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Abstract—The automated reconstruction of 3D environments is
crucial for immersive metaverse experiences, as it enables realistic
and dynamic virtual spaces that enhance user interaction and
presence; nevertheless, it could raise significant privacy concerns.
Image-to-3D techniques, such as photogrammetry and Neural
Radiance Fields (NeRF), can inadvertently capture and render
sensitive information, posing ethical and legal risks. To address
this issue, this work evaluates the combination of obfuscation
techniques with 3D reconstruction methods to mitigate privacy
threats while maintaining visual quality. Various obfuscation
approaches are applied to input images before reconstruction,
and their impact on model fidelity and privacy preservation is
assessed through quantitative metrics and qualitative discussion.
The findings highlight trade-offs between privacy protection
and 3D reconstruction quality, where diffusion-based inpaint-
ing combined with weaker reconstruction methods can achieve
strong privacy preservation for volumetric objects (up to 177%
improvement) with lightweight meshes (up to 6.5× less) but
slightly lower visual fidelity (less than 5% difference), whereas
machine learning-based reconstruction methods can reconstruct
challenging surfaces with high realism (up to 80% realism)
at the cost of larger meshes (10k–56k polygons) and reduced
privacy (56% less on average). This study informs researchers
and practitioners on balancing realism and privacy, contributing
to the development of privacy-aware metaverse environments.

Index Terms—Metaverse, 3D Reconstruction, Obfuscation
Methods, Privacy-Threatening.

I. INTRODUCTION

The development of high-quality 3D environments is a
fundamental requirement for constructing immersive meta-
verse experiences. The realism and detail of virtual spaces
directly influence user engagement, making the creation of
complex 3D models a critical aspect of metaverse develop-
ment [9], [19]. However, the manual creation of 3D models
is labor-intensive, requiring substantial time and expertise in
3D modeling tools such as Blender and Autodesk. To mitigate
these challenges, researchers explored automation techniques
that leverage computer vision (CV), particularly image-to-3D
methods like photogrammetry and Neural Radiance Fields
(NeRF). These techniques allow for the reconstruction of 3D
models from 2D images of real objects, significantly reducing
the effort and time required for scene creation [1], [23].

Despite the advantages of automation, a major concern in
using image-to-3D approaches is the potential capture and
rendering of sensitive or privacy-threatening elements [29].
Unlike manually curated models, automated reconstruction
techniques can inadvertently include private details, such

as faces, license plates, or personal artifacts, which, when
rendered in a virtual environment, may lead to ethical and
legal issues. Furthermore, privacy-sensitive information is not
limited to identifiable faces but extends to personal attributes
such as tattoos, religious symbols, and medical items, which
are often unintentionally captured during 3D scanning [36].
The immersive nature of the metaverse further exacerbates
these concerns, as high-resolution 3D reconstructions can
expose private objects and spaces, posing significant privacy
risks [22].

Researchers have developed obfuscation techniques to mit-
igate privacy risks by selectively altering sensitive elements
in images and videos before their transformation into 3D
models [21]. Traditional methods, such as black masking,
blurring, and pixelation [16], [31], have advanced into in-
painting techniques that remove objects while preserving scene
realism [12]. Recent approaches employ convolutional neural
networks (CNNs) [11] and generative adversarial networks
(GANs) [14] to improve obfuscation quality. As privacy con-
cerns in the metaverse gain increasing attention, several works
started to investigate how to employ them in the metaverse
(e.g., [20], [30]). However, to the best of our knowledge,
previous research has not empirically tested the integration
of obfuscation and 3D reconstruction techniques to generate
privacy-preserving 3D models for the metaverse, aiming to
balance privacy protection with the visual quality and usability
of the models [17], [32]. Advancing our understanding of this
integration could yield critical insights, such as identifying
optimal trade-offs between privacy and fidelity, assessing the
impact on user experience, and informing the development of
more robust privacy-preserving frameworks for virtual envi-
ronments. Unlike applying obfuscation and 3D reconstruction
separately, their combined use may mitigate the limitations
of each: obfuscation alone can degrade model quality, while
reconstruction without privacy controls may expose sensitive
details. A well-designed integration could therefore enhance
both security and realism, ensuring models remain functional
and immersive without compromising personal data.

Building on these considerations, this work takes a step
toward the development of a pipeline that ensures both the
quality and privacy compliance of 3D models generated from
images. The study conducts a comparative analysis of different
configurations for (1) removing privacy-threatening elements
from input images using obfuscation and (2) generating 3D



models using different 3D reconstruction approaches. The
effectiveness of these configurations is evaluated considering
both the visual quality of the resulting models and their adher-
ence to privacy-preserving constraints. The findings highlight
trade-offs between automation, quality, and privacy, providing
insights and guidelines for future steps.

II. BACKGROUND AND RELATED WORK

In this section, we overview the most closely related litera-
ture addressing both privacy protection and 3D reconstruction
methodologies.

a) 3D Reconstruction Techniques: Aharchi et al. [1]
categorized CV methods in active and passive techniques. In
our study, we are interested in the latter, primarily photogram-
metry, 3D Gaussian-splatting (3DGS), and Neural Radiance
Fields (NeRF)-based models. Photogrammetry reconstructs 3D
models by analyzing multiple overlapping images taken from
different perspectives. This technique extracts depth, scale, and
geometric properties through computational methods, produc-
ing accurate digital representations of objects and environ-
ments [4]. Similarly, 3DGS is a technique that creates 3D
models from images or point clouds, representing the scene as
a set of Gaussian ellipsoids. These are projected and rasterized
to generate images from different angles, allowing for fast
and fluid visualization [35]. NeRF-based models have gained
significant attention for their ability to generate photorealistic
3D reconstructions. Introduced by Mildenhall et al. [18], NeRF
leverages deep learning to synthesize 3D scenes from multiple
2D images. Unlike traditional approaches that generate explicit
meshes or point clouds, NeRF learns how light behaves within
a scene, producing highly realistic views from arbitrary angles.
This is achieved by training a neural network to represent the
scene as a continuous function mapping spatial coordinates to
color and light density. Later research refined NeRF to enhance
practical applicability [26].

b) Obfuscation Techniques: Ensuring privacy while
scanning 3D scenes for the metaverse is crucial, as high-
resolution 3D reconstruction can expose sensitive personal
information [2], [22]. To address these risks, various ob-
fuscation techniques have been developed. Early methods
include black masking [16], blurring [31], and pixelation [13],
while advanced approaches leverage inpainting techniques [6].
Inpainting can be diffusion-based [5], patch-based [12], or
rely on machine learning models, such as CNNs [11] and
GANs [28].

Despite advancements in privacy-preserving technologies,
the development of scalable and interoperable solutions ca-
pable of adapting to the dynamic and evolving nature of the
metaverse remains crucial [17], [32]. Specifically, to the best
of our knowledge, there is no work experimenting combining
different obfuscation and 3D reconstruction techniques for
creating metaverse objects. In this context, our work aims
to evaluate these combinations to provide practitioners with
guidance on selecting the most effective strategy for generating
privacy-preserving 3D scenes in the metaverse.

III. STUDY DESIGN

To achieve the research objectives, we conducted a series
of experiments to evaluate the impact of different obfus-
cation and 3D reconstruction techniques on the generation
of privacy-compliant 3D models. We followed a structured
process, systematically applying obfuscation techniques to
remove privacy-sensitive elements from input images and
reconstructing 3D models using various approaches. The dif-
ferent combinations of obfuscation and reconstruction tech-
niques represented the independent variables, while a set of
quality metrics computed on the final 3D models served as
the dependent variables. By comparing these metrics across
all approaches, we identified different technique combinations
for various scenarios, providing valuable insights for both
researchers and practitioners.

We structured the study as follows:

1) First, we recorded videos of objects containing privacy-
threatening elements.

2) Second, we processed the recorded frames and applied
various AI-based obfuscation approaches to remove or
anonymize privacy-threatening elements.

3) Third, we used the obfuscated frames as input for differ-
ent 3D reconstruction techniques to generate the corre-
sponding 3D models. Additionally, to enable comparison,
we also captured and reconstructed 3D models from
the original object frames that did not contain privacy-
sensitive objects.

4) Last, we computed a set of quality metrics for each
reconstructed 3D model to determine whether significant
differences existed between different technique combina-
tions and to identify the most effective approaches for
privacy-preserving 3D content generation.

A. Obfuscation Methods

We evaluated one algorithm for each of the four techniques
introduced in Section II:

1) Black masking: Masking is performed by filling the
private region with black pixels.

2) Blurring: Median blurring with a 25x25 kernel is imple-
mented to better obscure the features of the hidden private
object, unlike other blurring methods that may preserve
sharp edges, potentially making the object recognizable.

3) Pixelation: Pixelation is performed by first resizing the
frame to a lower resolution (64x64) and then scaling it
back up using nearest-neighbor interpolation.

4) Navier Stokes Inpainting [5]: This algorithm is a tradi-
tional diffusion-based inpainting method that propagates
edge and color information from the known region to the
hidden region. It is implemented using OpenCV library.

5) Large Mask (LaMa) Inpainting [28]: This model is a ma-
chine learning-based inpainting model. LaMa leverages
Fourier Convolutions for a wider receptive field, conse-
quently generating contextually meaningful inpainting.



TABLE I
CATEGORIES OF PRIVACY-THREATENING ITEMS.

ID Category Example

C1 Nudity/Sexual Photo of shirtless man or a couple
C2 Other people Family photo
C3 Unorganized home Trash or dirty desk
C4 Violence Knife or gun
C5 Medical Medicine or pill bottle
C6 Drinking/Party Alcoholic drink or pack of cigarettes
C7 Appearance Photo revealing a tattoo or messy hair
C8 Bad Character Drugs or mugshot
C9 Religion/Culture Religious book or crucifix
C10 Personal information Credit card, ID, or passport

TABLE II
OBJECTS WITH PRIVACY-THREATENING ITEMS.

ID Object Privacy-Threatening items

O1 Cabinet Knife (C4), alcoholic drink (C6), credit card (C10)
O2 Computer Photo of a shirtless man with tattoos (C1. C7),

Picture of a mugshot (C7, C8)
O3 Desk Used paper napkin (C3), ID card (C2, C10),

medicine, personal photo (C5), religious book (C9)

B. 3D Reconstruction Methods

The second step of the research process involved generating
3D models using different reconstruction techniques.

As discussed in Section II, the most commonly used tech-
niques can be categorized into three major families: pho-
togrammetry, 3DGS and NeRF-based methods. Since these
approaches are well-established and extensively documented,
we relied on past literature [27], [33], [35] to identify the
most suitable implementations for our research. For both pho-
togrammetry and 3DGS, we selected the Polycam tool [25].
Polycam was chosen for its efficiency and open-accessibility,
offering a strong balance between accuracy and processing
speed compared to its competitors [8]. Additionally, it sup-
ports 3D reconstruction from images or videos using either
a photogrammetry or a 3DGS model, making it particularly
well-suited to our needs. For NeRF-based reconstruction, we
used Nerfacto [18], a hybrid method from the Nerfstudio
Framework that combines NeRF with instant neural graphics
primitives. It has proven to be among the top-performing
NeRF implementations, enabling real-time use with high-
quality results [27].

C. Experiment Procedure

Here we describe in detail the experiment procedure and
justify the taken choices.

1) Step 1—Video Recording: We recorded videos of objects
in a computer science research laboratory; we proceeded in
this way for for two reasons: (1) to recreate a familiar yet
complex environment, aligning with Dionisio’s view of realism
as key to the metaverse [10]; and (2) to leverage full control
over the space, enabling scene complexity adjustments.

Regarding the selection of privacy-threatening items, the
subjective nature of privacy has led to various studies aimed

at identifying standard categories of privacy-sensitive ob-
jects [15], [36]. We adopted the classification proposed in [36],
which is particularly suitable for our context, as it focuses on
static 3D scenes containing inanimate private objects. Table I
reports the ten identified categories, ranging from personal
information (e.g., credit cards, IDs) to sensitive personal
attributes (e.g., religious symbols, medical items).

Before proceeding with the main experiment, we conducted
a feasibility pilot to ensure the correctness of the setup and
to assess the required materials. Afterward, two researchers
arranged the objects and placed privacy-threatening items on
them according to the combinations listed in Table II. Once
the setup was complete, we recorded videos by moving around
the objects to capture all angles. Each object was filmed in two
conditions: (1) without privacy-threatening items and (2) with
the privacy-threatening items in place.

2) Step 2—Obfuscation and Frame Extraction: We pro-
cessed the collected videos by applying different obfuscation
techniques to remove privacy-threatening elements. We first
applied segmentation techniques to detect sensitive elements
and then used the obfuscation algorithms described in Sec-
tion III-A to generate multiple versions of the videos, with
each version corresponding to a different obfuscation method.
The videos were subsequently converted into frame sequences
for further processing.

3) Step 3—3D Reconstruction: We reconstructed 3D mod-
els of the objects from the frame sequences using the tech-
niques described in Section III-B. Each reconstruction algo-
rithm was configured at the highest level of detail to ensure
that any reconstruction failures were not due to excessively low
mesh resolution settings. Consequently, each model resulted
from combining an obfuscation method and a 3D reconstruc-
tion method. Additionally, a “clean” model was generated for
each object using a video that did not contain sensitive items,
allowing for direct comparison. All the material produced from
our experiments is available in our online appendix [24].

D. Data Analysis

In terms of metrics to assess model quality, based on the
literature, we identified the following:

• Usability—Number of Polygons: We evaluated the us-
ability of the models by analyzing the number of poly-
gons that form the meshes generated by each model.
Such a measure is crucial as it directly impacts real-time
performances in metaverse environments [10]. Each poly-
gon increases computational demands for rendering and
lighting, requiring more hardware and software resources
to ensure smooth simulation [7].

• Realism—Structural Similarity Index (SSIM): We
measured the realism of the reconstructed objects using
SSIM, which quantifies perceptual similarity based on
luminance, contrast, and structural integrity [34]. This
metric allowed us to evaluate how closely the synthetic
models resembled their real-world counterparts in terms
of visual fidelity. We computed this metric by overlapping
the picture of the real object with the rendering of the
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Fig. 1. Examples of the generation pipeline for the cabinet object.

corresponding 3D-reconstructed model. A higher SSIM
value indicates greater similarity between images.

• Privacy Level—Hausdorff Distance: The Hausdorff
distance [3] is a metric for 3D cloud comparison. We
used it to measure the similarity between only the private
objects in each reconstructed model and the original
model—i.e., scanned with sensitive elements. For exam-
ple, for the cabinet object, we computed the Hausdorff
distance between the knife, alcoholic drink, and credit
card objects before they were obfuscated (as they were
scanned initially), and after they were obfuscated. A
lower distance indicates greater similarity between the
models. The combination of the methods that ensures the
highest level of privacy is the one that distorts the private
objects the most, making them as different as possible
from how they initially looked.

These metrics were computed for each model generated
through the combination of obfuscation and reconstruction
techniques and subsequently compared.

IV. ANALYSIS OF THE RESULTS

The experiment produced a series of 3D models recon-
structed from real objects in the scanned office scene as
described in Section III-C3. Figure 1 illustrates examples of
the followed pipeline for the cabinet object; Table III and IV
summarize the obtained results.

a) Number of Polygons: Meshes were analyzed by poly-
gon count to assess real-time rendering suitability. The results
indicate that no combination led to significantly fewer poly-
gons. In particular, Nerfacto consistently produced detailed
models and accurately reconstructed flat, uniform surfaces,
something photogrammetry and 3DGS failed to achieve, espe-
cially for the desk object. While 3DGS slightly outperformed
photogrammetry in polygon reduction for the cabinet object
(but not for the computer object), the difference was minor.
Nerfacto had the highest polygon count, yielding ≈4.7–6.5×
and ≈1.2− 1.7× more polygons than the lighter Photogram-
metry/3DGS versions for the cabinet and computer objects,
respectively, but captured object shapes more completely.
These results highlight two key points: (1) photogrammetry
and 3DGS yield lighter models but struggle with smooth
surfaces; (2) Nerfacto better captures shapes, including plain
ones, at the cost of higher polygon density.

b) SSIM: We employed the SSIM metric to evaluate
the realism of the objects. The measurements confirmed that
no clear significant pattern emerges in different obfuscation

and reconstruction techniques; rather, differences are observed
across objects. Specifically, the cabinet object exhibits the
lowest SSIM values (< 0.21), as its model undergoes a greater
mesh deformation due to its rectangular shape and glossy,
light-colored material. In contrast, the computer object, which
is darker and contains more details, substantially increases
the SSIM metric (≈0.50–0.56). The SSIM values obtained
are even higher for the desk object reconstructed by Nerfacto
(≈0.75-0.9), suggesting a high level of realism achieved for
such object. This high variability of SSIM (≈2.4 − 3.5×
difference between objects) suggests that the primary factor
influencing performance is more closely related to the shape
of the object under examination.

c) Hausdorff Distance: The level of privacy was as-
sessed using the Hausdorff Distance between the mesh of
the sensitive objects reconstructed from the non-obfuscated
models and those generated from obfuscated references using
various methods. For the cabinet object, Diffusion Inpaint-
ing achieved the highest distances (≈166-177% increase),
particularly when paired with 3DGS and Photogrammetry.
Conversely, Nerfacto consistently produced lower Hausdorff
values across cabinet (≈50-475% decrease) and desk scenar-
ios, suggesting reduced privacy performance on volumetric or
spatially complex objects. This could be due to its higher ca-
pability of capturing objects’ details even when they are obfus-
cated, consequently resulting in a lower privacy preservation.
For the computer object, of which sensitive items primarily
consisted of flat shapes, the Hausdorff values yielded more
similar results, with minimal differences (< 0.05) among the
values. Finally, for the desk object—for which only Nerfacto
models were available—Pixelate and Diffusion Inpainting
emerged as the most effective. These findings suggest that
while Nerfacto can retrieve more accurate and detailed 3D
reconstructions, even where Photogrammetry and 3DGS fail,
it ultimately results in a less-preserving privacy method, with
Photogrammetry and 3DGS offering higher distances from the
sensitive objects and stronger privacy preservation.

V. DISCUSSION

Our preliminary experimental results pave the way for
various discussion points. Figure 2 shows visual examples of
the obtained models, which we will discuss in the following.

Reconstruction techniques: shape preservation vs. object
complexity. Nerfacto generally outperformed other recon-
struction methods in preserving object geometry, although
at the cost of a higher polygon count. As shown in Block



TABLE III
COMPARISON OF NUMBER OF POLYGONS, SSIM, AND HAUSDORFF DISTANCE FOR DIFFERENT RENDERING METHODS.

Object Obfuscation Number of Polygons SSIM Hausdorff Distance

Photogr. 3DGS Nerfacto Photogr. 3DGS Nerfacto Photogr. 3DGS Nerfacto

Cabinet

Pixelate 8,941 8,686 56,614 0.154 0.154 0.140 0.167 0.043 0.029
Blur 8,690 8,315 47,871 0.163 0.153 0.154 0.044 0.047 0.048
Block 8,176 7,904 38,431 0.138 0.164 0.129 0.035 0.055 0.037
Diffusion Inpaint 8,790 8,038 41,549 0.160 0.151 0.164 0.173 0.180 0.065
ML-based Inpaint 8,551 8,334 8,059 0.194 0.208 0.179 0.169 0.168 0.060

Computer

Pixelate 13,066 20,110 15,944 0.534 0.540 0.517 0.024 0.028 0.030
Blur 12,331 13,753 16,432 0.537 0.525 0.498 0.054 0.015 0.031
Block 12,770 11,425 17,345 0.520 0.524 0.507 0.050 0.042 0.031
Diffusion Inpaint 12,859 13,462 21,913 0.560 0.523 0.520 0.015 0.016 0.037
ML-based Inpaint 15,376 15,980 21,101 0.550 0.528 0.539 0.025 0.013 0.049

A B C

PhotogrammetryNerfacto Photogrammetry Pixelate3DGS Nerfacto
Diffusion
InpaintingBlock

Fig. 2. Example of results. Block A compares the reconstruction of the Desk in a successful case using Nerfacto and a failed reconstruction using
photogrammetry. Block B compares three reconstructions of the Cabinet with the pixelate obfuscation technique. Block C compares three obfuscation methods
applied to a flat image of the Computer screen.

TABLE IV
DESK OBJECT’S METRICS FOR THE NERFACTO METHOD.

Obfuscation N. of Polygons SSIM Hausdorff Dist.

Pixelate 17,421 0.761 0.049
Blur 14,569 0.759 0.034
Block 15,495 0.765 0.034
Diffusion Inpaint 16,658 0.762 0.049
ML-based Inpaint 10,012 0.799 0.034

A, Nerfacto is the only method able to reconstruct the
desk object successfully, whereas photogrammetry completely
failed due to the flat and glossy surface. Nevertheless, the
success of each technique depends on the shape and texture
properties of the object. Detailed and textured items—such as
the computer—led to better results and higher SSIM values.
Conversely, objects with smooth, reflective surfaces—like the
desk or cabinet—posed significant challenges, resulting in
incomplete reconstructions or visible mesh artifacts. No single
technique consistently outperformed others across all objects,
underscoring the absence of a universally optimal obfuscation-
reconstruction combination. Instead, certain methods proved
more effective for specific object types (e.g., black block for
computers, blurring for flat surfaces). These findings point to
the need for adaptive or ensemble-based approaches that tailor
the processing pipeline to the characteristics of each object.

Obfuscation techniques and their interaction with re-
construction. The effectiveness of each obfuscation technique
is not only object-dependent but also influenced by the re-
construction method. Block B illustrates this point: the same
obfuscation method (pixelate) produces entirely different out-
comes across reconstructions. In the photogrammetry model,

the bottle is distorted but recognizable; in Nerfacto, the object
is nearly reconstructed in full; while in 3DGS, it is completely
missing, indicating a higher privacy level. Similarly, Block
C shows the effect of obfuscation techniques on flat images.
Pixelate retains facial contours and texture details, making
the subject still identifiable; block masking hides facial in-
formation while preserving the silhouette; diffusion inpainting
results in an intermediate outcome, blending color cues with
partial removal of the original shape. These results suggest
that the success of an obfuscation method cannot be evaluated
in isolation—it must be assessed in the context of the target
reconstruction strategy.

Implications for privacy-aware metaverse generation.
The findings reinforce the importance of combining obfusca-
tion and reconstruction techniques thoughtfully in metaverse
applications, where realism and privacy must coexist. The
ability to automatically remove sensitive elements from input
captures while maintaining plausible 3D reconstructions is
crucial for non-expert users creating virtual spaces. These pre-
liminary results mark a step forward toward the development
of virtual environments that incorporate real-world captures,
allowing users to replicate spaces while safeguarding security
and privacy digitally.

VI. CONCLUSION AND FUTURE WORK

Our findings reveal that no single combination of techniques
consistently outperforms others in all cases for the task of
creating privacy-preserving 3D models, of good quality and
usability, for the metaverse. Instead, the effectiveness of each
method depends on the object’s characteristics and the specific
setting, demonstrating that different obfuscation-reconstruction
strategies may be better suited to different scenarios.



Future research can build upon these results by exploring
the correlation between object properties and the performance
of obfuscation and reconstruction techniques to select the most
appropriate techniques based on the specific context. AI-driven
recommendation mechanisms could be incorporated to predict
and select the optimal obfuscation–reconstruction combination
based on the given scene and object features.

Moreover, addressing internal validity concerns, such as
bias introduced by manual placement of privacy-sensitive
items, will require automating or randomizing scene setup
to improve reproducibility and minimize bias. Strengthening
external validity will involve evaluating the pipeline across
diverse real-world environments, ranging from home offices
to public and outdoor spaces, to capture the variability of pri-
vacy threats in different contexts. Finally, enhancing construct
validity will necessitate expanding beyond current metrics by
developing more objective, standardized measures of privacy
and realism, and by conducting comprehensive user studies to
align technical evaluations with human perceptions.
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