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Abstract

Mining Software Repositories (MSR) has become a popular research area
recently. MSR analyzes different sources of data, such as version control sys-
tems, code repositories, defect tracking systems, archived communication,
deployment logs, and so on, to uncover interesting and actionable insights
from the data for improved software development, maintenance, and evolu-
tion. This chapter provides an overview of MSR and how to conduct an MSR
study, including setting up a study, formulating research goals and questions,
identifying repositories, extracting and cleaning the data, performing data
analysis and synthesis, and discussing MSR study limitations. Furthermore,
the chapter discusses MSR as part of a mixed method study, how to mine
data ethically, and gives an overview of recent trends in MSR as well as re-
flects on the future. As a teaching aid, the chapter provides tips for educators,
exercises for students at all levels, and a list of repositories that can be used
as a starting point for an MSR study.
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1 Introduction

Embedded within the intricate software development landscape lies Mining
Software Repositories (MSR), an academic discipline dedicated to delving
into the expansive dataset within software repositories. Software Reposi-
tories are among the most common sources of data that enable the anal-
ysis of software properties. Additionally, the promising success that this
type of study had in the research community allowed to extend the mining
data process beyond the software repositories, encompassing various essen-
tial aspects such as software changes, collaborative efforts, socio-technical
aspects [GKS08, Men16], and the process dynamics [PSVDB11]. Combin-
ing these aspects serves to obtain the source of key information detailing
the transformation of a software application from its preliminary stages to
well-defined and sophisticated software.

During the iterative enhancement of software development, developers
wield powerful tools that meticulously track software information. These
tools, including robust version control systems like Git and Subversion (SVN)
and efficient issue-tracking tools like JIRA and Bugzilla, facilitate collabora-
tion and provide an exhaustive lineage of code changes. This comprehensive
history, resulting from the union of these tools, allows developers to gain pro-
found insights into all key aspects of the software evolution project, including
software modifications, issue resolutions, bug fixes, and strategic refactoring
initiatives, which are contained in the software repository [KCM07]. The def-
inition of this dynamic and extensive source of information lays the basis for
introducing MSR. MSR is the field that exploits the information contained
in software repositories to conduct thorough investigation and analysis, un-
veiling aspects of the software development process [Has08].

MSR studies in the software engineering research field demonstrated the
underlying capabilities of repository analysis. Several studies investigate the
possibility of building prediction models for software quality issues. Pre-
diction models could be built from issue tracking labels to detect bugs
[MSRM04, RK11]. Moreover, the extreme amount of data possible to ex-
tract from source code repositories allows us to build complex and useful
models with the use of Large Language Models, enabling us to build useful
tools that perform programming tasks related to code generation, summa-
rization, and analysis, also producing code that is not complex and highly
maintainable (e.g., Copilot1) [NN22]. This chapter is intended to target ed-
ucators at MSc and Ph.D. levels, providing them with a comprehensive
understanding of MSR and its applications in software engineering research
so that they may be equipped to teach this method. More specifically, the
learning objectives include:

1. Understand how to set up a mining software repository study, un-
covering the methodological design steps required to (i) define the objec-

1 Github Copilot: https://github.com/features/copilot/
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tives of an MSR study; (ii) identify suitable data sources and data cleaning
methods to address the objectives; (iii) select the most appropriate code
analysis instruments to extract relevant pieces of information useful to the
analysis; and (iv) analyze and synthesize the data gathered throughout
the mining process;

2. Realize what are the typical threats to the validity involving min-
ing software repository studies, overviewing how multiple issues con-
cerned with the mining and analysis of data sources might bias the inter-
pretation of the results;

3. Identify how to combine mining software repository studies with
additional research methods, discussing the flexibility of MSR research
in addressing complex research objectives;

4. Indicate what are the ethical considerations concerned with min-
ing software repository studies, uncovering the possible limitations of
this research method, other than the responsibilities that the future gen-
eration of researchers must necessarily take into account when designing
similar studies.

To ease the reader’s understanding of the concepts in the chapter, we
will focus on specific cases regarding extracting data from the source code
of software repositories. Specifically, we will often refer to an exemplar case,
which effectively used the methodologies described in the chapter. Among
the vast array of valuable MSR examples in literature, we decided to focus
on the work by Kamei et al. [KSA+13], published in IEEE Transactions on
Software Engineering in 2012.

The study explored a well-known and well-established research theme in
MSR research, namely defect prediction. This is a technique used to identify
defect-prone files or packages throughout software development. More par-
ticularly, the study introduced the term “Just-In-Time Quality Assurance”
and aimed at identifying defect-prone software changes while the develop-
ers commit their changes onto a shared repository. From a methodological
standpoint, the study heavily relied on MSR instruments, as it was required to
feed machine-learning models with features mined from software repositories.
These features encompassed multiple properties that might be extracted from
version control systems, such as product, process, and developer-oriented
metrics, hence representing an ideal example to make the concepts in this
chapter more practical. In addition, the study carefully designed the experi-
mental procedures, touching on various data selection, cleaning, and analysis
processes that are elaborated upon in this chapter.

Exemplary teaching strategies that might be relevant for teaching this
chapter include, but are not limited, to the following:

• Interactive discussions. Educators may engage students in active discus-
sions about the importance of MSR in software engineering research, its
potential applications, and its limitations. Through these discussions, we
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envision students to acquire awareness of when and how to use MSR in-
struments to empower their analyses;

• Case studies. Educators may use our chapter to present real-world exam-
ples of MSR research, such as the study by Kamei et al. [KSA+13], to
illustrate key concepts and methodologies, making students aware of how
the design choices taken in exemplary cases impacted the type of analysis
and results of MSR studies;

• Hands-on exercises. Educators may provide students with hands-on expe-
rience in conducting MSR studies, including data collection, cleaning, and
analysis, using relevant tools and datasets. Educators may require students
to design an MSR study, producing reports that detail the whole set of
activities and the rationale thereof required to address specific research
objectives;

• Group projects. Educators may assign group projects where students can
apply MSR techniques to analyze software repositories, like those reported
at the end of this chapter, and address specific research questions or chal-
lenges. Using group projects, students might jointly design data collection,
cleaning, and analysis steps for specific research objectives, having the
chance to interact with other students, hence possibly increasing the col-
lective awareness of the most appropriate methodological choices to take,
even considering ethical limitations.

2 Setting up a Source Code Repository Mining Study

This section will overview the MSR process, including the study design, data
extraction, and analysis, as illustrated in Figure 1. We will discuss the consid-
erations for data extraction (e.g., API vs. Package) and storage. Since these
steps are typically included to guarantee a systematic mining process, the
definition of it might vary depending strictly on the goal of the study that
an MSR researcher aims to design. Regarding data analysis, we will focus
on aspects that should be considered and errors that could occur about the
storage, dataset size, types of analysis, emergent problems, and cases of data
contradicting Research Questions (RQs) or formulated hypotheses.

2.1 MSR Study Design

The first step to designing an MSR study should be systematically defining
the research goal. To do so, the widely adopted Goal-Question-Metric (GQM)
paradigm of Basili [Bas94] can be used. Designing the objective of a study
via the GQM paradigm is composed of three main steps, namely (i) the
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Fig. 1: Set of Activities Involved in the MSR Study Process.

formulation of the goal of the research, (ii) the design of the RQs that need
to be answered to achieve the goal, and (iii) the definition of the metrics
necessary to answer the goal.

2.1.1 Research goal formulation

The formulation of the research goal of a mining study through the GQM
paradigm follows a systematic structure. More specifically, the goal is de-
signed by adopting the following template:

Analyze the experimental object(s) of the study, e.g., repository source code
or GitHub issues
For the purpose of the focus of the study, e.g., identifying common bug types
or understanding developer behavior
With respect to the quality focus, e.g., functional suitability or performance
From the viewpoint of the intended reader of the study, e.g., developers or
researchers
In the context of the context considered, e.g., the Apache ecosystem or An-
droid apps.

On the one hand, formulating the goal according to the template allows
one to take the time to reason on the core objectives of the research and start
reflecting on the research method to achieve such a goal. On the other hand,
reporting the goal by following the GQM template allows one to systemati-
cally document and swiftly communicate the research intention to those not
conducting the study.

As an example of how a research goal can be formulated according to the
GQM template, let us consider the study of Kamei et al. [KSA+13]. In the
case of this study, a possible formulation of the research goal could be:

Analyze defect prediction models
for the purpose of defect prediction
with respect to risky changes
from the point of view of software developers and reviewers
in the context of open source and commercial projects from multiple do-
mains.
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Note that, while introducing some systematicity, a single research goal
could be correctly formulated in many ways while following the GQM tem-
plate. Following Occam’s razor, the most simple and informative solution
should be preferred among different options. Ideally, the research goal is
jointly discussed by all people partaking in the mining process. It serves
as a collective moment of reflection on the goal and intent of the mining
procedure.

A Do for Educators. When formulating research goals, among dif-
ferent options, follow Occam’s razor; your students should prefer the
most simple and informative solution.

2.1.2 Research Questions Definition

Once the study’s goal is defined according to the GQM template (see previous
section), the RQs the mining process aims to answer can be formulated.
Formulating the RQs based on the research goal allows for further design,
with a systematic step-by-step process, of the mining to be executed. RQs
should be directly derived from the research goal formulated in the previous
step. Once an answer to each RQ is provided, it is possible to assess the extent
to which the research goal is achieved (and, in negative cases, further enhance
the research process by adding further mining processes or RQs). If needed,
during a preliminary repository mining design phase, RQs can be adapted to
fit the refined research goal and envisioned repository mining process.

As noted in a recent work by Storey et al. [SRN+24] when conducting
MSR studies, RQs are often formulated in a rushed manner. To avoid this,
a deliberate approach to infer the most suited RQs is recommended. This
involves considering the potential impact of the research, drawing inspiration
from various sources, and intersecting these with possible phenomena and
concepts related to those phenomena. The next step is to brainstorm RQs.
This is a creative process where no idea is initially dismissed. The aim is to
generate a wide range of potential research questions that could be studied.
Once a comprehensive list of potential research questions has been generated,
the final step is to select specific research questions for further study. This
selection should be justified based on the relevance of the question to the
research objectives, the feasibility of answering the question, and the potential
contribution of the findings to the field of study.

As a rule of thumb, a mining process is steered by two or three RQs.
Having more than four or five RQs usually suggests that the research goal
is not well-defined or that the RQs are too low-level. By taking into account
the exemplary study of Kamei et al. [KSA+13], we can see how their research
goal is decomposed into three different research questions, namely:
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RQ1 : How well can we predict defect-inducing changes?
RQ2 : Does prioritizing changes based on predicted risk reduce review effort?
RQ3 : What are the major characteristics of defect-inducing changes?

By comparing the RQs of Kamei et al. [KSA+13] with the research goal
formulated in Section 2.1.1, we can observe that RQ1 is the one more closely
related to the goal. At the same time, RQ2 and RQ3 are utilized to build
upon the research goal and provide further complementary notions on the
considered topic. While slightly striving away from the standard application
of the GQM approach, such a technique can be used to build upon and
strengthen the results of the mining process set by the research goal.

As potential inspiration, examples of further RQs of an MSR study could
be:
RQ : Can Large Language Models be used to identify bugs?
RQ : Is there a relation between technical debt and software energy efficiency?
RQ : How does software quality evolve in microservice architectures?
RQ : Which code smells are more frequent in AI-centric software projects?
RQ : What are the most common causes of test flakiness?

From a documentation point of view, once the mining results are collected
and analyzed, it is considered a good practice to explicitly answer each RQ
(and possible sub-RQs if present) in the mining process documentation. Ex-
plicit answers to the RQs are usually documented either in the Results sec-
tion, Discussion section, or a section dedicated entirely to answering the RQs.

A Do for Educators. A mining process is usually steered by two or
three RQs. Usually, having more RQs suggests that the research goal
needs to be better defined or that the RQs need to be more high-level.

2.1.3 Metrics identification

As the last step of the GQM approach, each RQ is mapped to a specific
set of metrics that do not overlap with those used to answer other RQs.
However, this is not always the case. For example, the number of GitHub
issues could be used to answer both RQs regarding developer behavior and
recurrent development impediments. The selection of metrics strictly depends
on the specific RQs at hand, which can be qualitative, quantitative, or a mix
of both. Selected metrics can be either atomic, e.g., lines of code or number
of defects, or composite, e.g., defects per line of code. It is, therefore, possible
to compose the same set of atomic metrics in different manners to answer
different RQs.
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A Do for Educators.When documenting the metrics used to answer
the RQs, students should report their definitions and mappings to the
RQs, supporting the metric definition with a sound reference or an
unequivocal definition and measurement procedure description.

Teaching Exercises. Through the GQM approach, define a goal,
formulate three RQs, and identify five metrics (mapped to the RQs)
to investigate which development factors affect bug-proneness.

2.2 Identifying High-Quality Source Code Repositories

2.2.1 Data Sources

The MSR field collects and analyzes rich data from different types of repos-
itories. The repositories can be of static and dynamic nature and can be
classified as follows [Has08]:

• Historical repositories, including (i) bug or defect repositories, such as
Jira and Bugzilla, which help track and manage defects of a software sys-
tem, (ii) archived communications such as mailing lists, emails, and chat
messages, which are a source of discussions regarding multiple aspects of
a software system, and (iii) source control repositories that track all the
changes made to software system artifacts (e.g., source code, Pull Requests
(PRs), commit messages, documentation). Git is one of the most popular
source control repositories.

• Source Code repositories control and manage software projects. Typical
features include source code hosting, bug tracking, documentation facil-
ities, mailing lists, and forums. Notable source code repositories include
Sourceforge, GitHub, and Bitbucket.

• Runtime repositories such as deployment logs that track the information
and actions related to the deployment of a software system. Deployment
logs are essential to oversee the configurations and steps of deployment
instances. They usually include timestamps, error messages, and configu-
ration settings.

For this chapter, we focused on source code repository mining to align
with the running exemplar.
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2.2.2 Source Code Repositories Selection Criteria

Code repositories have multiple characteristics [KGB+14] that can help in
the decision-making process for selection. These characteristics can be used
as inclusion and exclusion criteria for narrowing down the candidate reposi-
tories.

• Programming language(s), e.g., Java for the Apache Ecosystem projects.
• Size and complexity of the repository, e.g., number of lines of code (LOC)

or number of commits
• Domain, e.g., gaming, visualization, database, parsers, testing.
• Active or inactive repository, e.g., were there recent (during the last 6

months) commit activities on the repository? When was the last commit?
• Types of repositories, i.e., base (not forked) or forked repositories.
• Purpose of the repository. Not all repositories are software repositories.

Some are used for experimentation, website hosting, academic, and per-
sonal (not involving collaboration) projects.

• Location of the repository. Some projects are hosted on multiple platforms.
• Popularity of the repository, e.g., number of stars and contributors.

2.2.3 Considerations when Selecting Data Sources

Several considerations must be undertaken to mitigate potential threats when
assessing source code repositories for research purposes. The repositories en-
compass diverse entities beyond software projects, serving as repositories for
free web storage, online books, or repositories housing projects with other
characteristics. Numerous repositories exhibit transient traits, being short-
lived, inactive, or dedicated to assignments, student endeavors, educational
objectives, personal use, or archival purposes [KGB+14]. Thus, if the re-
search question is related to software development, these projects should be
removed from the dataset. Furthermore, it is crucial to prioritize repositories
that house engineered software projects [MKCN17]. Consequently, in studies
related to software development, it becomes imperative to purify the dataset
for such repositories. Munaiah et al. [MKCN17] propose a framework to filter
the engineered software projects from GitHub. Additionally, many projects
have few commits, and not all use pull requests, resulting in skewed or im-
balanced data. The process of commits in pull requests and for code reviews
depends on GitHub’s practice of recording the commits, which should also
be studied carefully.

A strategy to mitigate such potential threats involves refraining from con-
sidering repositories that include many non-registered users as committers.
Furthermore, projects explicitly identifying themselves as mirrors in their
descriptions should be carefully vetted or excluded. For an MSR study, we
recommend having a list of inclusion and exclusion criteria based on study
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goals and RQs. Manual exploration can be conducted on sample repositories
to assess whether any changes to the selection criteria are required to ensure
a high-quality dataset is collected.

When selecting the repositories, researchers should note that selecting and
ranking the repositories based on the number of stars might favor active
marketing strategies and not the well-established software engineering prac-
tices [BT18]. Therefore, checking that the repositories are not starred in a
short period due to social media activity is essential. It is also important to
note that the number of stars is not strongly correlated with contributors,
forks, commits, and the repository’s age. Thus, relying only on the number
of stars can threaten the validity of the collected data.

Another consideration is the correctness of the heuristics and key terms
used for selecting the repositories. These heuristics should be scrutinized and
documented [Has08]. The criteria for choosing the data sources may lead to
a noisy collection of repositories and, therefore, a skewed dataset. Careful in-
vestigations reveal whether this skewness is related to the inaccurate metrics
for selecting repositories or is due to the nature of the data.

Understanding the limitations of repository data is another consideration,
as the repository data cannot lead to causal conclusions and only can show
correlations [Has08]. Moreover, the active projects might not include all their
development activities in GitHub. So, other resources should be considered.

In general, MSR findings must be considered in the context in which the
studies are performed, which is crucial to revealing the actual cause of partic-
ular conclusions. Indeed, such findings may not generalize across projects, and
repository use could vary between projects. So, researchers should closely ex-
amine socio-technical aspects [Hod21] to better understand the use of repos-
itories before reaching conclusions.

When presenting the results of MSR research, the limitations of repository
data should be thoroughly examined and communicated. This practice is
essential to prevent misinterpretations and ensure research integrity.

A Do for Educators. Students should carefully select the sources
before analyzing them. When selecting data sources, the above-stated
considerations allow for effective mining, which is essential to answer
the RQs, prevent misinterpretations, and ensure research integrity.
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Teaching Exercises. A typical exercise would be to select three
GitHub projects by focusing on three inclusion and exclusion crite-
ria each, e.g., projects written in different programming languages,
of different domains, and active projects with at least 200 commits
over the last year as inclusion criteria. Exclusion criteria could in-
clude academic and personal projects and projects hosted on multiple
platforms. Once the projects have been shortlisted, the issue-tracking
data can be mined for further analysis.

2.3 Data Extraction

Data extraction starts once a source code repository is selected and depends
on the goals of the mining campaign. In studies concerning predictive ana-
lytics, this phase entails mining data concerning independent and dependent
variables. The goal is to extract data concerning the former variable able
to accurately predict the former variable in the future. For example, let us
consider just-in-time defect prediction [KSA+13], which aims to predict defec-
tive commits given their features and involves mining commit data to extract
valuable information to forecast such defective commits. Such commits can
be analyzed sequentially, or specific commits can be analyzed in a given time
window.

The dependent variable we will need to extract is the failure prone-
ness of our commits. In contrast, the independent variables are the char-
acteristics that should lead to such failure. It is essential to consider that
the described concepts are generalizable to predict defects [KSA+13], code
smells [APSW19], and security vulnerabilities [YR+11] concerning not only
traditional code but also Infrastructure-as-Code [DPDNPT21].

In just-in-time defect prediction, the first step is identifying defect-fixing
commits. To achieve this goal, we need to collect the issues closed and related
to bugs (e.g., with labels bug and bugfix). Source code repositories like
GitHub provide issue trackers that link issue reports and bug-fixing commits.
A commit message is tagged as fixing defect if it matches a regular expression
like the following:

(bug |fix |error |crash|problem|fail |defect |patch)

Only the commits that modify at least one source code file are kept.
The second step is to identify the fixed files, which are the files modified

by defect-fixing commits, and their related defect-inducing commits.
The commits from the most recent to the oldest are analyzed. For each

fixed file, the SZZ algorithm [ŚZZ05] automatically identifies the oldest com-
mit that modified the lines of code involved in the fix. It is worth noting that
SZZ has evolved over the years, and several variants are available [RPS+21].
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Once the defect-inducing commit is found, all commits between the defect-
inducing commit (inclusive) and the defect-fixing commit (exclusive) are la-
beled failure-prone.

After the failure-proneness of the code components has been determined,
metrics able to predict such failure can be mined. In the example, Kamei et
al. [KSA+13] mined 14 metrics grouped into five dimensions, i.e., diffusion,
size, purpose, history, and experience. It is essential to consider that although
some metrics can predict several phenomena (e.g., the file size could lead to
defects and bugs), different metrics apply in different contexts. Structural
metrics [CK94] focus on structural properties extracted through source code
analysis. Delta metrics [dBRBvD19] capture the amount of change in a file
between two successive releases. Process metrics [MPS08] consider aspects
concerning the development process rather than the code itself.

In just-in-time defect prediction, all commits could be used to train the
models2. Nevertheless, analyzing all commits could be infeasible in other con-
texts; therefore, selection strategies should be applied. For example, only one
snapshot for each software release could be analyzed by randomly selecting it
or applying another strategy. For instance, the first, last, or middle snapshot
of each release could be analyzed.

Finally, several tools are available to mine source code repositories and
extract valuable metrics. Among them, PyDriller [SAB18] is a Python frame-
work that helps developers mining software repositories. PyDriller allows the
extraction of information from any Git repository, such as commits, devel-
opers, modifications, diffs, and source codes, and quickly exports to CSV
files.

A Do for Educators. There is no silver bullet. Although some met-
rics can predict several phenomena, different metrics apply in different
contexts.

A Do for Educators. Do not re-invent the wheel. Several tools are
available to mine source code repositories and extract useful metrics.
Before developing a brand-new tool for mining software repositories,
explore existing ones.

2.3.1 Data Cleaning

Software repositories often contain various types of noise that can skew the
results of analyses [BHWS21]. Therefore, data cleaning is a critical step in
preparing data, which includes a range of techniques and procedures to ensure
that datasets are accurate, consistent, and reliable. Several techniques are

2 In this scenario, the commit order is particularly relevant [FHN+20].
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employed to ensure the adoption of high-quality data before analysis, a crucial
practice, particularly in the context of Artificial Intelligence (AI). Different
methods of handling data greatly depend on the specific context in which it
will be used.

This section is designed to help readers manage data in the context of
MSR, emphasizing one of the most critical aspects of software repositories: the
commit. This element can hinder different issues after the data are extracted
and can lead to drift in the results of our analysis. Commits are the puzzle
pieces that make up a project’s story. Each commit contributes to the bigger
picture, but sometimes, some do not fit perfectly, leaving gaps or distorting
the intended image. Addressing these problematic commits is essential to
maintaining the integrity of the entire project and ensuring the accuracy of
our analyses.

When mining data from commits, the first issue concerns extracting data
from tangled commits [HZ13]. This type of commit contains multiple pieces of
information related to different changes, caused often by the introduction of
multiple-fixing change commits [NNN13]. These changes during the develop-
ment phase may not cause major issues. However, they can create problems
while analyzing the corresponding version archive by introducing inaccura-
cies. For example, if a complex change is made to fix a bug, all the files
associated with it may be mistakenly labeled as defective in the historical
context. When treating these types of commits, it is suggested to under-
stand the changes inside a commit and consider it separately as change set
partitions [HJZ16].

An additional critical issue that arises during the data collection process is
the inclusion of merge commits, which has been highlighted as a nuanced is-
sue by Kovalenko et al. [KPB18]. This issue requires an additional effort since
many merge operations may not be labeled as such, leading to inspecting the
content of the changes manually to identify it [KGB+14]. Similar to merge
commits, it is necessary to consider other types of changes and commits that
can mislead the analysis. In this set, we can also find quickly remedy com-
mits (i.e., commits aimed at implementing changes omitted in the previous
commit) [WNLB20]. The decision to include or exclude these commits can
significantly impact the complexity of the dataset and the richness of the in-
formation obtained. Wen et al. discovered that excluding this type of commit
allows us to avoid introducing a significant amount of noise in MSR stud-
ies [WNLB22]. Incorporating all commits, including those outside the main
branches, can elevate the complexity of the analysis. However, it can also
enrich the dataset by adding important information to the software history
and providing a more comprehensive view of collaborative efforts, branching
strategies, and concurrent development threads.

On the other hand, limiting the analysis to the main branch can simplify
the extraction of essential information. However, it may also lead to missing
valuable insights into the other branches. Therefore, the inclusion or exclusion
of these commits presents a delicate balance, and MSR researchers should



14 Authors Suppressed Due to Excessive Length

carefully consider the trade-offs involved. As such, it is crucial to weigh the
benefits and drawbacks of each approach, keeping in mind the research goals
and the nature of the data under investigation.

When determining whether to include or exclude commits based on the
goals of the MSR study, it becomes evident that commits containing infor-
mation not aligned with the study’s objectives are considered noise. Noisy
commits in software development and version control systems refer to change-
sets or commits deemed extraneous to the primary focus of analysis. These
typically involve minor modifications like fixing typos, adjusting task names,
or resolving lint warnings [LXH+18]. In MSR studies, researchers often en-
counter noisy commits and filter them out to improve the signal-to-noise ratio,
allowing for a more targeted analysis of substantive changes. Dalla Palma et
al. [DPDNPT21], for instance, exemplified this approach by excluding com-
mits that addressed typos, task names, and lint warnings, prioritizing more
impactful contributions to the codebase. Additionally, an MSR researcher
should consider including or excluding bot commits [DVM20]. Detecting and
considering the exclusion of this type of commit can significantly differ on
several aspects involved in MSR analysis, including community-related as-
pects [DMP+20]. This commit type is detectable by observing the commit
message and the list of changes the bot will perform.

To conclude, an MSR researcher must carefully navigate the decisions
surrounding commit inclusion or exclusion, acknowledging the significance
of commits in shaping the quality of data analysis. By aligning these deci-
sions with the specific goals of the study, researchers ensure that the dataset
remains focused on substantive contributions, enhancing the precision and
relevance of their findings. Therefore, an MSR researcher should take the
following steps to obtain the optimal dataset:

• Identifying the criteria for selecting the key commits that should be in-
cluded in the study.

• Consider including or excluding tangled, merge, and quick-remedy com-
mits.

• Based on the defined criteria, identify and exclude the noisy commits in
the extracted data.

A Do for Educators. Students should carefully clean data. Each
piece of data is the puzzle piece that makes up the story of an MSR
campaign. They all contribute to the bigger picture, but sometimes,
some do not fit perfectly, leaving gaps or distorting the intended im-
age.
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Teaching Exercises. A practical exercise for understanding the data
extraction phase involves students applying algorithms from the study
of Kamei et al. [KSA+13] to identify bug-inducing and fixing commits
in repositories. Starting with chosen repositories, students identify
commits that fix defects. During this process, they meticulously clean
the data by removing any tangled and merge commits. Finally, stu-
dents extract the commit message and the set of files modified by each
defect-fixing commit.

2.4 Code Analysis

Source code analysis is extracting information about a program from its
source code or artifacts (e.g., from Java byte code or execution traces) gener-
ated from the source code using automatic tools [Bin07]. Source code analysis
can be textual, static, dynamic, and historical [DRGP13]. We focus on static
code analysis.

2.4.1 Static Code Analysis

Source code is a crucial artifact that can be analyzed to reveal information.
A technique to analyze source code is static code analysis (also known as
structural analysis) - the process of checking the source code of a program
for issues without executing the program. Static code analysis is helpful in (i)
ensuring that code adheres to rules about good coding practices, (ii) finding
defects and security issues and (iii) identifying code smells and technical debt
instances. Static analysis can be applied during the early stages of software
implementation for early fault detection since the code does not need to be
fully functional or executable.

Source code can be analyzed at different levels of granularity. The analysis
level depends on the study’s goal and research questions, which will, in turn,
dictate the level of granularity at which the analysis needs to be performed.
Generally, analysis can be performed at (i) method level - the lowest level of
granularity which allows finer-grained analysis, (ii) class level - a coarser level
of granularity compared to method level but still popular among researchers,
(iii) file level - a higher level of granularity and lower level of details when
analyzing groups of classes and (iv) system level - the highest granularity
level and the lowest details level.

Tools such asAutomated Static Analysis Tools (ASATs) are increas-
ingly used for static analysis. ASATs can be of general purpose (e.g., PMD,
SonarQube, Understand, Cppcheck), bug-focused (e.g., SpotBugs, Coverity),
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and security-focused (e.g., Flawfinder, Fortify). Static analyzers differ based
on the level of sensitivity regarding precision and analysis time [EN08]. A
flow-sensitive analysis is more precise but more time-consuming and considers
the order of the statements compared to a flow-insensitive analysis. A path-
sensitive analysis considers only valid paths and can be precise but costly,
while a path-insensitive analysis considers all execution paths, including in-
feasible ones. Context-sensitive (also known as inter-procedural) analysis con-
siders the context during the analysis compared to an intra-procedural anal-
ysis. The latter is faster but more imprecise compared to an inter-procedural
analysis.

The Open Worldwide Application Security Project (OWASP)3 provides a
comprehensive list of security static analyzers. Some commonly used static
analyzers are presented next.

PMD4 is a general-purpose static analyzer that supports 16 languages
but primarily focuses on Java. For instance, Java rules enforce accepted best
practices and coding styles, uncover design issues, detect constructs that are
either broken, extremely confusing, or prone to runtime errors, flag code doc-
umentation issues, suboptimal code, potential security flaws, and issues when
dealing with multiple threads of execution.

SpotBugs5 (formerly FindBugs) is a static analyzer mostly focused on de-
fect detection based on a predefined set of more than 400 bug patterns in Java
code. These bug patterns check for bad practices, correctness, performance,
malicious code, and security issues.

Fortify6 is one of the most popular static analyzers specifically for viola-
tions of security-specific coding rules and guidelines in multiple languages.
Fortify comprises eight vulnerability analyzers: buffer, configuration, content,
control flow, dataflow, null pointer, semantic, and structural.

2.4.2 Dynamic Program Analysis

Dynamic program analysis involves analyzing the properties of a program
while it is executing with real input data. Unlike static analysis, dynamic
analysis aims to identify issues while the code runs. Dynamic analysis is use-
ful in identifying (i) a lack of code coverage, (ii) memory allocation and leaks,
(iii) performance bottlenecks, (iv) software vulnerabilities and defects, and

3 https://owasp.org/www-community/Source Code Analysis Tools
4 https://pmd.github.io/
5 https://spotbugs.github.io/
6 https://www.microfocus.com/en-us/cyberres/application-security/static-code-
analyzer
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(v) concurrency issues such as deadlocks and race conditions.

A comprehensive list of dynamic analysis tools can be obtained from the
analysis-tools.dev website7. Some notable dynamic analysis tools include:

Valgrind8 provides a suite of tools for building dynamic analysis tools. For
instance, Memcheck can detect many memory-related errors that are common
in C and C++ programs and can lead to crashes and unpredictable behav-
ior, Helgrind is a thread debugger that finds data races in multithreaded
programs, and Massif performs detailed heap profiling by detecting which
parts of the program are responsible for the most memory allocation.

Application Verifier (AppVerifier)9 by Microsoft is a runtime verification
tool for unmanaged code to detect and help debug memory corruptions, crit-
ical security vulnerabilities, and limited user account privilege issues that
would be difficult to detect during regular application testing.

Code Pulse10 is a real-time code coverage tool for penetration testing ac-
tivities by OWASP and Code Dx (acquired by Synopsys11) and automatically
detects coverage information while the tests are being conducted. Code Pulse
currently supports Java and .NET Framework programs.

Teaching Exercises. A useful exercise for understanding the utility
of performing static or dynamic analysis on code is to analyze the im-
pact on code quality before and after a defect-fixing commit. Students
will retrieve versions of the code from a specific repository both before
and after a defect-fixing commit. By utilizing a chosen analysis tool,
such as SpotBugs, students will explore the implications of defect fixes
regarding correctness, performance, and security issues.

2.5 Mined Data Analysis

The analysis of the collected data depends mainly on the data type, but also
on other factors such as the purpose of the analysis and the tools and tech-
niques available. Even when source code repositories are analyzed, there are
multiple data sources and types: source code, commits, GitHub issues, ques-

7 https://github.com/analysis-tools-dev/dynamic-analysis
8 https://valgrind.org/
9 https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/application-
verifier
10 https://code-pulse.com/
11 https://www.synopsys.com/software-integrity.html
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tions and answers, review comments, code comments, numerical data, etc. In
this section, we will review some data types and techniques for analyzing the
mined data. As we have focused on code in the previous section, we cover a
broader range of artifacts in this section. Although source code analysis re-
quires specific techniques, which are beyond the scope of the current chapter,
the topic modeling and deep learning-based approaches mentioned in this
chapter are widely used for analyzing the source code.

2.5.1 Unstructured Data

“Unstructured data does not have clear, semantically overt, easy-for-a-
computer structure. It is the opposite of structured data, the canonical ex-
ample of which is a relational database, of the sort companies usually use to
maintain product inventories and personnel records.” [CTH16]

Textual data such as commits or source code are unstructured, as they
do not have a pre-defined format. Instead, the authors can write the text in
any order and with different contexts, even though a template is used. Un-
derstanding the content of the text is of main interest in many studies and
requires analysis. We can use several techniques to analyze textual data. The
main factor of using the analysis technique is ‘what’ we intend to identify in
our study. This can vary from more straightforward techniques, such as an-
alyzing the frequency of words based on Term-Frequency Inverse-Document-
Frequency (TF-IDF) metrics, to more in-depth analysis to understand the
content of the documents or categorize them, such as topic modeling, clus-
tering, and classification techniques to sophisticated analysis such as finding
the reasons, relations, or causality among concepts, using more advanced
text analysis techniques such as causal inference. In all cases, the textual
data could be represented with numerical vectors (also referred to as vector
embedding) that can be learned using deep neural models.

Topic Modeling

Topic modeling or latent topic modeling is a category of techniques for au-
tomatically extracting topics from a corpus of text documents. The corpus
of documents can be short or long texts, such as commit messages, app re-
view feedback, or bug reports. Please note that each commit, app review, or
bug report is considered a document in this example. A topic is a collection
of terms that frequently occur in the documents. When topic modeling is
applied, the main topics of the documents’ corpus are extracted; therefore,
we can compute the topics of each document as well. Thus, topic modeling
uncovers the latent semantic relationships of the documents. As this ensures
a faster analysis of many documents, topic modeling is used for several soft-
ware engineering applications such as bug triaging, finding the most discussed
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topics or issues, traceability link recovery, and concept location. Multiple ap-
plications of topic modeling in software engineering research are discussed in
the literature [SGG21].

Examples of topic modeling algorithms are Latent Semantic Indexing
(LSI), Probabilistic Latent Semantic Indexing (PLSI), Latent Dirichlet Allo-
cation (LDA) and its variations, such as Hierarchical Topic Models (HLDA),
non-negative matrix factorization (NMF), and Biterm Topic Model (BTM).
While LDA and other algorithms are designed for longer text, BTM is a newer
algorithm for short text. The BTM algorithm considers the Biterms in the
whole corpus to enhance the topic learning in short texts. Online algorithms
for BTM, i.e., online BTM (oBTM) and incremental BTM (iBTM), are also
introduced to speed up the inference of BTM on large data sets.

The algorithms mentioned above are mainly used to extract the topics
from documents at a static point in time. As the distribution of the terms in
a document changes over time, so can its topical topic modeling techniques,
which are developed to detect the evolution or variations of topics in time-
stamped documents. Dynamic Topic Model is one of these algorithms. Online
Latent Dirichlet Allocation (OLDA) is another method that tracks the vari-
ations of topics over text streams. The OLDA models the texts’ topics of
one time slice based on the topics of the last time slice. Newer algorithms
are developed that consider previous time slices of the documents for better
topic modeling. Adaptively Online Latent Dirichlet Allocation (AOLDA) is
an algorithm specifically developed for software engineering and app review
analysis. It improves OLDA by adaptively combining the topic distributions
of previous versions to extract topics in the current time slice. Adaptive On-
line Biterm Topic Modeling (AOBTM) is a similar algorithm developed for
short texts. It analyzes the statistical data of previous time slices to identify
the topic distribution of the current time slice.

The more recent topic modeling algorithms are based on word embed-
dings or neural network-based topic models, such as Top2Vec, LDA2Vec,
and BERTopic.

Considerations. When applying topic modeling, several considerations are
necessary to improve the results:

• Text pre-processing: Though the text pre-processing varies based on the
study context and data, the common techniques are to remove punctuation
and non-textual symbols, check the language of the text (e.g., English
only), spell check and correct the spellings of the words, stemming and
lemmatization, and removing stop words.

• Investigating the length of the text: It is shown that the topic modeling
algorithms do not work correctly for short text. So, investigating the length
of the documents is necessary in selecting the topic modeling algorithms,
whether they are designed for short or long text.

• The evaluation metrics: The evaluation metrics of topic models span over
quality, interpretability, stability, diversity, efficiency, and flexibility. Two
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well-known terms to measure the topic models are perplexity and coher-
ence. The former refers to how well the model explains the data (predictive
power of the model), and the latter identifies a measure of whether the gen-
erated words for a topic can be associated with a single semantic meaning.
One way to evaluate coherence is Pointwise Mutual Information (PMI).
For other evaluation metrics, the work of Abdelrazek et al. [AEG+23]
provides a good starting point.

• Number of topics: The user should choose the number of topics in most
algorithms. Rather than using a random number or based on the heuristics,
a common way is to explore a range of different topic numbers and evaluate
the coherence score of the results, which could be a good determination
to select the number of topics. There are other metrics for models such
as BERTopic that should be evaluated for selecting the best number of
topics.

• Hyperparameter setting: Similar to the previous point, setting the hyper-
parameters is important in running the algorithms. So, care should be
taken to experiment with different choices before applying the topic mod-
eling.

• Running time and size of data: One main consideration in choosing the
topic modeling algorithm is the time it takes to execute the algorithm and
whether it can be applied to a large dataset.

Sentiment Analysis.

Sentiment analysis, also referred to as opinion mining, refers to gather-
ing and analyzing people’s opinions, emotions, or attitudes towards an entity
(i.e., individuals, product, topic, etc.) [WRK22]. In software engineering, sen-
timent analysis can analyze various MSR artifacts, such as app reviews, users’
product feedback, and developers’ discussions. Sentiment analysis determines
whether the opinion is positive, negative, or neutral. The analysis can be done
at different levels of granularity: document, sentence, phrase, or even certain
aspects of an entity. Several algorithms are developed for sentiment analy-
sis, from lexicon-based approaches to unsupervised and supervised machine
learning techniques, including deep learning models and pre-trained language
models, hybrid approaches, and transfer learning approaches.

Considerations. While for some text analysis applications, the text should
be cleaned and punctuation marks removed, the text pre-processing consid-
erations for sentiment analysis should be done carefully. Several essential fea-
tures can reveal sentiments, including punctuation marks, emojis, and slang
words, which are some selected features for sentiment analysis.
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(Deep) Neural Network Based.

Another common technique for analyzing textual data is representing the doc-
ument with a vector. This vector, called embedding, can be a non-contextual
or contextual text representation. For non-contextual representations, the
model learns a fixed vector for each word, no matter their context.

Famous examples of such embeddings are word2vec, glove, and code2vec.
In the contextual representation, the word embedding depends on its sur-
rounding words. Contextual representation has recently been used in many
applications in which the embedding of the words or text is extracted from
a language model, a model that learns a probabilistic model of a natural
language from a large corpus of textual data. Multiple models can be used
to extract the embeddings of text or code, including Sentence Transformers
or GPT family for text or code-specific language models such as CodeBERT,
GraphCodeBERT, CodeT5, or Code Llama. Many newer models can also be
used, and we refrain from naming them due to the increasingly fast intro-
duction of newer models. While topic modeling and sentiment analysis are
techniques aiming at a specific goal (i.e., understanding what is being dis-
cussed and what emotion is expressed), deep learning models are generally
discussed and can be used for various purposes, including topic modeling and
sentiment analysis. These models or embeddings extracted from them can be
applied in other analyses such as predictive analysis or training machine learn-
ing models. Some examples of the studies that use deep learning for mining
software repositories are mentioned in the survey by Yang et al. [YXLG22].

Considerations. In the following, we list a few points to consider when
choosing the models.

• Cost of using a model. Most of the recent language models are based
on deep learning approaches. The computational costs available to the
researchers should be considered when using them. Additionally, if using
models such as a GPT-based family, one may intend to pay for the calls to
the model and receive the embeddings. Therefore, the budget associated
with the research based on the dataset size is an important factor.

• Model selection. Several non-contextual and contextual models are specifi-
cally developed for software engineering tasks and code. Depending on the
application, we recommend a search to identify the model to use in the
analysis. Several SE-specific language models have been developed, such
as seBERT, which is a BERT model trained from scratch on software en-
gineering data. These specific models are available for various applications
and domains in software engineering. It is necessary to conduct at least
some initial studies if there is insufficient literature to ensure the final
model is chosen properly.
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2.5.2 Structured Data

Structured data is data that has a standard format. Examples of structured
data are time stamps, number of commits, and years of experience. The struc-
tured data are analyzed through various means, such as correlation analysis,
time series analysis, statistical analysis, clustering, regression analysis, and
developing prediction models. Note that some techniques, such as clustering,
and developing machine and deep learning models might apply to the un-
structured data. A discussion about machine learning strategies for MSR can
be found in [GPLNMSMR18]. Both structured and unstructured data can
be used for the analysis or extraction of quantitative metrics while working
with unstructured data. For example, the mean number of accepted answers
on Stack Overflow can be calculated while also analyzing the contents of the
questions and answers.

In the following, we briefly describe some of the statistical tests. Statistical
methods, or models, are powerful tools for analyzing data and supporting
arguments. They are mathematical formulas used to analyze numerical raw
data. The study conducted by De Oliveira Neto et al. [dONTF+19] provides
a survey on different tests that are used for empirical studies in software
engineering, which can be used as a starting point to review the widely used
statistics tests. Parametric and non-parametric tests are specific classes that
refer to the distribution of the population’s parameters. The t-test, ANOVA,
and F-test are some common parametric tests. Examples of non-parametric
tests are Mann–Whitney U test and its variations, Kruskal–Wallis test, and
the χ2 test. If multiple tests are conducted, correction tests such as Bonferroni
or its variations should be considered.

Another method is statistical power analysis is a test conducted to ac-
cept or reject a hypothesis. The statistical power refers to the probability
of a hypothesis finding an effect if there is an effect. Power analysis uses a
significance level, effect size, and statistical power to estimate the required
minimum sample size.

Considerations. In the following, we list a few points to consider when
analyzing structured data.

• Data distribution. When applying statistical tests, it is imperative to as-
sess data distribution. Statistical tests are often developed for normal
or non-Gaussian distributions, and one cannot be applied to the other.
Therefore, the results are unreliable if the data follows a non-Gaussian
distribution, but the test is for normal distributions. Shapiro–Wilk and
Kolmogorov–Smirnov tests are commonly used to assess the normality
distribution of datasets.

• Reporting effect size. When applying statistical tests, it is necessary to
understand and reflect on the effect size and significance level and not
choose them arbitrarily. When reporting the results of a statistical signifi-
cance test, usually p-values are reported but not the effect size. However,
a p-value only informs the existence of an effect but not its magnitude
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(i.e., effect size). Therefore, the effect size should be reported to find out
the size of a significance [SF21].

• Often, to develop an analysis, the model’s features combine structured
and unstructured data. In this case, the embeddings of the text or code
could be used as features, or the text itself could be considered. There
are several approaches to be used, and one can experiment with different
combinations to evaluate the results.

A Do for Educators. Data analysis depends on the data types. Even
for source code repositories, there are multiple data sources and types.
Tools must be selected considering the nature of the repositories and
the analysis to conduct.

Teaching Exercises. A useful exercise for understanding data anal-
ysis in MSR involves performing topic modeling on defect-fixing and
non-defect-inducing commits. Students will start with a set of com-
mits from Kamei et al. [KSA+13] and preprocess the commit mes-
sages to ensure data quality. Students will identify the main topics
discussed in defect-fixing and non-defect commits using a specified
topic modeling technique, such as Latent Dirichlet Allocation (LDA)
or BERTopic. They will analyze and interpret these topics, comparing
the topics of defective and non-defective commits and exploring their
relevance to different types of defects and their implications for soft-
ware maintenance practices. A similar practice can be applied using
sentiment analysis to investigate whether the sentiments of commits
change when fixing a defect compared to a non-defect one.

2.6 Data Synthesis

Collecting and synthesizing the analysis results is crucial to interpreting data
and discovering important findings. Before presenting all the results extracted
from data analysis, an MSR researcher’s primary focus is to remember the
goal addressed in the previous steps. Following the GQM approach (presented
in Section 2.1), all the plots and the results shown in the study aim to answer
the research questions formulated. Therefore, before starting, it is crucial to
keep the following points in mind:

• Research Objectives as a Guide: Using the formulated research goals
helps to organize and prioritize your results. Therefore, considering a map-
ping link between the research question and the findings helps to find the
best solutions to present results through discussion, plots, and tables.
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• Relevance to Research Questions: Articulating how each result ad-
dresses specific research questions helps to check if the goal is accom-
plished. This approach ensures that the presentation of the results main-
tains a cohesive narrative and directly ties back to the study’s purpose.

• Embracing Unexpected Findings: During an MSR study, it is possi-
ble that the results show something different from what is expected. The
presentation and discussion of unexpected results could enlighten new im-
plications and open the possibility of novel opportunities.

Once the goal is clearly assessed, it is necessary to format the data and the
outcome of the analysis to obtain the information needed to answer our re-
search questions. Therefore, summarizing and exploring the data is important
to extract the veiled message from large collected data.

The main approaches to summarize the analysis results are based on de-
scriptive metrics and visual representations.

2.6.1 Descriptive Metrics

Using properly descriptive metrics and presenting information is integral to
conveying the study results. In summarizing metrics derived from MSR, de-
scriptive statistics are pivotal in distilling complex datasets into meaning-
ful and interpretable insights. The choice of descriptive statistics should be
adopted, focusing on the goals of the analysis to find the most suitable an-
swers from the data. Key descriptive statistics capture the central tendency,
variability, and distribution of the metrics, including mean, median, mode,
and standard deviation [KMB+17]. For instance, the mean serves as a central
measure, offering an average value that summarizes the overall trend within
a dataset. However, it is important to note that the mean can be influenced
by extreme values, making it less representative of skewed distributions. In
the context of software components, calculating the mean number of lines
of code provides an overview of the project’s codebase size, but it may not
fully capture the central tendency if the distribution is highly skewed. The
median, resistant to extreme values, provides a robust representation of the
center of the data. In MSR, identifying the median response time for re-
solving issues can offer a more stable representation of the typical resolution
time, even in the presence of outliers. Mode highlights the most frequently oc-
curring values, emphasizing prevalent patterns. For instance, identifying the
mode in a dataset of commit frequencies may highlight the most common
development activity intervals. Standard deviation quantifies the dispersion
of data points, offering insights into the dataset’s variability. For example,
examining the standard deviation of code churn rates can reveal the extent to
which development activity is variable across different periods. Collectively,
the combination of several descriptive statistics contributes to a compre-
hensive understanding of the metrics, aiding researchers and stakeholders in
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uncovering patterns, trends, and central characteristics within the intricate
landscape of software development data.

2.6.2 Visual Representations

Descriptive statistics offer a concise and straightforward way to present data
analysis outcomes. However, relying solely on numerical summaries, such as
means and medians, can obscure significant patterns and variations within
data. This approach may also fail to capture the complexity of relationships
or variations in multidimensional data. To overcome these shortcomings and
improve the interpretability of the results, it is crucial to supplement numeri-
cal summaries with visual representations. Visualizations provide an interac-
tive and intuitive method for discovering patterns, outliers, and correlations
within the data. Employing various visual elements such as plots, tables, and
representative graphs when synthesizing your data will increase the compre-
hension of the readers interested in the study and allow them to catch it.

As for the descriptive metrics, each plot type serves a unique purpose in
conveying information effectively. Some of the most used visual representa-
tions to summarize the results in MSR studies are:

• Line Charts: This type of plot is helpful to visualize temporal aspects
of software repositories, showcasing the evolution or the history of metrics
over time. An example of this type of plot for MSR Studies can be related
to analyzing the use of third-party libraries over time [SPDN+18].

• Bar plots: These plots show the frequency of a categorical variable using
bars. The bars’ height indicates the data’s value in each category, such as
the frequency, total count, sum, or average. An example of using bar plots
for MSR studies is to analyze the number of occurrences of bug categories
in software systems [CPZF19].

• Box Plots: These plots show the distribution of a numerical variable
using five statistics: the minimum, the lower quartile, the median, the
upper quartile, and the maximum. Box plots can be used to compare the
central tendency and the variability of different groups or samples of data.
An example of using box plots for MSR studies can be related to the
extraction of the number of commits that lead to the appearance of a
code smell [TPB+15].

• Scatter Plots: This type of plot is used to show the relationship between
two numerical variables. The position of each dot on the horizontal and
vertical axis indicates the values of the variables for each observation or
unit of analysis. Scatter plots help explore the correlation or association
between two variables or identify outliers or clusters in the data. Scatter
plots are commonly used to analyze a specific factor’s evolution to find
tendencies. An example of using scatter plots is analyzing the adoption of
reusability mechanisms in source code over time to find common patterns
between projects [GFC+24].
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• Network Graphs: This type of plot is commonly used to model relation-
ships between elements. It can be used to visualize clusters and patterns
in the data and analyze complex systems’ properties and behaviors. Net-
work graphs in MSR studies are commonly used to explore collaborative
networks between developers [GSP14].

2.6.3 Best Practices and Dos for Educators

The following best practices are collected to inform MSR researchers of the
main requirements for reporting an MSR study.

Replicability

In MSR studies, it is crucial to document data sources, collection methods,
preprocessing steps, and analysis techniques for easy replication by other
researchers. MSR researchers should always provide all the material to re-
produce the conducted studies, including code, scripts, or workflows. All this
content should be in an accessible collection called replication package. Mah-
mood et al. [MBH+18] proposed using common online replication services,
such as OpenML12 and Zenodo13, to replicate MSR studies effectively.

Use of Visual Elements

When incorporating visual elements in information representation, prioritize
clarity, consistency, accessibility, and relevance. Visualizations should be de-
signed with simplicity to ensure easy comprehension for a diverse audience.
Consistent use of visual elements fosters a cohesive visual language, while ac-
cessibility features, such as color-blind-friendly palettes and alternative repre-
sentations, promote inclusivity. Additionally, colors can be strategically used
to represent additional information, adding depth to the visualization. Visu-
alizations should serve a clear purpose and contribute meaningfully to the
overall narrative, enhancing the interpretability of complex data.

Use of Relative Discussions to Findings

When presenting research findings, it is important to emphasize their signif-
icance and relevance to the research questions. Researchers should discuss
existing literature, industry benchmarks, or expectations to comprehensively

12 http://www.openml.org/
13 https://zenodo.org/
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understand the relative importance of the findings. By highlighting the con-
nections between the findings and the external contexts discussed, researchers
can offer richer insights and demonstrate the practical implications of their
work. This approach ensures that the reported results are not isolated but
instead contribute meaningfully to the ongoing goal of the study.

Use of a Systematic Quality Assessment Process

When all research components are in place, employing a systematic quality
assessment process is prudent. This systematic approach ensures a thorough
and rigorous evaluation of all artifacts generated throughout the study. The
assessment process should encompass a comprehensive review of the dataset,
code, visualizations, and other materials, verifying their accuracy, complete-
ness, and adherence to established standards. MSR researchers can identify
and rectify potential errors or inconsistencies before finalizing the study’s
outcomes. To have an effective systematic evaluation process of the MSR
study, Chatterjee et al. [CSR22] proposed a series of standards that an MSR
researcher should use to ensure high-quality artifacts.

Teaching Exercises. A good exercise is reproducing an existing
study, including related synthesis, analysis, and interpretation of the
results. Considering the outcome of the previous exercise that high-
lights the most used topics in defect-fixing commits, students will
attempt to synthesize the data, collecting key elements and interest-
ing findings. They will create plots to observe critical characteristics of
the synthesized data and make interpretations of the results to explore
the topics in defect-fixing commits.

2.7 Threats to Validity in MSR Studies

While often considered a mere afterthought of mining processes [VEL+23],
Threats to Validity (TTV) play an essential role in empirical inquiries. Sum-
marily, threats to validity could potentially affect the accuracy or credibility
of a study or its results [WRH+12]. A transparent, comprehensive, and truth-
ful documentation of the TTVs that may have influenced a study is essen-
tial. TTV considerations are crucial to let the reader accurately understand
the mining process, interpret its results, and potentially build upon them.
TTVs and related mitigation strategies should be considered throughout the
entirety of the mining processes, starting from the earliest stages (e.g., by
reflecting if the RQ is correctly formulated to achieve the research goal) till
the concluding steps. Among different TTV categorizations, often MSR stud-
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ies follow the four categories presented by Wohlin et al. [WRH+12], namely
conclusion validity, internal validity, construct validity, and external validity.

2.7.1 Conclusion Validity

Threats to the conclusion validity refer to impediments that may affect the
ability to draw the correct conclusion about relations in the collected data.
Leaving aside conclusion threats related to statistical result analyses (e.g., low
statistical power and violated statistical test assumptions), recurrent conclu-
sion threats in MSR processes regard confounding factors, such as measure
reliability (mainly if dynamic code analyses are used), random irrelevancies
in the mining process (e.g., including extended periods of repository inac-
tivity), and excessive heterogeneity of repositories (e.g., considering in the
same MSR process both cloud-native and embedded contexts). Mitigation
strategies for conclusion TTVs in MSR studies often entail the selection of
repositories based on a priori defined criteria, the carefully motivated use of
sound source code analysis tools, and post hoc scrutiny of results trends to
spot potential conclusion pitfalls related to specific repositories.

2.7.2 Internal Validity

Threats to the internal validity regard unknown factors that can impact the
study’s relationship between the phenomenon considered and the observed
results. Threats of this nature are often related in MSR processes with a
summary repository selection, inaccurate mined data post-processing, un-
fitted statistical data analyses, and, when dynamic analyses are used, the
influence of previous code executions on subsequent ones. Internal TTVs of
MSR studies can often be tackled during the mining design phase by ensuring
that a systematic, repeatable, and documented process is used to select repos-
itories and manage the collected data, and “cooldown” and cache cleaning
precautions are taken to start each dynamic measurement as a clean slate.

2.7.3 Construct Validity

Construct validity pertains to the representativeness of the designed min-
ing process to accurately study the considered theoretical construct. Most
commonly, construct threats in MSR processes relate to the design phase
of the mining processes and may involve a vague or ill-suited definition of
the construct (e.g., defining technical debt as maintainability issues), under-
representation of the considered construct (e.g., considering a single type
of test flakiness to study the topic), or the adoption of an overly-narrow
analysis to examine a considerably broader construct (e.g., focusing solely
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on number of functions to study software testability). During the design of
MSR processes, the construct under study and how the mining considers such
construct should be carefully discussed among miners to understand, miti-
gate, and document the potential construct TTVs entailed by the adopted
methodology.

2.7.4 External Validity

External validity regards the extent to which the results obtained with the
mining process can be translated into other contexts (e.g., industrial practice,
another application domain, or a different programming language).

Among the external TTVs, one of the most common ones in MSR re-
gards the under-representation of the entire set of software repositories and
commits relevant to answering the RQs. A strategy to systematically sample
repositories and commits is paramount to mitigate this threat by considering
the threat such sampling entails. A sound sampling should carefully select
both a fitting sampling technique (e.g., stratified sampling if repositories of
different natures need to be represented) and a sample size. Regarding sample
size, numerous tools can be used to calculate it based on confidence interval
and margin of error, typically 95% and 5%, respectively, but these can vary
according to the entire set of repositories considered.

Another common external TTV of MSR studies is adopting ad hoc, man-
ual, or outdated processes to mine and analyze the source code. Conscious
attention should be paid to ensure that systematic and repeatable state-of-
the-art and practice processes are used, i.e., analysis tools and considered
repositories, to mitigate this threat.

Additionally, depending on the data under study, other sampling tech-
niques, such as stratified sampling, should be considered to ensure that the
distribution of the sample data in each class or group is retained and similar
to the distribution of the classes in the original data.

3 Complementing Software Repository Mining Studies

MSR studies might be combined by analyzing additional sources of informa-
tion. From a methodological standpoint, this is the basis of mixed-method
research [Cre99, SHMB24], a research approach combining qualitative and
quantitative research methods elements within a single study or research pro-
gram. This approach seeks to harness the strengths of both methodologies
to provide a more comprehensive and nuanced understanding of a research
question or phenomenon. Storey et al. [SHMB24] recently defined guidelines
aiming to ease the application of mixed-method research in software engi-
neering, as well as a catalog of best and bad practices to help apply it. In
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the scope of MSR research, mixed-method research may be useful to enhance
or confirm the findings coming from mining human-generated data but also
enable asking different questions as they arise during the study [SHMB24].
In doing so, researchers may triangulate the findings by exploiting multiple
research methods, increase the overall credibility of the findings, or even find
contradictory or surprising results [SHMB24].

In the following section, we overview the potential methodologies that may
be used to complement the results of MSR studies and provide exemplary
articles that may be used to illustrate these methodologies in practice.

Complementing MSR Research with Qualitative Methods. For in-
stance, imagine complementing an MSR exploration with qualitative research
methods, such as surveys, interview studies, and focus groups. A survey rep-
resents a research method that involves collecting data from a sample of
individuals by administering a structured set of questions. When combined
with MSR studies, a survey could capture the subjective experiences and per-
ceptions of developers, project managers, and other stakeholders, providing
a human narrative to complement the quantitative trends identified in the
MSR exploration. Literature has often relied on this combination of research
methods. A notable example is the paper by Qiu et al. [QNB+19], where the
authors effectively combined software repository analyses and insights from a
survey study to investigate the impact of social capital on the sustainability
of open-source projects.

Interviews represent an alternative to survey studies. An interview is a
qualitative research method that systematically collects and analyzes data
from one-on-one interviews with participants. Unlike survey studies, inter-
views provide researchers with finer-grained insights from the interviewees’
experiences. By nature, interview studies can only reach a small sample size
and are typically limited to the analysis of a few practitioners. As a conse-
quence, interview studies are particularly suitable when the aim is to gain a
deep and nuanced understanding of participants’ experiences, perspectives, or
beliefs. For example, interview studies with key stakeholders offer a deeper
understanding of individual experiences, motivations, and decision-making
processes, adding a layer of context to the automated data. On the contrary,
if the goal is generalizability, there might be better research instruments than
an interview study. The interested reader might take the paper by Tao et
al. [TDX+12] as a valuable example of how to make interviews instrumental
for the goals of an MSR exploration.

Focus groups represent an additional alternative. These refer to a qualita-
tive research method that involves a small, diverse group of participants who
engage in an open and facilitated discussion about a specific topic under the
guidance of a moderator. This method aims to gather insights, perceptions,
opinions, and attitudes through group interaction, allowing participants to
express their views and respond to each other in a dynamic setting. Like the
interview studies, focus groups rarely have the power to generalize the in-
sights that emerge and should be used to understand better the quantitative
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findings obtained by an MSR study. An example of applying this combination
can be found in the paper by Falessi et al. [FJW+18].

Complementing MSR Research with Quantitative Methods. Be-
sides qualitative research methods, it is also worth reporting that an MSR
study can be empowered using additional mining instruments beyond the
scope of the traditional version control systems. For instance, issue trackers,
where bugs and tasks are recorded and discussed, become a valuable trove of
information. Mining these repositories unveils the challenges developers face,
the evolution of bug resolution processes, and the collaborative dynamics
surrounding issue resolution. At the same time, code review repositories, the-
aters where code changes are scrutinized, are an opportunity to explore the
quality assurance practices within a project. By analyzing discussions, com-
ments, and decisions made during code reviews, researchers gain insights into
coding standards, knowledge transfer, and the social dimensions of code eval-
uation. Finally, developer forums like Stack Overflow become digital arenas
where practitioners seek and provide solutions. Mining these forums provides
a glimpse into the knowledge-sharing ecosystem, exposing common challenges
developers face and the collaborative solutions the community offers. A no-
table example of the combination of multiple mining instruments can be
found in the work by Ram et al. [RSCB18].

Key Advantages of Mixed-Method Research. In the scope of MSR,
integrating qualitative research methods and exploring additional mining in-
struments offer a nuanced perspective. While MSR studies provide the back-
bone of empirical evidence, qualitative methods infuse a human dimension,
unraveling the stories behind the code changes. Delving into issue trackers,
code review repositories, and developer forums adds layers of context, por-
traying software development as a collaborative, evolving journey rather than
a mere compilation of code changes. In essence, this integration transcends
the boundaries of quantitative and qualitative methodologies, fostering a re-
search approach that mirrors the complexity of the software development
ecosystem. It is an opportunity to see automated analyses and human narra-
tives converging. It offers researchers a holistic understanding of the intricate
connection between code, collaboration, and the people who bring software
projects to life. In Appendix 6, we report a non-exhaustive list of repositories
that the reader may find helpful to running mixed-method MSR research.

A Do for Educators. MSR studies can be combined by leveraging
other methods to obtain mixed-method research.

4 Ethical Mining
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MSR research typically involves analyzing human-generated data, including
developers’ activities and interactions in repositories, as well as cultural and
geographic data, such as racial and ethnic origin, which are necessary for
studies on the geo-cultural dispersion of software communities. Although it
is classified as a data-driven strategy rather than a respondent-driven one
[SEWK20], ethical considerations may still be relevant. For example, consider
the case of a mining study aiming to investigate PR acceptance rates in
open-source repositories. The study may require ranking contributors based
on their PR acceptance rate: while GitHub data may indeed be used to rank
contributors and identify the most/least successful contributors, publishing
the identity of those contributors would be unethical.

Despite ethics plays a role in MSR research, it is often overlooked. From
100+ papers on MSR mining challenges and data showcases from 2006 to
2021, only a few discussed ethics or data anonymization as part of the threats
to validity [GK22], hence suggesting the need for educating the next genera-
tion of researchers to consider ethical aspects while mining software repository
data. This is especially true when considering the potential impact of MSR
research in practice: according to Feitelson [Fei23], open-source developers
are indeed largely open to research, provided it is done transparently.

Considering source code repositories as an example, it is essential to note
that publishing source code under a license differs from publicly releasing a
repository. Repository data are often not explicitly licensed for study and
unrestricted use. Therefore, ethical concerns might arise, and ethical issues
should be considered in such situations [GK22]. More particularly, when min-
ing the human-generated data coming from repositories, some recommenda-
tions based on the Menlo report include [GK22]:

• Stakeholder identification - Consultation of all parties involved and im-
pacted by the research (e.g., ICT researchers, human subjects, non-
subjects, users, and platform owners) before using their data for research
purposes. Adhering to this guideline when performing large-scale mining
analyses may be challenging. Nonetheless, it is worth remarking that, ac-
cording to the GitHub’s acceptable use policy,14 researchers “may use
public, non-personal information from the Service for research purposes,
only if any publications resulting from that research are open access”. This
applies to both data directly extracted by GitHub, e.g., through GitHub’s
APIs, and data indirectly coming from GitHub, e.g., publicly available
datasets that derive from GitHub data. As such, one approach is to focus
on using non-personal data and ensuring that research findings are pub-
lished as open access. Additionally, researchers may engage with reposi-
tory maintainers and community members through public communication
channels to inform them about the research and invite feedback. On the
one hand, this may help ensure research transparency. On the other hand,

14 The GitHub’s acceptable use policy: https://docs.github.com/en/site-
policy/acceptable-use-policies/github-acceptable-use-policies.
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this may foster a collaborative environment, even if direct consultation
with every individual contributor is impractical.

• Informed consent - ensuring that permission is sought, participation is vol-
untary, and data is anonymized, carefully processed, stored, and discarded
are all essential aspects to be considered. When analyzing large projects
with numerous contributors, obtaining informed consent from all partic-
ipants can be impractical because many contributors might have left or
lost interest in the project. In such cases, ethical considerations include
respecting the contributors’ privacy and ensuring that their data is used
responsibly. On the one hand, GitHub’s acceptable use policy solely al-
lows the use of public, non-personal information for research purposes. On
the other hand, one approach is to anonymize or use pseudonyms for con-
tributors’ names, as this protects their identities while still allowing for
meaningful research.

• Risks and benefits balancing - the need to consider the potential harms,
personal data protection, and the impact of the results.

• Fairness and equity - the need to consider the fair selection of subjects,
data availability, and fair treatment of parties involved in the study.

• Compliance, transparency, and accountability - legal compliance should be
considered as part of data handling. For instance, dealing with personal
data may require the researcher to comply with the law of the country
they are conducting the research.

Some points to consider when performing MSR studies include:

• A change of mindset from “Here is a dataset, let us see what we can find”,
as this can be risky for the participants. So, the ethics considerations
should assess the potential areas of harm, including the observations and
judgments, and evaluate the impact the research results can have on the
individuals/developers.

• MSR studies are often conducted on a sample of the data, which is ran-
dom. Ethics could play a role in ensuring the sample represents the people
involved and is inclusive regarding the questions and the process. The eth-
ical consideration ensures that individuals and analyses are not excluded
from the results.

• There are different laws and regulations regarding privacy, including the
EU’s General Data Protection Regulation (GDPR) and the California
Consumer Privacy Act of 2018 (CCPA), in addition to the Intellectual
Property (IP) laws. Various licenses also state different usage allowances.
These laws sometimes restrict specific usages and research and should be
considered when designing the study or before data collection. However,
for the sake of simplicity, restricting research repositories with licenses
that permit studies could affect the generalizability of the research find-
ings. For instance, this aspect should be considered and actively discussed
in the paper as a threat to validity.
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In conclusion, educators should proactively integrate ethical MSR prac-
tices in their courses. First and foremost, it is paramount to highlight the
significance of adhering to GitHub’s acceptable use policy and safeguarding
contributors’ identities by refraining from disclosure without explicit consent.
Additionally, educators can foster student comprehension of the legal and
regulatory landscape governing data privacy and intellectual property rights
through interactive discussions and hands-on learning experiences. Employ-
ing awareness-targeting teaching methods like quizzes and serious games may
be an effective strategy to stimulate critical thinking on ethical challenges
inherent in MSR research. An exemplary illustration of this pedagogical ap-
proach was provided by Teo et al. [TTA+23], who introduced an interactive,
scenario-based ethical AI quiz for students to self-assess their awareness and
perceptions regarding AI ethics.

Concrete examples. To exemplify how ethical concerns may be effectively
addressed in the context of MSR research, we briefly discuss the strategies
employed by two relevant articles published at the Mining Software Reposito-
ries Conference. The first, authored by Yamashita et al. [YAKG17], collected
evolutionary data concerned with the programming skills of practitioners to
publicly release an open dataset. Before releasing the data, the authors re-
wrote the whole change history of the Git repositories so that sensitive infor-
mation, e.g., developer names and contact details, were removed or changed
consistently to protect privacy and confidentiality. The second article, au-
thored by Gonzalez-Barahona et al. [GBRIC15], released a suite of tools
to extract data from software repositories, also contributing a database of
human-generated data coming from open-source communities. In their arti-
cle, the authors explicitly mentioned that the use of data was allowed by the
organization providing those data. These two articles represent two valuable
examples of how ethics should be preserved while mining software repositories
and may be used by educators as case studies.

A Do for Educators. MSR studies must be compliant to ethical
aspects and regulations enforced by policymakers. Educators should
proactively introduce ethical MSR practices in their courses, for in-
stance, by employing awareness-targeting teaching strategies.

5 Recent Trends and Future Outlook for Educators
Leveraging Mining Software Repositories

As a last part of this book chapter, let us reflect on the recent trends in MSR
research, with an outlook on the future development of the field.

The most recent advances made by the research community over the last
few years reflect the dynamic nature of software development practices and
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the increasing integration of advanced technologies. One prominent trend is
the growing emphasis on leveraging artificial intelligence (AI) techniques to
extract insights from vast repositories of software-related data. For instance,
the 2024 Mining Challenge Track of the 21th International Conference on
Mining Software Repositories (MSR 2024) has featured a challenge on devel-
opers’ ChatGPT conversations.15 Such an example underscores the relevance
of AI-driven approaches in understanding developer interactions, collabora-
tion patterns, and decision-making processes. Educators responsible for min-
ing software repository courses can leverage this trend to provide students
with hands-on experience in applying AI techniques to analyze and interpret
software-related data, fostering a deeper understanding of the complexities
of modern software development processes.

Furthermore, there is a notable shift towards exploring the dynamics of
software ecosystems within MSR education. This trend reflects the recogni-
tion of software systems as complex socio-technical ecosystems comprising
diverse stakeholders, technologies, and dependencies. Educators are called to
increasingly incorporate modules on software ecosystems into mining software
repository courses, enabling students to gain insights into the interconnected-
ness of software projects, the evolution of software ecosystems over time, and
the impact of ecosystem characteristics on software quality and maintainabil-
ity. By incorporating software ecosystem analysis into their curriculum, edu-
cators can empower students to navigate the intricacies of real-world software
development scenarios and equip them with the skills necessary to contribute
meaningfully to software projects within diverse ecosystem contexts.

Finally, MSR education is increasingly emphasizing interdisciplinary col-
laborations and integrating diverse data sources and methodologies. Edu-
cators recognize the value of combining traditional MSR techniques with
insights from machine learning, natural language processing, and social net-
work analysis to address complex research questions and emerging challenges
in software engineering. By fostering interdisciplinary collaboration and ex-
posing students to various methods and tools, educators can prepare them
to tackle real-world software engineering problems effectively and drive inno-
vation in mining software repositories.

6 Sample List of Repositories

- Bugzilla: https://www.bugzilla.org/
- Bitbucket: https://bitbucket.org/
- GitLab: https://gitlab.com/
- Azure Repos: https://azure.microsoft.com/en-us/services/devops/repos/
- Google Code: https://code.google.com/archive/

15 MSR 2024 Mining Challenge: https://2024.msrconf.org/track/msr-2024-mining-
challenge?
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- Jira: https://www.atlassian.com/software/jira
- ProjectLocker: https://www.projectlocker.com/
- CloudForge: https://cloudforge.com/
- Zenodo: https://zenodo.org/
- Awesome GPT: https://gpt4.tools/
- Docker Hub: https://hub.docker.com/
- Kaggle: https://www.kaggle.com/

Discussion forums
- Reverse Engineering: https://reverseengineering.stackexchange.com/
- Software Engineering: https://softwareengineering.stackexchange.com/
- Software Quality Assurance and Test: https://sqa.stackexchange.com/
- GenAI: https://genai.stackexchange.com/ - DevOps: https://devops.stackexchange.com/
- Hash Node: https://hashnode.com/
- Dev: https://dev.to/p/editor guide
- Code Project: https://www.codeproject.com/

Online coding platforms used by developers:
- Code Pen: https://codepen.io/
- Replit: https://replit.com/
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