
A Textual-based Technique for Smell Detection
Fabio Palomba1, Annibale Panichella2, Andrea De Lucia1, Rocco Oliveto3, Andy Zaidman2

1University of Salerno, Italy – 2Delft University of Technology, The Netherlands – 3University of Molise, Italy

Abstract—In this paper, we present TACO (Textual Analysis for
Code Smell Detection), a technique that exploits textual analysis
to detect a family of smells of different nature and different
levels of granularity. We run TACO on 10 open source projects,
comparing its performance with existing smell detectors purely
based on structural information extracted from code components.
The analysis of the results indicates that TACO’s precision ranges
between 67% and 77%, while its recall ranges between 72%
and 84%. Also, TACO often outperforms alternative structural
approaches confirming, once again, the usefulness of information
that can be derived from the textual part of code components.

I. INTRODUCTION

Continuous change requests, strict and close deadlines, the
need to preserve the quality of source code to ease mainte-
nance are just some of the challenges that developers must face
every day. In such a scenario, finding the solution that provides
the maximum gain from each point of view is quite impossible.
Very often, due to time constraints or absence of software
design documentation, developers decide to set aside good
programming guidelines and implement a new change request
in the most straightforward way. This way of working erodes
the original design of the systems and introduces technical
debt [1]. The erosion of the original design is generally
represented by “poor design or implementation choices” [2],
usually referred to as bad code smells (also named “code
smells” or simply “smells”). Over the last decade, researchers
investigated several aspects related to the presence of code
smells, demonstrating (i) their relevance from the developers’
perspective [3], [4], (ii) their longevity [5], [6], [7], [8], [9],
and (iii) their impact on non-functional properties of source
code, such as program comprehension [10], change- and fault-
proneness [11], [12], and, more in general, on maintainability
[13], [14], [15], [16]. For these reasons the research com-
munity devoted a lot of effort to define methods to detect
code smells in source code and, whenever possible, trigger
refactoring operations [17], [18], [19], [20], [21], [22], [23].
These tools generally apply constraint-based detection rules
defined on some source code metrics, i.e., the majority of
existing approaches try to detect code smells through the
analysis of structural properties of code components (e.g.,
methods).

Analyzing the catalogue of smells defined in the literature,
it is easy to identify a specific family of smells that are
represented by source code components with promiscuous
responsibilities. For instance, a Blob is a giant class that
centralizes the behavior of a portion of the system and has
a lot of different responsibilities, while a Feature Envy refers
to a method more related to a different class with respect the
one it is actually in. Even if these smells, such as Blob, are

generally identified by considering structural properties of the
code (see for instance [22]), there is still room for improving
their detection by exploring other sources of information. For
instance, Palomba et al. [24] recently proposed the use of his-
torical information for detecting several bad smells, including
Blob. However, components with promiscuous responsibilities
can be identified also considering the textual coherence of the
source code vocabulary (i.e., terms extracted from comments
and identifiers). Previous studies have indicated that lack of
coherence in the code vocabulary can be successfully used to
identify poorly cohesive [25] or more complex [26] classes.
Following the same underlying assumption, in this paper we
aim at investigating to what extent textual analysis can be used
to detect smells related to promiscuous responsibilities. It is
worth noting that textual analysis has already been used in
several software engineering tasks [27], [28], [29], including
refactoring [30], [31], [32]. However, our goal is to define
an approach able to detect a family of smells rather than
recommending refactoring solutions for a specific smell. To
this aim, we define TACO (Textual Analysis for Code smell
detectiOn), a smell detector purely based on Information
Retrieval (IR) methods. We instantiated TACO for detecting
five code smells, i.e., Long Method, Feature Envy, Blob,
Promiscuous Package and Misplaced Class. We conducted an
empirical study involving 10 open source projects in order
to (i) evaluate the accuracy of TACO when detecting code
smells, and (ii) compare TACO with state-of-the-art structural-
based detectors, namely DECOR [22], JDeodorant [23], and
the approaches proposed in [33] and [34]. The results of our
study indicate that TACO’s precision ranges between 67%
and 77%, while its recall is between 72% and 84%. When
compared with the alternative structural-based detectors, we
experienced that most of the times TACO outperforms these
existing approaches. Finally, we observed some complemen-
tarities between textual and structural information suggesting
that better performance can be achieved by combining the two
sources of information.

II. BACKGROUND AND RELATED WORK

Starting from the definition of design defects proposed
in [2], [35], [36], [37], researchers have proposed semi-
automated tools and techniques to detect code smells, such
as ad-hoc manual inspection rules [38], tools to visualize
code smells or refactoring opportunities [39], [40]. Further
studies proposed to detect code smells by (i) identifying
key symptoms that characterize particular bad smells using
a set of thresholds based on the measurement of structural
metrics (e.g., if Lines Of Code > k); (ii) conflating the

identified symptoms, leading to the final rule for detecting the
smells [17], [18], [19], [20], [21], [22], [23]. These detection
techniques mainly differ in the set of used structural metrics,
which depends on the type of code smells to detect, and how
the identified key symptoms are combined. For example, such a
combination can be performed using AND/OR operators [17],
[18], [19], Bayesian belief networks [20], and B-Splines [21].
In this context, Moha et al. [22] introduced DECOR, a
method for specifying and detecting code and design smells
using a Domain-Specific Language (DSL). Four design smells
are identified by DECOR, namely Blob, Swiss Army Knife,
Functional Decomposition, and Spaghetti Code. Tsantalis et
al. [23] present JDeodorant, a tool for detecting Feature Envy
bad smells and suggesting move method refactoring oppor-
tunities. In its current version JDeodorant also implements
other detection strategies for detecting three other code smells
(i.e., State Checking, Long Method, and Blob) [41], [42], [43].
In the field of refactoring, Bavota et al. proposed the use
of Relational Topic Modeling to suggest Move Method [32]
and Move Class [31] refactoring opportunities. Furthermore,
they also proposed a combination of both structural and
conceptual analysis for Extract Class [30] and Extract Package
refactoring [44]. Unlike these works, our technique is able to
(i) identify actual problems occurring to code components, i.e.
code smells, rather than recommending refactoring solutions,
and (ii) detect smells at different levels of granularity (i.e.,
method, class, package) by only exploiting textual information.

Code smell detection can also be formulated as an opti-
mization problem, as pointed out by Kessentini et al. [45],
leading to the usage of search algorithms to solve it [45],
[46], [47], [48]. Kessentini et al. [45] used genetic algorithms
to detect code smells following the assumption that what
significantly diverges from good design practices is likely to
represent a design problem. Later works further investigated
this idea using different search algorithms, such as parallel col-
laborative search algorithms [46], competitive co-evolutionary
search [47], and bi-level search algorithms based on genetic
programming [48]. Besides structural information, historical
data can be exploited for the detection of code smells. Ratiu
et al. [9] propose to use the historical information of the
suspected flawed structure to increase the accuracy of the
automatic problem detection. Palomba et al. [24] provide
evidence that historical data can be successfully exploited to
identify not only smells that are intrinsically characterized by
their evolution across the program history – such as Divergent
Change, Parallel Inheritance, and Shotgun Surgery – but also
smells such as Blob and Feature Envy [24].

Our paper. Most previous work on code smell detection re-
lies on structural metrics, such as size and complexity metrics.
Different smells require different sets of structural metrics as
well as different rules for detection purposes. In this paper, we
introduce a textual-based technique that (i) exploits the textual
information contained in source code elements and (ii) relies
on textual similarity between code elements characterizing a
code component. The preliminary idea has been introduced
in [49] and applied to the identification of Long Method. Here,

<<Loop: for each code components>>

Developer

project’s
source code

input

Textual
Components Ck

Textual
Content

Extractor

IR
Normalization

Process

Normalized
Textual

Component Ck

Smell
Detector

Class A

Class A

Class A

Affected Components

Fig. 1. TACO: The proposed code smell detection process.

we extend the approach to the identification of four more
code smells (i.e. Feature Envy, Blob, Promiscous Package, and
Misplaced Class). We also evaluate the approach on a much
larger case study.

III. THE PROPOSED CODE SMELL DETECTION PROCESS

Figure 1 depicts the main steps used by TACO in order to
compute the probability of a code component being affected
by a smell, which are (i) Textual Content Extractor, (ii) IR
Normalization Process, and (iii) Smell Detector.

Textual Content Extractor. Starting from the set of code
artifacts composing the software project under analysis, the
first step is responsible for the extraction of the textual
content characterizing each code component by selecting only
the textual elements actually needed for the textual analysis
process, i.e., source code identifiers and comments.

IR Normalization Process. Identifiers and comments of
each component are firstly normalized by using a typical Infor-
mation Retrieval (IR) normalization process. Thus, the terms
contained in the source code are transformed by applying
the following steps [50]: (i) separating composed identifiers
using the camel case splitting which splits words based on
underscores, capital letters and numerical digits; (ii) reducing
to lower case letters of extracted words; (iii) removing special
characters, programming keywords and common English stop
words; (iv) stemming words to their original roots via Porter’s
stemmer [51]. Finally, the normalized words are weighted
using the term frequency - inverse document frequency (tf-
idf) schema [50], which reduces the relevance of too generic
words that are contained in most source components.

Smell Detector. The normalized textual content of each
code component is then individually analyzed by the Smell
Detector, which applies different heuristics to identify tar-
get smells. The detector relies on Latent Semantic Index-
ing (LSI) [52], an extension of the Vector Space Model
(VSM) [50], which models code components as vectors of
terms occurring in a given software system. LSI uses Singular
Value Decomposition (SVD) [53] to cluster code components

2

according to the relationships among words and among code
components (co-occurrences). Then, the original vectors (code
components) are projected into a reduced k space of concepts
to limit the effect of textual noise. For the choice of size
of the reduced space (k) we used the heuristic proposed by
Kuhn et al. [54] that provided good results in many software
engineering applications, i.e., k = (m⇥n)

0.2 where m denotes
the vocabulary size and n denotes the number of documents
(code components in our case). Finally, the textual similarity
among software components is measured as the cosine of the
angle between the corresponding vectors. The similarity values
are then combined in different ways, according to the type
of smell we are interested in, to obtain a probability that a
code component is actually smelly. For detection purpose,
we convert such a probability in a truth value in the set
{true, false} to denote whether a given code component
is affect or not by a specific smell. In the context of this paper,
we instantiated TACO for detecting five code smells, namely
(i) Long Method, (ii) Feature Envy, (iii) Blob, (iv) Promiscuous
Package, and (v) Misplaced Class. We have instantiated TACO
on these code smells in order to demonstrate how textual
analysis can be useful for detecting smells at different levels of
granularity (i.e., method-level, class-level, and package-level).
Moreover, all the selected smells violate, in different ways, the
OOP single responsibility principle [55], [56]. For instance, a
Blob class implements more than one responsibility, while a
Feature Envy is a method which has a different responsibility
with respect to the one implemented in the class it is actually
in. This peculiar characteristic makes them particularly suit-
able for a textual-based technique, since the higher the number
of the responsibilities implemented in a code component,
the higher the probability that such a component contains
heterogeneous identifiers and/or comments. In the following
subsections, we detail how the general process depicted in
Figure 1 has been applied for detecting the smells described
above.

A. Computing Code Smell Probability

Long Method. This smell arises when a method implements
a main functionality, together with auxiliary functions that
should be managed in different methods. The refactoring
associated with such a smell is clearly Extract Method1, which
allows the identification of portions of the method that should
be treated separately, with the aim to create new methods for
managing them [2]. It is worth noting that the definition of the
smell strongly differs from its name, since this smell is only
partially related to the size of a method. Rather, it is related
to how much responsibilities a method manages, i.e. whether
a method violates the single responsibility principle.

Textual Diagnosis. Given the definition above, our conjec-
ture is that a method is affected by this smell when it is com-
posed of sets of statements semantically distant to each other.
In order to detect the different sets of statements composing

1More details about refactoring operations defined in literature can be found
in the refactoring catalog available at http://refactoring.com/catalog/

the method, we re-implemented SEGMENT, the approach
proposed by Wang et al. [57], which uses both structural
analysis and naming information to automatically segment a
method into a set of “consecutive statements that logically
implement a high level action” [57]. Once we identified the
sets of statements (i.e., segments) composing the method, we
considered each of them as a single document. Then, for each
pair of documents, we apply LSI [58] and the cosine similarity
to have a similarity value. More formally, let M be the method
under analysis, let S = {s1, . . . , sn} be the set of segments
in M , we compute the textual cohesion of the method M as
the average similarity between all pairs of its segments:

MethodCohesion(M) = mean

i 6=j
sim(si, sj) (1)

where n is the number of code segments in M , and sim(si, sj)

denotes the cosine similarity between two segments si and sj

in M . Starting from our definition of textual cohesion of M ,
we compute the probability that M is affected by Long Method
using the following formula:

PLM (M) = 1�MethodCohesion(M) (2)

It is worth noting that PLM (M) ranges in [0; 1]. The higher
its value, the higher the probability that method M represents
a Long Method instance.

Feature Envy. According to Fowler’s definition [2], this
smell occurs when “a method is more interested in another
class than the one it is actually in”. Thus, a method affected
by Feature Envy is not correctly placed, since it exhibits high
coupling with a class different than the one where it is located
in. To remove this smell, a Move Method refactoring aimed at
moving it to the more suitable class is needed.

Textual Diagnosis. When computing the probability that
a method is affected by such a smell, we conjecture that a
method more interested in another class is characterized by a
higher similarity with the concepts implemented in the envied
class, with respect to the concepts implemented in the class it
is actually in. Let M be the method under analysis belonging
to the class CO, and let Crelated = {C1, . . . , Cn} be the set
of classes in the system sharing at least one term with M .
First, we derive the class (Cclosest) having the highest textual
similarity with M as follows:

Cclosest = argmax

Ci2Crelated

sim(M,Ci) (3)

Then, if Cclosest is not the class where M is actually placed
in (i.e., Cclosest 6= CO), then, M should be moved to the class
Cclosest. Therefore, we compute the probability for M to be
a Feature Envy instance as:

PFE(M) = sim(M,Cclosest)� sim(M,CO) (4)

The formula above is equal to zero when Cclosest = CO,
i.e., the method M is correctly placed. Otherwise, if
Cclosest 6= CO, the probability is equal to the difference
between the textual similarities of M and the two classes

3

Cclosest and CO.

Blob. These classes are usually characterized by a huge size,
a large number of attributes and methods and a high number
of dependencies with data classes [2]. This smell involves low
cohesive classes that are responsible for the management of
different functionalities. The Extract Class refactoring is the
more suitable operation that can be applied for removing this
smell type, since it allows to split the original class by creating
new classes, re-distributing its responsibilities.

Textual Diagnosis. Our conjecture is that Blob classes are
characterized by a semantic scattering of contents. More
formally, let C be the class under analysis, let M =

{M1, . . . ,Mn} be the set of methods in C, we compute the
textual cohesion of the class C as defined by Marcus and
Poshyvanyk [25]:

ClassCohesion(C) = mean

i 6=j
sim(Mi,Mj) (5)

where n is the number of methods in C, and sim(Mi,Mj)

denotes the cosine similarity between two methods Mi and
Mj in C. Therefore, we compute the probability that C is
affected by Blob using the following formula:

PB(C) = 1� ClassCohesion(C) (6)

Also in this case, PB(C) ranges in [0; 1].

Promiscuous Package. A package can be considered as
promiscuous if it contains classes implementing too many
features, making it too hard to understand and maintain [2]. As
for Blob, this smell arises when the package has low cohesion,
since it manages different responsibilities. In this case, to
refactor the smell an Extract Package operation is needed
for split the package in more sub-packages, re-organizing the
responsibilities of the original promiscuous package.

Textual Diagnosis. We conjecture that packages affected by
this smell are characterized by subset of classes semantically
distant from the other classes of the package. Formally, let P
be the package under analysis, and let C = {C1, . . . , Cn} be
the set of classes in P , the textual cohesion of the package P

is defined as done by Poshyvanyk et al. [59]:

PackageCohesion(P) = mean

i 6=j
sim(Ci, Cj) (7)

where n is the number of classes in P , and sim(Ci, Cj) is
the cosine similarity between two classes Ci and Cj in P .
Given such definition, we define the probability that P is a
Promiscuous Package using the formula below:

PPP (P) = 1� PackageCohesion(P) (8)

PPP (P) assumes values in the range [0; 1].

Misplaced Class. A Misplaced Class smell suggests a class
that is in a package that contains other classes not related to
it [2]. The obvious way to remove such a smell is to apply
a Move Class refactoring able to place the class in a more
related package.

Textual Diagnosis. Our conjecture is that a class affected by
this smell is semantically more related to a different package
with respect to the package it is actually in. Let C be the
class under analysis, contained in the package PO, and let
Prelated = {P1, . . . , Pn} be the set of packages that share at
least one term with C. We firstly retrieve the package with the
highest textual similarity with C, using the following formula:

Pclosest = argmax

Pi2Prelated

sim(C,Pi) (9)

Then, if Pclosest is different from the package where the class
C is actually placed in (i.e., Pclosest 6= PO), then C should
be moved to the package Pclosest. More formally, we compute
the probability C is affected by a Misplaced Class as:

PMC(C) = sim(C,Pclosest)� sim(C,PO) (10)

As in the case of Feature Envy, the value is equal to zero if
Pclosest = PO. Otherwise, if Pclosest 6= PO, the probability
is equal to the difference between the textual similarities of
C and the two packages Pclosest and PO.

B. Applying TACO to Code Smell Detection

TACO assigns a smelliness probability to each code compo-
nent according to the textual diagnosis metrics reported above.
In the context of smell detection, we need to convert such
probabilities in a truth value in the set {true, false}.
Thus, we need to discriminate when a probability indicates the
presence of a given smell with respect to the cases where such
probability is not enough for considering a code component
affected by a smell. After different experiments aimed at
identifying the optimal cut-off point, we found that the best
results are obtained when using as threshold the median of the
non-null values of the probability distribution of the system
under analysis. Interested readers can find the results of such
a calibration analysis in our online appendix [60].

IV. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the study is to evaluate TACO, with the
purpose of investigating its effectiveness during the detection
of code smells in software systems. The quality focus is on the
detection accuracy and completeness when compared to the
approaches based purely on structural analysis. The perspec-
tive is of researchers, who want to evaluate the effectiveness
of textual analysis for detecting code smells for building better
recommenders for developers.

The context of the study consists of ten open source software
projects. Table I reports the characteristics of the analyzed
systems2, namely their size in terms of number of classes,
number of methods, and KLOC. Among the analyzed projects,
we have seven projects belonging to the Apache ecosystem3,
and three open source projects from elsewhere. Note that our
choice of the subject systems is not random, but instigated by

2The list of repositories is available in our online appendix [60]
3http://www.apache.org/ verified on January 2016

4

TABLE I
CHARACTERISTICS OF THE SOFTWARE SYSTEMS IN OUR DATASET

System Classes Methods KLOCs

Apache Ant 1.8.0 813 8,540 204
aTunes 2.0.0 655 5,109 106
Eclipse Core 3.6.1 1,181 18,234 441
Apache Hive 0.9 1,115 9,572 204
Apache Ivy 2.1.0 349 3,775 58
Apache Lucene 3.6 2,246 17,021 466
JVLT 1.3.2 221 1,714 29
Apache Pig 0.8 922 7,619 184
Apache Qpid 0.18 922 9,777 193
Apache Xerces 2.3.0 736 7,342 201

our aim to analyze projects belonging to different ecosystems,
having different size and scope.

In this study, we investigate the following research ques-
tions:

• RQ1: What is the accuracy of TACO in detecting code
smells?

• RQ2: How does TACO perform when compared with
state-of-the-art techniques purely based on structural
analysis?

• RQ3: To what extent is TACO complementary with re-
spect to the structural-based code smell detectors?

To answer RQ1 we run TACO on the selected software
projects. To evaluate its accuracy, we needed an oracle re-
porting the actual code smells contained in the considered
systems. For all of the code smells considered in this paper,
an annotated set of such smells is publicly available in
literature [61].

Once obtained the set of smells detected by TACO on each
software project, we evaluated its performances by using
two widely adopted Information Retrieval (IR) metrics, i.e.
precision and recall [50]:

precision =

|TP |
|TP[FP |% recall =

|TP |
|TP[FN |%

where TP and FP represent the set of true and false positive
smells detected by TACO, respectively, while FN (false nega-
tives) represents the set of smell instances in the oracle missed
by TACO. To have an aggregate indicator of precision and
recall, we also report the F-measure, defined as the harmonic
mean of precision and recall:

F -measure = 2 ⇤ precision ⇤ recall
precision+ recall

%

To answer RQ2, we run code smell detection techniques
purely based on structural analysis on the same software
projects on which we run TACO. For Long Method and
Blob smells we compared TACO with DECOR, the structural
detection approach proposed by Moha et al. [22]. Since a tool
implementing the approach is not publicly available, we re-
implemented the detection rules defined by DECOR, which are
available online4. For the Feature Envy smell, we considered

4http://www.ptidej.net/research/designsmells/grammar/

JDeodorant as the alternative approach [23]. JDeodorant is
available as open source Eclipse plug-in5. The technique
behind JDeodorant analyzes attributes and method calls of
each method in the system under analysis with the aim to
form a set of candidate target classes where the method should
be moved. As for Promiscuous Package, we compared TACO
with the clustering-based algorithm proposed in [33], where
classes are grouped using the dependencies among them.
Finally, for Misplaced Class, we used the approach proposed
by Atkinson and King [34], which traverse the abstract syntax
tree of a class in order to determine, for each feature, the set
of classes referencing them. In this case, a class is affected by
Misplaced Class if it has more dependencies with a different
class with respect to the one it is actually in.

Even if in literature several other approaches have been
defined for smell detection, our choice of the alternative tech-
niques has been guided by (i) the availability of a tool (e.g.,
JDeodorant), or (ii) the simplicity of a re-implementation, in
order to avoid possible errors due to a wrong implementation.
To compare the performance achieved by TACO with those
of the alternative structural detection techniques, we used the
same set of accuracy metrics used for measuring TACO’s
results, i.e., recall, precision, and F-measures.

Finally, to answer RQ3, we compared the sets of smell
instances correctly detected by TACO and by the alternative
approaches by computing the following overlap metrics:

correctmi\mj =

|correctmi \ correctmj |
|correctmi [correctmj |

%

correctmi\mj
=

|correctmi \ correctmj |
|correctmi [correctmj |

%

where correctmi represents the set of correct code smells
detected by the approach mi, correctmi\mj measures the
overlap between the set of true code smells detected by both
approaches mi and mj , and correctmi\mj

appraises the true
smells detected by mi only and missed by mj . The latter
metric provides an indication of how a code smell detection
technique contributes to enriching the set of correct code
smells identified by another approach. This information can be
used to analyze the complementarity of structural and textual
information when performing code smell detection.

V. RESULTS

This section reports the results of our study, with the
aim of addressing the research questions formulated in the
previous section. To avoid redundancies, we report the results
for all the three research questions together, discussing each
smell separately. Tables II, III, IV, V, and VI show the results
achieved by TACO and by the structural approaches on the
ten subject systems for Long Method, Feature Envy, Blob,
Promiscuous Package and Misplaced Class, respectively.
Specifically, we report (i) the number of actual components

5http://www.jdeodorant.com/

5

TABLE II
LONG METHOD - TACO ACCURACY COMPARED TO DECOR.

Project
#Actual TACO DECOR
Smells Precision Recall F-measure Precision Recall F-measure

Apache Ant 52 68% 96% 80% 63% 56% 59%
aTunes 11 75% 81% 78% 13% 18% 15%
Eclipse Core 89 74% 78% 76% 24% 82% 37%
Apache Hive 53 70% 85% 77% 47% 66% 55%
Apache Ivy 18 76% 89% 82% 75% 50% 60%
Apache Lucene 82 65% 80% 72% 34% 71% 46%
JVLT 7 63% 71% 67% 60% 43% 50%
Apache Pig 33 74% 85% 79% 19% 64% 29%
Apache Qpid 39 70% 82% 75% 42% 56% 48%
Apache Xerces 27 77% 85% 81% 31% 85% 46%

Overall 411 71% 83% 76% 32% 67% 43%

affected by a smell (column #Actual Smells), (ii) accuracy
metrics for each approach involved in a comparison, in
terms of precision, recall, and f-measure. In our online
appendix [60] we provide a technical report in which we
also report the number of true and false positive instances
found by both TACO and the alternative techniques. In
addition, Table VII reports values concerning overlap and
differences between TACO and the structural techniques:
column “TACO \ ST” reports the percentage of correct smell
instances detected by both TACO and the alternative structural
approach; column “TACO \ ST” reports the percentage of
correct code smells correctly identified by TACO but missed
by the structural technique; finally, column “ST \ TACO”
reports the percentage of correct code smells identified by the
structural technique but not by TACO. In the following, we
discuss the results for each smell type.

A. Long Method Discussion
In the set of subject systems, we found 411 instances

of this smell. The analysis of the results indicates that a
textual approach more accurately detects instances of the
Long Method smell. Specifically, the F-measure on the over-
all dataset of TACO is 76% (83% of recall and 71% of
precision) against 43% (67% of recall and 32% of preci-
sion) achieved by the alternative approach. The low accuracy
achieved by DECOR is due to the fact that the number
of lines of code (LOC) of a method only tells a part of
the whole story. Indeed, there are several cases in which a
method is cohesive even if the large size of the method can
indicate the presence of such a smell. The use of textual
analysis is able to better discriminate whether a method
implements more than one functionality. Of particular interest
is the case of the Eclipse Core project: Here we found
several methods having more than 100 LOC, implementing
intrinsically complex operations, but not characterized by
the presence of a Long Method smell. For example, the
method createSingleAssistNameReference of the
class CompletionParser needs to parse the actual content
of the IDE workspace in order to automatically suggest to de-
velopers the methods she can use in her context. Although the
method has 113 LOC, it can not be considered a Long Method
smell, since it has a focused responsibility implemented across
multiple lines. However, the DECOR rule detects this method

TABLE III
FEATURE ENVY - TACO ACCURACY COMPARED TO JDEODORANT.

Project
#Actual TACO JDeodorant
Smells Precision Recall F-measure Precision Recall F-measure

Apache Ant 8 67% 75% 71% 15% 25% 19%
aTunes 8 60% 75% 67% 34% 75% 50%
Eclipse Core 3 50% 67% 57% 0% 0% 0%
Apache Hive 22 88% 68% 77% 89% 77% 83%
Apache Ivy 17 67% 59% 63% 77% 59% 67%
Apache Lucene 26 61% 73% 67% 51% 88% 65%
JVLT 1 50% 100% 67% 50% 100% 67%
Apache Pig 7 56% 71% 63% 57% 57% 57%
Apache Qpid 15 76% 87% 81% 73% 73% 73%
Apache Xerces 8 67% 75% 71% 63% 63% 63%

Overall 115 67% 72% 70% 57% 69% 62%

as affected by the smell. Conversely, TACO correctly discards
it from the candidate smell set. Moreover, our approach is
able to identify different types of Long Method instances with
respect to the ones a structural technique can identify. As
an example, the method findTypesAndPackages of the
class CompletionEngine, allows to discover the classes
and the packages of a given project. Clearly, this method
manages different tasks, even if its size is not large (i.e., 58
lines of code). This means that the use of textual analysis is
actually useful to avoid the identification of many false positive
candidates, but also to detect instances of Long Method that
the structural technique is not able to detect. This claim is
supported by the results achieved when analyzing the overlap
between TACO and DECOR (see Table VII). Indeed, we
observed an overlap of 58%, i.e. 58% of the actual Long
Method instances are correctly detected by both TACO and
DECOR, while it is interesting to note that TACO is able to
correctly detect 30% of instances that DECOR is not able
to detect. Finally, 12% of instances are correctly identified by
DECOR and missed by TACO. An example of a Long Method
instance correctly identified by DECOR and missed by TACO
can be found in the class RetrieveEngine of the Apache
Ivy project, where the method retrieve is characterized
by 165 LOC. This method implements the basic operation
of finding the settings of the machine Ivy is working on,
however it also has an auxiliary function checking whether or
not the settings are up to date. The textual approach fails in the
detection of this smell because of the consistent vocabulary of
the method. The achieved results highlight a tangible potential
of combining structural and textual information for detecting
this type of smell. We are planning to tackle this combination
as part of our future work.

B. Feature Envy Discussion
For the Feature Envy smell, we found a total of 115 affected

methods in our dataset. TACO has been able to identify 83 of
them (recall of 72%), against the 79 detected by JDeodorant
(recall of 69%). On the other hand, the precision obtained
by TACO is higher than the one achieved by JDeodorant
(67% against 57%). Overall, TACO’s F-Measure is higher than
JDeodorant (70% against 62%), and our approach outperforms
the alternative one on 7 out of 10 systems (70% of the times). It
is important to note that JDeodorant is a refactoring tool and,
as such, it identifies Feature Envy smells with the purpose of

6

TABLE IV
BLOB - TACO ACCURACY COMPARED TO DECOR.

Project
#Actual TACO DECOR
Smells Precision Recall F-measure Precision Recall F-measure

Apache Ant 31 68% 81% 74% 81% 55% 65%
aTunes 9 64% 78% 70% 75% 34% 46%
Eclipse Core 43 63% 81% 71% 48% 72% 52%
Apache Hive 27 71% 63% 67% 72% 48% 58%
Apache Ivy 10 80% 80% 80% 100% 30% 46%
Apache Lucene 27 74% 81% 77% 67% 67% 67%
JVLT 3 50% 34% 40% 100% 34% 50%
Apache Pig 7 67% 57% 62% 42% 71% 53%
Apache Qpid 29 79% 93% 86% 80% 41% 55%
Apache Xerces 16 70% 88% 78% 59% 81% 68%

Overall 202 70% 79% 74% 62% 57% 60%

suggesting opportunities of Move Method refactoring. Thus,
the tool detects the smell only if the application of the
refactoring is actually possible. To this aim, JDeodorant checks
some preconditions to ensure that the program behavior does
not change after the application of the refactoring [23]. For
example, one of the preconditions considered is that the envied
class does not contain a method having the same signature as
the moved method [23]. In order to set a fair comparison with
our approach, we filtered the Feature Envy instances found
by our approach, using the same set of preconditions defined
by JDeodorant [23]. During this step, we removed 1 correct
instances and 3 false positives from the initial set. Once the
filtering has been applied, TACO’s precision increases to 69%,
while its recall decreases to 70%. Moreover, it is interesting to
note that the two approaches are highly complementary, as re-
ported in Table VII. In fact, 48% of the correct smell instances
have been detected by both approaches, while our textual
technique identifies 28% of instances missed by JDeodorant.
On the other side, the structural tool is able to capture 24% of
correct Feature Envy instances missed by TACO. An example
of an instance correctly captured by TACO is represented
by the method readSchema of the class IndexSchema

of Apache Lucene. Here the method, implementing the
functionality able to read the schema of a database, has a
concept more related to the class ZkIndexSchemaReader
with respect to the class it is actually in. On the other hand,
JDeodorant is the only technique able to correctly identify the
smell affecting the method isRebuildRequired of the
class WebsphereDeploymentTool, present in Apache

Ant project. In this case, TACO is not able to identify
the smell since it is characterized by a high number of
dependencies with the envied class, even if the textual content
of the method is more related to the actual class.

C. Blob Discussion
As for the detection of Blobs, TACO is able to achieve, over-

all, a precision of 70% and a recall of 79% (F-measure=74%),
while DECOR is able to achieve a precision of 62% and
a recall of 57% (F-measure=60%). Specifically, on average,
TACO is 15% more accurate in detecting this type of smell.
The only exception is represented by the jVLT project. In
this case, DECOR is able to identify one out of three Blob in-
stances present in the system without any false positive (preci-
sion=100%, recall=34%), while TACO outputs two candidates,

TABLE V
PROMISCUOUS PACKAGE - TACO ACCURACY COMPARED TO THE

APPROACH PROPOSED IN [33].

Project
#Actual TACO Approach in [33]
Smells Precision Recall F-measure Precision Recall F-measure

Apache Ant 10 89% 80% 84% 67% 40% 50%
aTunes 3 50% 34% 40% 50% 34% 40%
Eclipse Core 9 70% 78% 74% 50% 34% 40%
Apache Hive 7 83% 71% 77% 57% 57% 57%
Apache Ivy 4 100% 50% 67% 50% 25% 34%
Apache Lucene 26 71% 92% 80% 70% 73% 72%
JVLT 3 25% 34% 29% 0% 0% 0%
Apache Pig 10 89% 80% 84% 83% 50% 63%
Apache Qpid 15 65% 73% 69% 58% 47% 52%
Apache Xerces 4 50% 50% 50% 34% 25% 29%

Overall 91 71% 76% 73% 62% 49% 55%

of which one is a false positive (precision=50%, recall=34%).
In particular, TACO fails in the suggestion of the class Utils
of the package net.sourceforge.jvlt.utils. Even
if the methods of this class are not cohesive, since the class
implements several utility methods used by other classes, it
can not be considered a Blob since it does not centralize
the behavior of a portion of the system. On the contrary, an
example of Blob correctly detected by TACO can be found in
the class AudioFile of the aTunes project. This class has
the goal to map an entity, but actually it implements several
methods for the management of such entities and also for the
management of users’ playlists. DECOR can not detect this
smell since the class does not seem to be a controller class6.
Looking at the complementarity in Table VII, we observed that
the textual approach is able to detect a consistent number of
correct instances missed by DECOR. Indeed, TACO is able to
capture 41% of classes affected by Blob missed by DECOR,
while DECOR detects 19% of instances missed by TACO.
Noticeably, 40% of correct instances are identified by both
the approaches. This result highlights how the use of textual
analysis can be particularly suitable for detecting the Blob code
smell.

D. Promiscuous Package Discussion
Over the set composed of 91 Promiscuous Package

instances, TACO achieves 71% of precision and 76%
of recall (F-measure=73%), outperforming on 9 systems
out of 10 the alternative structural-based technique. This
result clearly indicates how the use of textual information
is beneficial in order to identify packages composed of
classes implementing different responsibilities. The only
exception regards the aTunes project, in which the two
techniques obtain the same accuracy (F-Measure=40%).
Specifically, in this system there are 3 promiscuous
packages, and the two approaches are able to correctly
detect only one instance each. TACO detects as promiscuous
the net.sourceforge.atunes.kernel.actions

package, that is characterized by 133 classes implementing
actions related to the management of (i) the buttons
present in the UI, (ii) the options for saving audio files in
local, and (iii) the synchronization of the playlists. In this

6DECOR identify a controller class if its name contains a suffix in a set
{Process, Control, Command, Manage, Drive, System}

7

TABLE VI
MISPLACED CLASS - TACO ACCURACY COMPARED TO THE APPROACH

PROPOSED BY ATKINSON AND KING [34].

Project
#Actual TACO Approach in [34]
Smells Precision Recall F-measure Precision Recall F-measure

Apache Ant 4 75% 75% 75% 50% 50% 50%
aTunes 0 - - - - - -
Eclipse Core 11 73% 73% 73% 78% 64% 70%
Apache Hive 2 50% 100% 67% 20% 50% 29%
Apache Ivy 10 50% 100% 67% 16% 50% 25%
Apache Lucene 27 82% 82% 82% 71% 46% 56%
JVLT 0 - - - - - -
Apache Pig 7 90% 90% 90% 75% 14% 24%
Apache Qpid 2 67% 100% 80% 0% 0% 0%
Apache Xerces 16 75% 75% 75% 67% 50% 57%

Overall 57 77% 84% 81% 53% 37% 43%

case, the structural technique can not detect the instance
because of the dependencies among the classes, due to
the fact that all the classes inherit the AbstractAction

class and belong to the menu visible by the end user.
On the other hand, TACO fails in the detection of the
net.sourceforge.atunes.gui.views.controls

package, that is composed of 26 classes related to different
aspects of the management of the dialogs of the application.
The structural technique correctly detects the smell since it
is able to cluster the classes into sub-packages, while TACO
can not detect it because of the consistent vocabulary used in
the classes. Looking at Table VII, we can see that the textual
technique captures the most part of the instances missed
by the alternative approach (i.e., 49%), while the structural
technique detect 29% of instances missed by TACO. Finally,
it is interesting to note how only the 23% of instances are
detected by both the techniques.

E. Misplaced Class Discussion

Regarding the Misplaced Class, the textual technique
reaches 77% of precision and 84% of recall (F-measure=81%),
while the alternative approach has a precision of 53%, with
a recall of 37% (F-measure=43%). This result clearly
shows the usefulness of textual analysis for detecting
classes not properly located. An example smell detected
by TACO can be found in the Apache Lucene project,
where the class InstantiatedIndex of the package
org.apache.lucene.store has different dependencies
with the current package, but has topics more related to the
package org.apache.lucene.index. In contrast, the
approach proposed in [34] is the only one able to detect the
mapReduceLayer.PhyPlanSetter class as misplaced
in the Apache Pig project. Here, the class has a vocabulary
more similar to the package where it is actually in, but it
should clearly be placed in the physicalLayer package.
When considering the overlap metrics (Table VII), we confirm
the actual superiority of TACO with respect the structural
technique. Indeed, we found that 63% of correctly detected
instances are only found by TACO, 23% of instances are
detected by both approaches, while a smaller percentage (i.e.,
14%) of smells are only identified by the alternative structural
approach.

TABLE VII
OVERLAP BETWEEN TACO AND THE STRUCTURAL TECHNIQUES (ST).

FOR LONG METHOD AND BLOB THE STRUCTURAL TECHNIQUE IS
DECOR, FOR FEATURE ENVY IT IS JDEODORANT, FOR PROMISCUOUS

PACKAGE IT IS THE APPROACH PROPOSED IN [33], FOR MISPLACED
CLASS IT IS THE APPROACH PROPOSED IN [34].

Code Smell TACO\ST TACO\ST ST\TACO
% # % # %

Long Method 227 58% 116 30% 48 12%
Feature Envy 53 48% 30 28% 26 24%
Blob 79 40% 81 41% 37 19%
Promiscuous Package 26 29% 43 49% 19 22%
Misplaced Class 13 23% 35 63% 8 14%

Summary for RQ1: The proposed textual-based approach
provides good performance in detecting code smells. Among
the 10 projects, its precision ranges between 67% and 77%,
while its recall between 72% and 84%.
Summary for RQ2: 100% of the times TACO outperforms
DECOR during the detection of Long Method instances,
90% of the times when considering the detection of classes
affected by Blob. As for Feature Envy, TACO achieves better
performances than JDeodorant in 70% of the cases. When
applied to Promiscuous Package detection, 90% of the times
our approach performs better with respect to the technique
proposed in [33], while in all the cases TACO outperforms
the technique proposed in [34] in the detection of Misplaced
Class instances. Thus, on average, in the 90% of the cases
TACO outperforms alternative structural-based approaches in
detecting smells.
Summary for RQ3: Our findings showed some complemen-
tarities between textual and structural information, suggesting
that our novel approach and the structural code analysis
techniques could nicely complement each other to obtain better
performance in detecting smells. However, such combination
is not trivial. As an example, considering the Feature Envy
smell: We observed that a simple combination obtained by
using AND/OR operators is not enough. Indeed, in the AND
case the precision strongly increases to 84% (+17% than
TACO, +27% than JDeodorant) but the recall decreases to
38% (-34% than TACO, -31% than JDeodorant); in the OR
case the recall increases to 91% (+24% than TACO, +34%
than JDeodorant), while the precision dramatically decreases
to 33% (-39% than TACO, -36% than JDeodorant). The
construction of a hybrid technique is part of our future agenda.

VI. THREATS TO VALIDITY

This section describes the threats that can affect the validity
of our empirical study.

Construct Validity. Threats to construct validity are mainly
due to the definition of the oracle for the studied software
projects. In the context of our paper, we rely on the oracles
publicly available in [61]. However, we cannot exclude that
the oracle we used misses some smells, or else identified some
false positives. Another threat is the use of comments during
the detection process, since not all the systems have them. To
deal with this, we re-run the case study by just considering

8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Cut-off Points

F-
m

ea
su

re

Fig. 2. F-measure achieved with different cut-off points. Dashed red line
corresponds to our cut-off point.

identifiers. Results are in line with the ones obtained in Section
V. The interested reader can find detailed results in our online
appendix [60]. Finally, another threat is related to our re-
implementation of both SEGMENT [57] and DECOR [22],
which was needed because of lack of tools. However, our re-
implementations use the exact algorithms defined by Wang et
al. [57] and by Moha et al. [22], and have already been used
in earlier work [24], [49], [62].

Internal Validity. An important factor that might affect
our results is represented by the cut-off point we used to
detect code smells. To have higher reliability of our choice,
we also investigated the effects of different cut-off points on
the performance of TACO when detecting smells for all the
systems considered in our study. For example, Figure 2 plots
the F-measure scores achieved by TACO when using different
cut-off points when detecting Long Method on the aTunes

project. We can notice that the best F-measure is achieved
when using as cut-off point the median of the probability
distribution, i.e., the dashed red line in Figure 2. Similar results
are also obtained for the other projects and smell types, as
reported in our online appendix [60]. Another threat to internal
validity is represented by the settings used for the IR process.
During the pre-processing, we filtered the textual corpus by
using well known standard procedures: stop word list, stemmer
and the tf-idf weighting schema, and identifiers splitting [50].
For LSI, we choose the number of concepts (k) using the
heuristics proposed by Kuhn et al. [54].

External Validity. We demonstrated the feasibility of our
approach focusing our attention on smells of different nature
and of different levels of granularity. However, there might be
other smells that can be potentially detected using TACO and
not considered in this paper [2], [35]. Such an investigation is
part of our future agenda. Another threat can be related to the
number of subject systems used in our empirical evaluation.
To show the generalizability of our results, we conducted an
empirical study involving 10 Java open source systems having
different size and different domains. It could be worthwhile to
replicate the evaluation on other projects written in different
programming languages.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper we presented TACO (Textual Analysis for
Code smell detectiOn), an approach able to detect code smells.
It does so by analyzing the properly decomposed textual
blocks composing a code component, in order to apply IR

methods and measuring the probability that a component is
affected by a given smell. We demonstrated the usefulness
of textual analysis for smell detection instantiating TACO
for five code smells, i.e. Long Method, Feature Envy, Blob,
Promiscuous Package, and Misplaced Class. The performance
of the proposed textual detector has been assessed on 10
open source systems and compared with the ones provided
by existing approaches solely relying on structural analysis.
The results of the study demonstrated that TACO exhibits a
precision ranging between 67% and 77%, and a recall that
ranges between 72% and 84%, often outperforming alter-
native structural-based detectors. Moreover, we found some
complementarity between textual and structural information,
suggesting that their combination could be beneficial to obtain
better detection accuracy. For the aforementioned reason, our
future research agenda includes the definition of a combined
technique, as well as the evaluation of the usefulness of the
proposed textual approach in the detection of other code smell
types. Also, we will further investigate the characteristics of
textual smells in order to compare their impact on change- and
fault-proneness with the results achieved in previous studies
considering smells detected using structural techniques.

REFERENCES

[1] D. L. Parnas, “Software aging,” in Proc. Int’l Conf on Software Engi-
neering (ICSE). ACM/IEEE, 1994, pp. 279–287.

[2] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[3] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do
they really smell bad? a study on developers’ perception of bad code
smells,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2014, pp. 101–110.

[4] A. F. Yamashita and L. Moonen, “Do developers care about code smells?
an exploratory survey,” in Proceedings of the Working Conference on
Reverse Engineering (WCRE). IEEE, 2013, pp. 242–251.

[5] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Proc. of the European Conf. on Software
Maintenance and ReEngineering (CSMR). IEEE, 2012, pp. 411–416.

[6] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory survey,”
in Proceedings of the International Workshop on Refactoring Tools.
ACM, 2011, pp. 33–36.

[7] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad
smells in object-oriented code,” in Int’l Conf. Quality of Information and
Communications Technology (QUATIC). IEEE, 2010, pp. 106–115.

[8] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the impact of
bad smells using historical information,” in Proc. of the Int’l workshop
on Principles of Software Evolution (IWPSE). ACM, 2007, pp. 31–34.

[9] D. Ratiu, S. Ducasse, T. Gı̂rba, and R. Marinescu, “Using history
information to improve design flaws detection,” in European Conf. on
Software Maintenance and Reengineering (CSMR). IEEE, 2004, pp.
223–232.

[10] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, Blob and Spaghetti Code, on
program comprehension,” in European Conf. on Software Maintenance
and Reengineering (CSMR). IEEE, 2011, pp. 181–190.

[11] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study
of the impact of code smells on software change-proneness,” in Proc.
Working Conf. on Rev. Engineering (WCRE). IEEE, 2009, pp. 75–84.

[12] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[13] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dybå, “Quantifying the effect of code smells on maintenance effort,”
IEEE Trans. Software Eng., vol. 39, no. 8, pp. 1144–1156, 2013.

9

[14] A. F. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in Proceedings of the International Conference
on Software Maintenance (ICSM). IEEE, 2012, pp. 306–315.

[15] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in Proc. Int’l
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 682–691.

[16] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, “Software
complexity and maintenance costs,” Commun. ACM, vol. 36, no. 11, pp.
81–94, Nov. 1993.

[17] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in Proceedings of the International Conference on Soft-
ware Maintenance (ICSM), 2004, pp. 350–359.

[18] M. J. Munro, “Product metrics for automatic identification of “bad
smell” design problems in java source-code,” in Proc. Int’l Software
Metrics Symposium (METRICS). IEEE, 2005, p. 15.

[19] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006.

[20] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian
approach for the detection of code and design smells,” in Proc. Int’l
Conf. on Quality Software (QSIC). IEEE, 2009, pp. 305–314.

[21] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Numerical
signatures of antipatterns: An approach based on B-splines,” in Pro-
ceedings of the European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 2010, pp. 248–251.

[22] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur, “DECOR:
A method for the specification and detection of code and design smells,”
IEEE Trans. on Software Engineering, vol. 36, no. 1, pp. 20–36, 2010.

[23] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[24] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Trans. on Software Engineering, vol. 41, no. 5, pp. 462–489, May 2015.

[25] A. Marcus and D. Poshyvanyk, “The conceptual cohesion of classes,” in
Proceedings of the International Conference on Software Maintenance
(ICSM). IEEE, 2005, pp. 133–142.

[26] R. Buse and W. Weimer, “Learning a metric for code readability,” IEEE
Trans. on Softw. Engineering, vol. 36, no. 4, pp. 546–558, July 2010.

[27] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proc. Int’l Conf. on
Software Engineering (ICSE). IEEE, 2003, pp. 125–135.

[28] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual
cohesion of classes for fault prediction in object-oriented systems,” IEEE
Trans. on Software Engineering, vol. 34, no. 2, pp. 287–300, 2008.

[29] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in Proc.
Int’l Conf. on Software Engineering (ICSE). IEEE, 2013, pp. 522–531.

[30] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Automating extract
class refactoring: An improved method and its evaluation,” Empirical
Softw. Engg., vol. 19, no. 6, pp. 1617–1664, Dec. 2014.

[31] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. de Lucia,
“Improving software modularization via automated analysis of latent
topics and dependencies,” ACM Trans. Softw. Eng. Methodol., vol. 23,
no. 1, pp. 4:1–4:33, Feb. 2014.

[32] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia,
“Methodbook: Recommending move method refactorings via relational
topic models,” IEEE Trans. Softw. Engg., vol. 40, no. 7, pp. 671–694,
July 2014.

[33] M. Girvan and M. E. Newman, “Community structure in social and
biological networks.” Proc Natl Acad Sci U S A, vol. 99, no. 12, pp.
7821–7826, June 2002.

[34] D. Atkinson and T. King, “Lightweight detection of program refactor-
ings,” in Software Engineering Conference, 2005. APSEC ’05. 12th Asia-
Pacific, Dec 2005, pp. 8 pp.–.

[35] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and
T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis, 1st ed. John Wiley and Sons, March 1998.

[36] B. F. Webster, Pitfalls of Object Oriented Development, 1st ed. M &
T Books, February 1995.

[37] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[38] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting

defects in object-oriented designs: using reading techniques to in-

crease software quality,” in Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM, 1999, pp. 47–56.

[39] F. Simon, F. Steinbr, and C. Lewerentz, “Metrics based refactoring,”
in Proceedings of European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 2001, pp. 30–38.

[40] E. van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Proceedings of the Working Conference on Reverse
Engineering (WCRE). IEEE, 2002.

[41] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Identi-
fication and removal of type-checking bad smells,” in European Conf.
on Softw. Maintenance and Reengineering (CSMR). IEEE, 2008, pp.
329–331.

[42] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods,” J. Syst.
Softw., vol. 84, no. 10, pp. 1757–1782, Oct. 2011.

[43] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Identi-
fication and application of extract class refactorings in object-oriented
systems,” J. Syst. Softw., vol. 85, no. 10, pp. 2241–2260, 2012.

[44] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using structural
and semantic measures to improve software modularization,” Empirical
Software Engineering, vol. 18, no. 5, pp. 901–932, 2013.

[45] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from perfection
is a better criterion than closeness to evil when identifying risky code,” in
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’10. ACM, 2010, pp. 113–122.

[46] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A cooperative parallel search-based software engineering approach for
code-smells detection,” IEEE Transactions on Software Engineering,
vol. 40, no. 9, pp. 841–861, Sept 2014.

[47] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and
S. Ben Chikha, “Competitive coevolutionary code-smells detection,” in
Search Based Software Engineering, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, vol. 8084, pp. 50–65.

[48] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell detection
as a bilevel problem,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 1,
pp. 6:1–6:44, Oct. 2014.

[49] F. Palomba, “Textual analysis for code smell detection,” in Proc. Int’l
Conf. on Software Engineering (ICSE). IEEE, 2015, pp. 769–771.

[50] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[51] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[52] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, no. 41, pp. 391–407, 1990.

[53] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large
Symmetric Eigenvalue Computations. Boston: Birkhauser, 1998, vol. 1,
ch. Real rectangular matrices.

[54] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Identifying
topics in source code,” Information & Software Technology, vol. 49,
no. 3, pp. 230–243, 2007.

[55] T. DeMarco, Structured Analysis and System Specification. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1979.

[56] M. Page-Jones, The Practical Guide to Structured Systems Design: 2Nd
Edition. Upper Saddle River, NJ, USA: Yourdon Press, 1988.

[57] X. Wang, L. Pollock, and K. Vijay-Shanker, “Automatic segmentation
of method code into meaningful blocks to improve readability,” in Proc.
Working Conf. Reverse Engineering (WCRE). IEEE, 2011, pp. 35–44.

[58] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” JOURNAL OF
THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, vol. 41,
no. 6, pp. 391–407, 1990.

[59] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using infor-
mation retrieval based coupling measures for impact analysis,” Empirical
Softw. Engg., vol. 14, no. 1, pp. 5–32, 2009.

[60] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman,
“Online appendix: A textual-based technique for smell detection,” Tech.
Rep., http://dx.doi.org/10.6084/m9.figshare.1590962.

[61] F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshy-
vanyk, and A. De Lucia, “Landfill: An open dataset of code smells with
public evaluation,” in Proceedings of the Working Conference on Mining
Software Repositories (MSR). IEEE, 2015, pp. 482–485.

[62] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,” in
Int’l Conf. on Softw. Engineering (ICSE). IEEE, 2015, pp. 403–414.

10

