguish singular from plural 
nouns; and (iii) identify dependencies between words, e.g., between subjects and predicates, as well 
negative form. In addition, thesauruses (e.g., Wordnet [43]) are required to identify synonymous 
and antonymous relations. 

Lexical properties are not only useful for the identification of linguistic anti-pattern. The analysis 
of the textual similarity between methods or classes has been used to characterize “design” anti-
patterns, such as Feature Envy [8] and Blob [9]. Empirical studies have indicated that using lexical 
properties it is possible to identify instances of anti-patterns, which are missed by using only 
structural properties [8]. 
 
4.1.3 Extraction of the History Properties through Mining of Software Repositories 
In order to find interesting and/or complementary properties with respect to the structural ones, it 
would be important to take into account the history of a system. In particular, it is possible to 
consider the way the code elements changes over time. This is really important when the goal is to 
detect anti-patterns generally characterized by how code elements evolve during the evolution of 
the system. For example, in the case of Divergent Change, we have a candidate anti-pattern when a 
class is commonly changed over time in different ways for different reasons [24]. In the following, 
we discuss which kinds of historical information could be extracted for the identification of anti-
patterns. 
 
Co-changes at File-level. Configuration Management Tools (CMTs) allow to manage different 
versions of a system. In particular, developers can manage the changes of the artifacts 
(configuration items) and keep track of changes occurring to configuration items. In addition, by 
analyzing the log file developers can get information about what was changed, who did the change, 
when the change was made and the message left by the developer who made the change. Thus, the 
log file contains a lot of information that can be mined aiming at finding interesting properties 
related to the development of a software system. Mining of software repositories is a quite new 
approach in the sphere of anti-pattern detection, while it has been widely used to support other 
software engineering tasks, such as [7, 14, 15, 18, 25, 45, 56, 60, 62]. In the context of anti-pattern 
detection, mining log files is worthwhile to detect instances of Parallel Inheritance by simply 
looking at the way subclasses are added during the evolution of the system. 
 
Co-changes at Method-level. Using the standard APIs of CMTs it is only possible to mine co-
changes at file level. Such a granularity level could be not sufficient to detect some of the anti-
patterns defined in the literature. In fact, many of them describe method-level behavior (see, for 
instance, Feature Envy). This requires the use of an ad-hoc tool that is able to identify co-changes at 
method level. A tool supporting such a task has been recently developed in the context of a 
European project, namely the Markos project7. Specifically, the tool is able to identify (i) classes 
added, removed, moved, or renamed, (ii) class attributes added, removed, moved, or renamed, (iii) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 http://markosproject.berlios.de 
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methods added, removed, moved, or renamed, (iv) changes applied to all the method signatures 
(i.e., visibility change, return type change, parameter added, parameter removed, parameter type 
change, method rename), and (v) changes applied to all the method bodies. This information is 
particularly useful in the detection of anti-patterns involve methods changing often together during 
the history of the system, such as Divergent Change. 

4.2 Defining the Detection Algorithm 
 

The second step for the definition of an approach for the detection of anti-patterns is related to 
the choice of the algorithm to use in order to identify candidate instances of the specific anti-
pattern.  Such a choice depends on two factors: 

• The kind of anti-patterns we are interested in detecting. 
• The kind of information we want to exploit to characterize the anti-pattern. 

Looking at the literature, we can observe that the algorithms proposed so far fall in two categories: 
(i) heuristic-based and (ii) machine learning-based. 

A lot of anti-patterns can be identified using heuristic-based algorithms. A simple analysis of the 
dependencies between code components can be sufficient to correctly identify anti-patterns in 
source code. For example, in order to detect the Feature Envy anti-pattern, two kinds of heuristics 
can be used: 

• A structural heuristic, counting the dependencies (e.g., calls) existing between a method mi 
and a class Cj; 

• A historical heuristic, counting the number of commits in which a method changes together 
with methods of the same class (internal changes) with respect to the number of commits in 
which the method change with methods of another class of the system (external changes). 

The problem with these kinds of algorithms is related to the definition of a set of thresholds to use 
to identify an anti-pattern. For example, to detect the Feature Envy using a historical heuristic, a 
threshold is needed to determine the minimum difference between internal and external changes. In 
order to mitigate this problem, an empirical calibration of the threshold can be performed. However, 
the value identified empirically could be not sufficient to correctly detect anti-patterns in all the 
software systems due to the heterogeneity of software systems. Thus, specific tuning should be 
required on each system to improve the detection accuracy. 
Machine learning techniques have also been widely used to detect different kinds of anti-patterns. 
For instance, rule cards defined by DECOR have been successfully translated into a Bayesian 
Network using a discretization of the metric values to detect Blobs. In addition, association rule 
discovery, an unsupervised learning technique, has been used to detect three different anti-patterns 
(i.e., Divergent Change, Shotgun Surgery, and Parallel Inheritance). Such a technique is able to 
identify local patterns showing attribute value conditions that occur together in a given dataset [2]. 
In the context of anti-pattern detection, the dataset is composed of a sequence of change sets, e.g., 
methods, that have been committed (changed) together in a version control repository [63]. An 
association rule, Mleft  " Mright,  between two disjoint method sets implies that if a change  occurs in 
each mi ∈ Mleft, then another change should  happen in each mj ∈ Mright within the same change set. 
The strength of an association rule is determined by its support and confidence [2], defined as: 

!"##$%& = ! !!"#$ ∩!!"#!!
!  
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where  T is  the  total number  of  change sets extracted from  the repository. In the context of anti-
pattern identification, association rule mining has been performed using a well-known algorithm, 
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namely Apriori [2]. Note that, minimum Support and Confidence to consider an association rule as 
valid can be set in the Apriori algorithm. Once again such values can be determined empirically and 
could be necessary to re-tune such values when applying the approach on other systems. 
 

4.3 Evaluating the Accuracy of a Detection Tool 
 

The evaluation of an anti-pattern detection tool can consist of different steps and can be done 
following different strategies. In most of cases, a first evaluation has been done analyzing the 
accuracy in terms of metrics able to evaluate the goodness of an approach (i.e., precision and recall 
[6]). In other cases, the accuracy of the tool can be evaluated directly involving developers who 
express their opinion regarding the suggestions provided by the tool. In the following we report a 
set of evaluation strategies that can be used to evaluate an anti-pattern detection tool. 
 
4.3.1 Evaluation based on an Automatic Oracle 
To evaluate the accuracy of a detection tool, an oracle is required that reports the anti-pattern 
instances contained in a system. Unfortunately, very few software systems with annotated anti-
patterns are available. This means, that to have a larger data set for experimenting anti-pattern 
detection tools a manual identification of anti-pattern instances in the object systems is required to 
build the oracle. In particular, starting from the definition of the anti-patterns reported in literature, 
the analysis of each class of a software system should be performed in order to identify instances of 
those anti-patterns. Once the oracle is defined, the detection tool is executed to extract the set of 
candidate anti-patterns. Finally, the two sets of anti-patterns (i.e., the manually identified and the 
candidate sets) can be compared and two widely-adopted Information Retrieval (IR) metrics, 
namely recall and precision [6] can be used to estimate the accuracy of the tool: 

!"#$%% = ! !"##$%& ∩ !"#"$#"%!"##$%&  
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where Correct and Detected represent the set of true positive anti-patterns (those manually 
identified) and the set of anti-patterns detected by the approach, respectively. As an aggregate 
indicator of precision and recall, F-measure, i.e., the harmonic mean of precision and recall, can be 
used: 

! −!"#$%&" = !2 ∙ !"#$%&%'( ∙ !"#$%%!"#$%&%'( + !"#$%% 
 
4.3.2 Evaluation based on Developer’s Judgment  

When an oracle reporting the list of anti-pattern instances present in the system is not available, 
it is possible to involve developers in order to evaluate the performance of a detection tool. It is 
worth noting that this is not an optimal solution, because the developers can judge the goodness of a 
suggestion provided by the tool, while they cannot evaluate the performance of the tool with respect 
the totality of the anti-pattern instances present in the system (i.e., they can judge the precision of 
the tool, but they can not aid in the evaluation of the recall). However, this kind of evaluation is still 
useful in two cases: 

 
• As complement of the analysis based on the metrics, in order to understand to what 

extent the tool supports the developer. 
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• When you have to compare the support provided by two (or more) tools. In this case, a 
partial oracle can be built as the union of the suggestions provided by the tools. Thus, 
both the precision and recall can be evaluated. 

 
We distinguish two kinds of studies that could be performed: (i) with the original developers of a 

system and (ii) with external developers. The evaluations performed with original developers are 
preferred since external developers do not have a deep knowledge of the design of the subject 
system under analysis and thus may not be aware of some of the design choices that could appear as 
suboptimal, but that are the results of a rational choice. However, studies with external developers 
can complement studies performed with original developers. In fact, even if the original developers 
have deep knowledge of the system’s design, they could be the authors of some bad design choices 
and consequently could not recognize good suggestions by the tool. This means that the two studies 
complement each other mitigating the specific threats they have. 
 

5. Conclusion and Open Issues 
 

Anti-patterns represent symptoms of poor design and implementation choices [24]. Having 
classes affected by anti-patterns cause time-consuming maintenance operations due to their lower 
comprehensibility and maintainability. Thus, detecting anti-patterns in the source code is an 
important activity in order to improve the quality of a software system during its evolution. Some 
anti-patterns can be detected by using simple heuristics, while others are really complex to identify. 
This is the reason why in the last decade a lot of effort has been devoted to the definition of 
approaches able to recommend to developers problematic components that need to be refactored in 
order to improve their comprehensibility and maintainability.  

In this chapter, we have described the state of the art regarding the detection of “design” and 
“linguistic” anti-pattern. We have also identified and described the challenges that need to be 
addressed for building a detection tool. Thus, this chapter provides a support to both researcher, 
who are interested in comprehending the results achieved so far in the identification of anti-patterns, 
and practitioner, who are interested in adopting a tool to identify anti-patterns in their software 
systems.  

Even if the analysis of the literature reveals that the anti-pattern identification is a quite mature 
field, there are still some open issues that need to be addressed: 

• Are anti-patterns really harmful? Despite the existing evidence about the negative effects of 
anti-patterns (e.g., [1] [31] [61]) and the effort devoted to the definition of approaches for 
detecting and removing them, it is still unclear whether developers would actually consider 
all anti-patterns as actual symptoms of wrong design/implementation choices, or whether 
some of them are simply a manifestation of the intrinsic complexity of the designed 
solution. In other words, there seem to be a gap between the theory and the practice. For 
example, a recent study found that some source code files of the Linux Kernel intrinsically 
have high cyclomatic complexity. However, this is not considered a design or 
implementation problem by developers [27]. Also, empirical studies indicated that (i) 
developers perceived different instances of Blob as not particularly dangerous for the system 
maintainability, especially because they change these classes sporadically [54]; and (ii) 
some developers, in particular junior programmers, work better on a version of a system 
having some classes that centralized the control, i.e., Blob [46]. These results suggest that 
the presence of anti-patterns in source code is sometimes tolerable, and part of developers’ 
design choices. 

• Providing a complete support for the identification of anti-patterns. Fowler [24] and Brown 
et al. [13] defined more than 30 anti-patterns. In the last years, researchers concentrate their 
attention only on a small subset of anti-patterns defined in the literature. The world of anti-
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patterns is still full of interesting points to pick in order to construct more useful and usable 
tools in a real context. To succeed in this goal the research community should focus the 
attention on other kinds of anti-patterns, but also on novel strategies for improving the 
accuracy of approaches defined in the literature. 

• On the use of historical and lexical analysis to detect anti-pattern. A recent study indicates 
that historical properties of code components are able to complement structural properties in 
the process of anti-pattern detection [48]. This finding suggests that a better identification of 
anti-patterns can be achieved with a combined technique using a mix of historical and 
structural properties. Moreover, together with the structural and historical information, 
lexical properties could be exploited to better capture the “semantics” of design decisions, in 
order to have recommendations that are more focused on how developers designed the 
system under analysis. 

• Analyzing the usability of detection tools. An important threat to the success of detection 
tools is related to their usability. Detection tools might require the definition of several 
parameters. Thus, they might be hard to understand and to work with, making developers 
more reluctant to use such tools. In addition, it is necessary to define a good strategy for the 
visualization and the analysis of the candidate anti-patterns. This issue is particular 
important since the anti-patterns identified by any detection tool need to be validated by the 
user. Thus, a good graphic metaphor is required to highlight problems to the developer’s 
eye, allowing her to decide which of the code components suggested by the tool really 
represent design problems. 
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