
Supporting Extract Class Refactoring in Eclipse: The ARIES Project

Gabriele Bavota1, Andrea De Lucia1, Andrian Marcus2, Rocco Oliveto3, Fabio Palomba3
1School of Science, University of Salerno, 84084 Fisciano (SA), Italy

2Computer Science Department, Wayne State University, Detroit, MI 48202, USA
3STAT Department, University of Molise, 86090 Pesche (IS), Italy

gbavota@unisa.it, adelucia@unisa.it, amarcus@wayne.edu, rocco.oliveto@unimol.it, fabio.palomba.89@gmail.com

Abstract—During software evolution changes are inevitable.
These changes may lead to design erosion and the introduction
of inadequate design solutions, such as design antipatterns.
Several empirical studies provide evidence that the presence
of antipatterns is generally associated with lower productivity,
greater rework, and more significant design efforts for develop-
ers. In order to improve the quality and remove antipatterns,
refactoring operations are needed. In this demo, we present
the Extract class features of ARIES (Automated Refactoring In
EclipSe), an Eclipse plug-in that supports the software engineer
in removing the “Blob” antipattern.

Keywords-Refactoring, Design, Quality.

I. INTRODUCTION

During software evolution change is the rule rather than
the exception [6]. Unfortunately, such changes are usually
performed by developers that due to strict deadlines do
not have enough time to make sure that every change
conforms to OOP guidelines, such as, minimizing coupling
and maximizing cohesion of classes. Such careless design
solutions often lead to design antipatterns, which negatively
impact the quality of a software system, making its mainte-
nance difficult and expensive. An example of antipattern is
represented by the Blob [6]. Blobs are large and complex
classes, with generally low cohesion, that centralize the
behavior of a portion of a system and only use other classes
as data holders. Such characteristics make the maintenance
of Blobs difficult (due to the effort required to comprehend
the class) and dangerous (since empirical studies showed
that classes with low cohesion are more error-prone than
other classes [10]).

The Extract Class Refactoring (ECR) is a widely used
technique to address the Blob antipattern [6]. ECR aims at
restructuring Blobs by distributing some of their responsi-
bilities to new classes, thus reducing their complexity and
improving their cohesion. It is worth noting that performing
ECR operations manually might be very difficult, due to
the high complexity of some Blobs. For this reason, several
approaches and tools have been proposed to support the
ECR. Bavota et. al [1] proposed an approach based on graph
theory that is able to split a class with low cohesion into two
classes having a higher cohesion, using a MaxFlow-MinCut
algorithm. An important limitation of this approach is that
often classes need to be split in more than two classes.

Such a problem can be mitigated using partitioning or
hierarchical clustering algorithms. However, such algorithms
suffer of important limitations as well. The former requires
as input the number of clusters, i.e., the number of classes
to be extracted, while the latter requires the definition of a
threshold to cut the dendogram. Unfortunately, no heuristics
have been derived to suggest good default values for all
these parameters. Indeed, in the tool JDeodorant [5], which
uses a hierarchical clustering algorithm to support ECR, the
authors tried to mitigate such an issue by proposing different
refactoring opportunities that can be obtained using various
thresholds to cut the dendogram. However, such an approach
requires an additional effort by the software engineer who
has to analyze different solutions in order to identify the one
that provides the most adequate division of responsibilities.

We tried to mitigated such deficiencies by defining an
approach able to suggest a suitable decomposition of the
original class by also identifying the appropriate number of
classes to extract [2], [3]. Given a class to be refactored,
the approach builds a weighted graph where each node
represents a method of the class and the weight of an edge
that connects two nodes is given by the similarity of the
two methods. This is a composite measure that captures
different type of relationships between methods, which im-
pact class cohesion and coupling. After filtering out spurious
relationships between methods, the approach defines chains
of strongly related methods using the transitive closure of
the filtered graph. Using the extracted chains of methods it is
possible to create new classes—one for each chain—having
higher cohesion than the original class.

In this demo, we present the implementation of the
proposed ECR method in ARIES, a plug-in to support
refactoring operations in Eclipse. ARIES provides support
for ECR through a three steps wizard. In the first step,
the tool supports the software engineer in the identification
of candidate Blobs through the analysis of several quality
metrics. In the second step, the software engineer has the
possibility to further analyze a candidate Blob and get
insights on the different responsibilities implemented by
analyzing its topic map. Once a class that needs to be
refactored is identified, the software engineer activates the
last step of the wizard to obtain a possible restructuring
of the class under analysis. As before, topic maps of the



extracted classes are used to give insight on how ARIES
splits the responsibilities of the original Blob in the new
classes. In addition, ARIES offers the software engineer on-
demand analysis of the quality improvement obtained by
refactoring the Blob, by comparing various measures of the
new classes with the measures of the Blob. A video of the
tool is available on Youtube1.

II. THE EXTRACT CLASS FEATURE OF ARIES
This section describes the Extract Class feature of ARIES

The current implementation of the tool supports Java (as it
is integrated in the Eclipse Java Development Kit) although
the proposed approach can be extended to other OO pro-
gramming languages.

A. The Extract Class Refactoring Algorithm

The ECR technique implemented by ARIES [2], [3] is
able to extract two or more classes from a given class with
several responsibilities, i.e., a Blob. In particular, the input
class is first parsed to build a method-by-method matrix, a
n×n matrix where n is the number of methods in the class to
be refactored. A generic entry ci,j of the method-by-method
matrix represents the likelihood that method mi and method
mj should be in the same class. This likelihood is computed
as a hybrid coupling measure between methods (degree
to which they are related) obtained through a weighted
average of three structural and semantic measures, i.e., the
Structural Similarity between Methods (SSM) [7], the Call-
based Dependence between Methods (CDM) [1], and the
Conceptual Similarity between Methods (CSM) [10].

Once the method-by-method matrix has been constructed,
its transitive closure is computed in order to extract chains
of strongly related methods (each chain represents the set of
responsibilities, i.e., methods, that should be grouped in a
new class). However, in the method-by-method matrix there
might be very few zero values, due to spurious (but light)
structural and/or semantic relationships between methods
[1]. Thus, a transitive closure might include almost all the
methods in a single chain. To avoid such a problem and
to identify the strongest relationships between methods, the
method-by-method matrix is filtered based on a threshold
minCoupling, i.e., all similarity values less than the thresh-
old minCoupling are converted to zero. One possible side
effect is that some of the extracted chains might be very
short. To avoid the extraction of trivial classes with a very
low number of methods, a length threshold minLength is
used and each chain shorter than minLength is merged with
the most similar non trivial chain (see [2] for more details).
By default minLength = 3 since it is unlikely that classes
with a well-defined set of responsibilities would have less
than three methods.

As final step of the class extraction process, the attributes
of the original class are distributed among the extracted

1http://www.youtube.com/watch?v=csfNhgJlhH8

Threshold

Metrics' values

Threshold Candidate Blobs

Figure 1. ARIES: Identification of candidate Blobs.

classes according to how they are used by the methods in the
new classes, i.e., each attribute is assigned to the new class
having the higher number of methods using it. If a private
field needs to be shared by two or more of the extracted
classes, the implementation of the needed getter and/or setter
methods is automatically done by ARIES.

The proposed approach has been empirically evaluated
through two studies [3]. The goal of the first study was
to assess the parameters of the approach. Based on the
results of the first study, the second study involved 50 Master
students who analyzed refactoring operations suggested by
the proposed approach on the Blobs of two open source
systems. The goal of this second study was to analyze
whether: (i) the extract classes have higher quality than the
original classes, and (ii) the extracted classes make sense
from a functional point of view. The results indicated that
the classes extracted with the proposed approach have higher
cohesion than the original classes and are meaningful from
a functional point of view.

B. ARIES at Work

ARIES supports ECR with a three steps wizard. In the
first two steps the tool provides support to the software
engineer to identify and analyze Blobs in the system under
analysis. In the third step the software engineer receives
recommendations on how to refactor the candidate Blobs.
The following sections present details on the three steps of
the ECR process in ARIES.

1) Identifying candidate Blobs: ARIES supports the soft-
ware engineer in the detection of Blobs through a quality
check of the entire software system (or of a specified
subsystem). Note that ARIES does not compute an overall
quality of the classes, but it considers only cohesion and
coupling as the main indicators of class quality in this
context. Hence, Blobs are usually outliers or classes having
a quality much lower than the average quality of the system
under analysis [8]. The identification of Blobs in ARIES is
based on such a conjecture.

The software engineer starts the quality check select-
ing the Check Quality command in the main menubar.
ARIES computes three quality metrics for each class of



the (sub)system, namely, Lack of Cohesion of Methods
(LCOM5) [4], Conceptual Cohesion of Classes (C3) [10],
and Message Passing Coupling (MPC) [9]. The results are
shown to the developers as three boxplots (one for each
quality metric) highlighting any negative outlier, i.e., classes
having cohesion (coupling) markedly lower (higher) than the
other classes of the system (see Figure 1). Note that for the
C3 metric ARIES shows the values of 1− C3. In this way
for all the three measures the negative outliers are reported
on the top of the boxplot.

All the outliers are reported in the list shown in the
right side of Figure 1. Note that the list will include all
the classes that are negative outliers for at least one of
the three metrics. In case no outliers are identified, ARIES
allows to “relax” the process used to identify candidate
Blobs. In particular, instead of a statistical identification of
the outliers, the software engineer can select a threshold
λ ∈ {70, 50, 30} that allows to recover as candidate Blobs
all the classes having a quality (in terms of the employed
quality metrics) lower than λ% of the average quality. In the
scenario shown in Figure 1 the software engineer decides to
analyze the quality of the system in order to identify Blobs.
ARIES shows the boxplots for the values of LCOM, C3 and
MPC. The software engineer decides to improve the quality
of some classes having a quality (in terms of cohesion
and coupling) sensibly worse than the average quality of
the system. In the top of the list of outliers there is the
class ManagerUserTeaching that seems to be a good
candidate for refactoring. In order to obtain a detailed view
on ManagerUserTeaching, the developer selects the
class from the list and clicks on the “Next” button activating
the second step of the wizard.

Note that the Identification step is not mandatory in order
to perform ECR. The developer can directly select a class in
the Package Explorer and start the class extraction process
by clicking the ECR button in the main toolbar.

2) Analyzing candidate Blobs: The second step of the
ARIES wizard aims at helping the software engineer in bet-
ter analyzing the classes that are candidates for refactoring.
The tool shows the preview of the class under analysis as
well as its topic map (see Figure 2). The topic map of a
generic class C is built by analyzing the term frequency in
the methods it contains. The five most frequent terms (the
terms present in the highest number of methods) are used
to construct the topic map of C that, for this reason, is
represented by a pentagon where each vertex represents one
of the main topics. Each vertex is connected to the center
of the pentagon by an axis representing the percentage of
methods in C that implements the corresponding topic. The
graphical representation of the main topics of C is then
obtained by tracing lines between the percentage points on
each of the five axes indicating the percentage of methods
belonging to C that implement the corresponding topic.
Note that a stop-word list is used to automatically prune

Candidate Blobs

Topic Map Class Preview

Figure 2. ARIES: Analysis of candidate Blobs.

out common English words and Java keywords. This stop-
word list can be customized in ARIES by the software
engineer using the preference panel of the plug-in. The topic
map provided for the Blob is meant to help the developer
in understanding which are the different responsibilities
implemented in the class. Clearly not all topic maps will be
equally helpful, as they depend on identifiers and comments
in the code.

In the scenario shown in Figure 2 the software engineer
is analyzing the class ManagerUserTeaching. From
the analysis of the topic map it is easy to identify three
different responsibilities of the class, i.e., database con-
nection (indicated by the terms connection, db, and
rs), user management (indicated by the term user), and
teaching management (indicated by the term teaching).
While the first responsibility is a common for each control
class (each control class in the analyzed system accesses
the database to manage particular information), the other
two responsibilities are quite different suggesting that the
quality of the class (in terms of cohesion) could be improved
splitting it in different classes.

3) Refactoring the Blobs: Figure 3 shows the final step
of the ECR feature of ARIES. The upper part of Figure 3
contains the topic map of the class to be refactored. The
right part contains all the sliders to configure parameters of
the ECR approach, i.e., the weights for the similarity mea-
sures and the threshold minCoupling (see Section II-A).
Although initial default values achieved through an empirical
assessment [3] are provided to the developer, she can modify
any parameter, changing on-the-fly the resulting refactoring
recommendation, shown in the bottom part of Figure 3.
ARIES reports for each class that should be extracted from
the Blob the following information: (i) its topic map; (ii)
the set of methods composing it; and (ii) a text field where



First class 
extracted

Topic map original class Parameters' sliders

Second class 
extracted

Figure 3. ARIES: Extract Class refactoring.

Figure 4. ARIES: Quality Check of the refactoring operation

the developer can assign a name to the class. The tool also
allows the developer to customize the proposed refactoring
moving the methods between the extracted classes.

In the scenario of Figure 3, ARIES splits the class
ManagerUserTeaching into two classes. The topic
maps of the extracted classes help to understand the rationale
behind the refactoring recommendation. The first class is
in charge of managing the users, while the second class
is responsible of teaching management. From the analysis
of the topic maps it is also possible to see that database
connection is a responsibility of both classes. This means
that both classes access the database to manage users and
teachings, respectively.

Besides a conceptual analysis (based on the topic maps)
of the refactoring proposed by ARIES, the developer can
quantify the quality improvement obtained applying the pro-
posed refactoring. Using the functionality “Quality Check”,
ARIES highlights on the boxplots of the metrics showed in
the first step of the wizard, the values of the metrics for the

new classes and the original Blob (see Figure 4). In this way
the developer can analyze the quality of the new classes as
compared to the overall quality of the system.

To terminate the extraction process and automatically
generate the new classes, the software engineer can click the
“Finish” button (see right lower corner in Figure 3). ARIES
will generate the new classes making sure that the changes
made by the refactoring do not introduce any syntactic error.

III. DEMO REMARKS

In this demo we presented ARIES, an ECR tool that sup-
ports the software engineer in the identification, analysis, and
resolution of the Blob antipattern. As future work, we plan
(i) to extend the functionalities of the tool to support other
refactoring operations, such as Move Method refactoring and
(ii) to implement a more sophisticated approach to detect
Blob classes in a software system (see e.g., [11]).

ACKNOWLEDGMENT

The authors would like to thank Veronica D’Uva for her
constructive comments on the preliminary version of ARIES.

REFERENCES

[1] G. Bavota, A. De Lucia, and R. Oliveto. Identifying extract
class refactoring opportunities using structural and semantic
cohesion measures. JSS, 84:397–414, 2011.

[2] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto. A two-
step technique for extract class refactoring. ASE, 151–154,
2010.

[3] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto.
Automating extract class refactoring: a novel
approach and its evaluation. Technical report,
http://www.distat.unimol.it/reports/ARIES/ECR.pdf
Submitted to TSE, 2011.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE TSE, 20(6):476–493, 1994.

[5] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou.
JDeodorant: identification and application of extract class
refactorings. ICSE, 1037–1039, 2011.

[6] M. Fowler. Refactoring: improving the design of existing
code. Addison-Wesley, 1999.

[7] G. Gui and P. D. Scott. Coupling and cohesion measures for
evaluation of component reusability. MSR, 18–21, 2006.

[8] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice Object-Oriented Metrics in Practice. Springer, 2006.

[9] W. Li and S. Henry. Maintenance metrics for object oriented
paradigm. Software Metrics Symposium, 52–60, 1993.

[10] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the
conceptual cohesion of classes for fault prediction in object-
oriented systems. IEEE TSE, 34(2):287–300, 2008.

[11] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. L. Meur.
Decor: A method for the specification and detection of code
and design smells. IEEE TSE, 36:20–36, 2010.


