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Abstract. Context and Motivation. Fairness in socio-technical systems
is increasingly recognised as a critical requirement, especially in processes
involving human-AI interaction. Fairness hazards are situations or fac-
tors that threaten the fair treatment of individuals or groups. If left un-
addressed, they can accumulate into systemic bias. Therefore, ensuring
fairness must be treated as a first-class requirement during system de-
sign, rather than a post-hoc fix. Question/Problem. Systematic methods
for identifying fairness hazards in socio-technical workflows and trans-
lating them into requirements-level mitigations are still missing. Prin-
cipal Ideas/Results. We propose Fairness Hazard Analysis (FHA), an
adaptation of hazard analysis methods from the safety-critical domain
to analyse fairness in socio-technical processes. FHA is demonstrated
through an AI-assisted hiring case and supported by HumAInFlow, a
modelling and simulation platform. The approach is preliminarily eval-
uated through two focus groups. The feedback from participants high-
lights FHA’s usefulness for structured fairness analysis, the importance
of diverse expertise, and the potential for deeper integration within Hu-
mAInFlow. Contribution. This work offers a novel method for integrating
fairness into requirements analysis of socio-technical workflows, and pro-
vides an LLM-based tool to automate the analysis, marking a shift from
bias detection to bias prevention with fairness-by-design.

1 Introduction

As artificial intelligence (AI) technologies are increasingly deployed in everyday
activities and mediate decisions that affect people’s lives, the risks of biased or
inequitable outcomes have become more visible and urgent. In socio-technical
systems, where humans and AI agents interact, these risks can be amplified: bi-
ases may propagate across actors and processes, leading to compounding fairness
issues over time [14].
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Despite its relevance, fairness is often treated as a post-hoc evaluation con-
cern rather than a requirement to be engineered from the outset [11]. Ensuring
fairness, however, requires systematic attention comparable to safety and secu-
rity, calling for requirements engineering (RE) methods that can identify and
mitigate fairness risks early in the design process.

Recent work has introduced the notion of fairness debt, conceptualising fair-
ness issues as liabilities that accumulate when unaddressed and become increas-
ingly difficult and costly to resolve [24]. While research on algorithmic fairness
has produced a wide range of metrics and mitigation techniques, most are typ-
ically applied at the AI model or dataset level. Consequently, there remains a
lack of operational methods that requirements engineers can apply to analyse
and address fairness in socio-technical workflows [23].

To address this gap, we propose Fairness Hazard Analysis (FHA), an adapta-
tion of hazard analysis methods from safety engineering [9]. FHA treats fairness
issues as hazard-like states that may emerge and propagate through human–AI
workflows, enabling their systematic identification, analysis, and mitigation. This
analogy is motivated by the conceptual parallel between safety and fairness: just
as safety engineering aims to identify and control conditions that could lead to
harm, fairness engineering can systematically anticipate and mitigate conditions
that may cause inequitable outcomes. By treating fairness issues as hazard-like
states that can propagate through human–AI workflows, FHA provides a struc-
tured way to trace and control the accumulation of fairness debt [24] before it
leads to systemic bias.

To illustrate the approach, we applied FHA to an AI-assisted hiring process.
We also introduce a tool named HumAInFlow for modelling, simulating and
analysing socio-technical workflows and support FHA. The approach and tool
have been qualitatively evaluated through two focus groups involving diverse
experts, aimed at gathering feedback on its clarity and usefulness, and on the
suitability of HumAInFlow as a supporting tool for conducting FHA. Major
points of improvements are the need to frame fairness concepts within specific
contexts, the enhancement of analytical rigour and simulation capabilities, and
the strengthening of usability and interoperability of the tool.

It should be noted that both method and tool are at the proof-of-concept
level, i.e., Technology Readiness Level (TRL) 3. This study is part of a larger
design science [28] endeavour, where we have currently performed the phases of
problem investigation, treatment design, and preliminary validation in a con-
trolled environment (through the focus groups). These will be later followed by
implementation, i.e., application in a real-world problem context, and evaluation,
i.e., systematic assessment in practice.

Related work. Fairness in algorithmic and socio-technical systems has tradition-
ally been addressed through metrics and mitigation techniques applied to data
or models. While effective for local parity, these approaches often abstract away
the organisational and human contexts in which decisions occur. Foundational
critiques emphasise that fairness must be reasoned about at the system level:
abstraction from social context can conceal structural inequities and reproduce
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systemic harms [24,22,8]. Recent studies have begun to explore how fairness
and broader human values can be operationalised throughout the system life-
cycle. Values@Runtime proposes mechanisms to capture and adapt to stake-
holder values during operation [3], while ReFair focuses on fairness-requirement
elicitation in machine learning systems through a context-aware recommender
system [12]. Empirical analyses further show that fairness is still treated as a
secondary quality attribute: developers lack systematic, lifecycle-oriented meth-
ods to specify, trace, and maintain fairness requirements [20,27]. In parallel,
safety and security engineering provide well-established hazard-analysis frame-
works for early identification and mitigation of risks [16]. Recent work demon-
strates that system-safety methods can also uncover social and ethical risks in
machine-learning systems [21]. However, explicit translations of fairness risks
into actionable, requirements-level controls across human–AI workflows remain
scarce.

Our proposed analysis (i.e., FHA) extends these foundations by (i) system-
atically identifying fairness hazards using known sources of fairness debt, (ii)
analysing their propagation through socio-technical workflows, and (iii) deriving
requirements-level mitigations with explicit traceability to the unfair outcomes
they are intended to prevent.

2 Background

2.1 Bias, Fairness, and Hazards

Bias, the systematic deviation from objective accuracy in judgment, often arises
when data or decisions reflect unequal representation or pre-existing human prej-
udices [26]. In AI systems, bias frequently originates from the human-generated
datasets used for training [13]. Fairness, in this context, involves mitigating such
systematic errors to ensure that AI-supported outcomes do not perpetuate or
amplify inequities across demographic or social groups [19].

However, recent evidence shows that fairness cannot be considered a static
property of algorithms alone, as human–AI interactions can create feedback loops
that dynamically shape and intensify biases in human cognition and behaviour
[14]. These feedback effects represent significant hazards: risks that extend be-
yond technical malfunction to encompass psychological, social, and ethical conse-
quences [6]. When biased AI systems influence human perception and judgment,
they may not only distort individual decision-making but also reinforce societal
disparities, making the identification and correction of these feedback-driven
hazards a critical challenge for responsible design of AI systems [1].

2.2 Fairness Debt

Fairness debt was introduced to explain how fairness issues in software systems
accumulate when they are not explicitly managed throughout the software life-
cycle [24]. Aligned with the definitions of technical debt [2] and social debt [25],
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fairness debt represents the latent socio-technical liabilities that result from fair-
ness oversights, omissions, or trade-offs made during development and operation.

De Souza Santos et al. [24] identify several root causes of fairness debt across
the software lifecycle: (i) cognitive bias, arising from developers’ subjective
assumptions; (ii) requirements bias, from incomplete or non-inclusive elici-
tation; (iii) design bias, introduced through architectural or interface choices;
(iv) historical bias, stemming from legacy data that reproduces inequities; (v)
training bias, due to unrepresentative datasets; (vi) model bias, produced by
algorithmic simplifications or parameter settings; (vii) testing bias, when val-
idation overlooks fairness metrics; and (viii) societal bias, reflecting broader
structural inequalities in the system’s context.

These causes are not isolated but interdependent, meaning that fairness is-
sues can propagate across lifecycle stages: for example, an unaddressed require-
ments bias may evolve into design or testing bias downstream. Over time, the
accumulation of such debts increases the risk of systemic inequities, reputa-
tional damage, and regulatory non-compliance. Although defined in the context
of software development, several of these root causes — particularly cognitive,
societal, and requirements bias — can also emerge within the human components
of socio-technical systems. Human decision-makers interacting with software sys-
tems may, for instance, over-rely on algorithmic recommendations, apply sub-
jective evaluation criteria, or reproduce social stereotypes. This socio-technical
interpretation reinforces that fairness debt is not purely a software engineering
concern but a property of the entire human–software ecosystem. Hence, it should
be treated as a managed and traceable property of socio-technical systems, re-
quiring continuous attention rather than post-hoc correction.

This work builds on this idea by using the identified root causes of fairness
debt to structure the identification of fairness hazards in socio-technical work-
flows through the proposed FHA approach.

2.3 Hazard Analysis

Hazard analysis is a foundational concept in system safety engineering, aimed
at identifying and mitigating conditions that could lead to undesired or unsafe
system states [9]. A hazard is typically defined as a state or set of conditions
that, together with certain triggers, can result in harm or loss [15]. The purpose
of hazard analysis is to anticipate such conditions as early as possible, evaluate
their causes and potential consequences, and design appropriate preventive or
corrective controls [17].

Among the most commonly used hazard analysis techniques, the Prelimi-
nary Hazard Analysis (PHA) is a qualitative, top-down approach that provides
an initial overview of potential hazards, even before detailed system design in-
formation is available [9]. Its objective is to capture early insights concerning
potential risk sources, their likely causes and effects, and to propose preliminary
mitigation strategies, which are documented in a hazard table. A PHA generally
follows a structured sequence of activities. The process begins with system defi-
nition, followed by the identification of potential hazardous conditions, failures,
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and actions. Each identified hazard is then examined to determine its possible
causes and the severity and likelihood of its potential consequences. The combi-
nation of severity and likelihood provides a preliminary basis for assessing risk
and prioritising hazards that require further attention. Finally, preventive or
control measures are proposed to eliminate each hazard or reduce its associated
risk to an acceptable level. The process is iterative: as the system design ma-
tures, new information can refine both the identified hazards and the proposed
mitigations.

This work takes inspiration from PHA to conceptualise FHA—a socio-technical
adaptation that treats fairness deficiencies as hazard-like conditions. FHA re-
tains the PHA structure to identify, trace, and mitigate fairness hazards across
socio-technical workflows.

3 Fairness Hazard Analysis

Fig. 1: FHA process

We adapt PHA to identify and
mitigate fairness issues in FHA
systematically. FHA treats fair-
ness issues—e.g., biased decisions,
unbalanced access to information,
or unequal treatment of agents—
as hazard-like conditions that can
arise during socio-technical pro-
cesses, enabling their structured
analysis and mitigation at the re-
quirements level.

Consistent with the structure
of PHA, FHA follows the sequen-
tial process described below (cfr. Figure 1). Each step is carried out by a team of
analysts with diverse expertise in RE, data science, ethics, software engineering,
and the specific system domain. These experts are trained to recognise fairness
issues and reason about their propagation across socio-technical processes, ensur-
ing consistency in hazard identification, classification, and mitigation planning.

Step A. System Definition. As in PHA, the first step defines and models the
socio-technical process, its actors, and their interactions.

Step B. Fairness Hazard Identification. Each actor within the process is ex-
amined by the analysts in terms of the fairness-debt root causes [24], systemat-
ically assessing whether and how any of these causes may give rise to fairness
hazards within that part of the process. This step results in a fairness-hazard
list documenting the potential fairness issues and where they could emerge.

Step C. Fairness Hazard Analysis. Each identified fairness hazard is anal-
ysed in terms of its consequences, propagation, impact (degree of unfair treat-
ment), and likelihood (probability of occurrence) through a collaborative review
process where analysts discuss and resolve differing judgments to reach consen-
sus. Impact ranges from none (intentional or justified differentiation) to critical
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(structural unfairness breaching ethical, legal, or organisational norms), while
likelihood expresses how often a fairness issue may occur—from rare to systemic.
Combining impact and likelihood allows analysts to prioritise fairness risks. FHA
distinguishes between undesirable bias, which causes harm and requires mitiga-
tion, and justified or goal-aligned differentiation, which may be acceptable in
context. The latter is recorded for transparency but assigned no impact or risk.
This step produces a table reporting each hazard, its consequences, propagation,
and qualitative risk classification.

Step D. Mitigation Planning. For each fairness hazard, FHA defines control
actions at the requirements level that modify the socio-technical workflow to
prevent, detect, or compensate for unfair outcomes. Mitigation is achieved by
introducing or adjusting workflow nodes and by implementing specific controls
at critical decision points. These controls may include procedural additions–such
as inserting human review or consensus nodes for high-impact decisions–as well
as technical interventions, for instance, refining or constraining AI behaviour
through targeted prompt engineering, introducing fairness-aware scoring func-
tions, or enforcing transparency and auditability checkpoints.

Step E. Iterative Refinement. As in traditional PHA, FHA is an iterative pro-
cess. Once the socio-technical process evolves or new empirical evidence emerges,
fairness hazards and mitigations are revisited.

4 Sample Case

Fig. 2: AI-assisted hiring workflow

AI-assisted hiring systems
can enhance recruitment
quality by improving ef-
ficiency and reducing the
transactional workload of
human personnel. Never-
theless, insufficiently inves-
tigated biases may lead to
unfair practices and dis-
criminatory outcomes ba-
sed on factors such as gen-
der, race, ethnicity, or per-
sonality traits [7]. We select
the AI-assisted hiring pro-
cess as a representative case
because it involves complex
and continuous human-AI interactions and decision-making steps that are par-
ticularly sensitive to fairness concerns, as largely demonstrated by previous liter-
ature on fairness engineering [10]. These characteristics make it an ideal context
for illustrating how FHA can uncover and mitigate fairness hazards in socio-
technical workflows. To conduct the analysis, a team of three analysts, who are
authors of this paper, applied the FHA to the selected case.
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Step A. System Definition. The AI-assisted hiring process comprises four
operational nodes (cf. Figure 2). The Data Ingestor receives the job description
and candidates’ curricula, and extracts structured features and job requirements.
These are provided to the AI Prescreener, which produces a ranked shortlist of
candidates based on feature–requirement matching. The Human Recruiter re-
ceives both the ranked shortlist and the original curricula, reviews them, and
possibly overrides the AI’s ranking to select interview candidates. All intermedi-
ate artefacts—the extracted features, AI shortlist, and recruiter decisions—are
finally transmitted to the Audit Node, which consolidates the records into a
persistent log for traceability.

Table 1: Identified Fairness Hazards (FHi) across workflow nodes, with examples
and detailed root causes.
ID Node Hazard Description Example(s) Root Cause(s)

FH1 Data
Ingestor

Historical Bias. CVs and job ads re-
flect past inequities (e.g., gender im-
balance, unequal access to roles). The
Ingestor encodes these disparities into
structured data.

Career breaks due to
maternity leave are in-
terpreted as lower expe-
rience.

Historical bias;
Requirements
bias

FH2 Data
Ingestor

Data Representativeness Deficit.
Parsing or extraction fails to capture
diverse CV formats, languages, or tra-
jectories, leading to incomplete repre-
sentation.

Foreign degrees not
recognised; Nonstan-
dard CVs partially
parsed.

Training bias; Re-
quirements bias

FH3 Data
Ingestor

Requirements Bias in Job De-
scriptions. Subjective or exclusion-
ary job terms are ingested without in-
clusivity checks.

“Young and dynamic” or
“native English speaker”
disadvantage certain
groups.

Requirements
bias; Societal bias

FH4 AI Pre-
screener

Training Data Imbalance. The
ranking model is trained on demo-
graphically skewed datasets, reinforc-
ing dominant patterns.

Historical hires (mostly
men) bias the model to-
ward male-typical CVs.

Training bias;
Historical bias

FH5 AI Pre-
screener

Proxy Feature Bias. Certain fea-
tures act as proxies for ranking.

Higher-ranked univer-
sities or institutions
lead to higher candidate
scores.

Model bias; Train-
ing bias

FH6 AI Pre-
screener

Transparency Deficit. Lack of in-
terpretability prevents auditors from
identifying bias.

Recruiters receive rank-
ings without explana-
tions for scores.

Design bias; Test-
ing bias

FH7 Human
Re-
cruiter

Confirmation Bias. Recruiters
overly rely on AI rankings, disregard-
ing contradictory evidence.

Human recruiters inter-
view only top-ranked
candidates or highlight
candidate weaknesses to
justify a low score.

Cognitive bias;
Design bias

FH8 Human
Re-
cruiter

Cognitive Bias. Recruiters apply
subjective heuristics or stereotypes
during evaluation.

Foreign-sounding names
rated as less suitable.

Cognitive bias;
Societal bias

Step B. Fairness Hazard Identification. Each of the nodes defined in
Step A is examined by the analysts for hazard identification. The identified
fairness hazards (FHi) are then jointly discussed and refined, resulting in the
list provided in Table 1 and used in Step C.
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Table 2: Fairness risk assessment for identified hazards.
ID Potential consequences Impact Likeli-

hood
Risk Propagation

FH1 Systemic exclusion of minority
candidates; reputational dam-
age.

High Likely High Data Ingestor →
AI Prescreener;
Human Recruiter

FH2 Misclassification/omission of
nonstandard CVs; missed talent.

High Likely High Data Ingestor →
AI Prescreener;
Human Recruiter

FH3 Disadvantage for certain demo-
graphic/social groups.

Moderate Possible Medium
– High

Data Ingestor →
AI Prescreener;
Human Recruiter;
Audit

FH4 Ranking bias; systematically
lower scores for minorities.

High Likely High AI Prescreener →
Human Recruiter;
Audit

FH5 Higher-ranked institutions or
companies receive higher scores,
intentionally reflecting desired
selection criteria.

None Likely None AI Prescreener →
Human Recruiter;
Audit

FH6 Inability to detect/contest bi-
ased rankings.

High Possible Medium
– High

AI Prescreener →
Human Recruiter;
Audit

FH7 Amplification of prescreening
bias; reduced accountability.

High Likely High Human Recruiter
→ Audit

FH8 Inconsistent/unfair human as-
sessments.

High Likely High Human Recruiter
→ Audit

Step C. Fairness Hazard Analysis. The fairness hazards are analysed in
terms of its consequences, propagation, impact, likelihood, and risk, as shown
in Table 2. Some identified biases represent undesirable conditions that may
lead to high-risk fairness issues and therefore require prompt mitigation (e.g.,
FH1 or FH4 can systematically disadvantage underrepresented candidates and
propagate through multiple workflow nodes). Others, however, correspond to
intended or contextually acceptable behaviours (e.g., preferential weighting of
candidates from prestigious universities) and are consequently assigned no risk
and not subject to mitigation.

Step D. Mitigation Planning. Table 3 summarises all the mitigation
strategies defined to prevent, detect, or compensate for unfair outcomes, while
Figure 3 shows the updated workflow. Some of the mitigations have a direct
impact on the workflow by modifying or extending its execution (e.g., adding
the Feature-Validation node to mitigate FH2 or refining the prompt used in the
AI Prescreener node to mitigate FH1). Others act as informative or procedural
controls, supporting awareness and organisational learning for the future (e.g.,
the detailed report on historical bias produced to mitigate FH1, or the report
on biased terms used in the job description issued by the Requirements-Check
node to mitigate FH3). As previously mentioned, some of the identified fairness
hazards are not mitigated, as they represent expected behaviour (e.g., FH5 is
not mitigated because candidates from high-ranked universities are intentionally
prioritised according to the desired selection criteria).
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Fig. 3: AI-assisted hiring workflow with mitigation strategies

Table 3: Summary of mitigation actions for identified fairness hazards.
ID Workflow modification / control Expected effect

FH1
Extend the Data Ingestor Node to produce an addi-
tional output dataset summarising historical fairness-
relevant information.

Document historical bias for fu-
ture hiring processes.

Refine the prompt in the AI Prescreener Node to ex-
plicitly disregard historical imbalances during ranking.

Prevent replication of historical
inequities in candidate scoring.

FH2 Add a Feature-Validation Node between the user in-
terface and the Data Ingestor to enforce a structured
CV submission format.

Ensure completeness and compa-
rability of candidate data; reduce
representational bias due to un-
structured or nonstandard CVs.

FH3
Add a Requirements-Check Node at the input stage
to automatically scan job descriptions for potentially
biased or exclusionary terminology.

Detect and neutralise linguistic
or cultural bias in job descrip-
tions.

The Requirements-Check Node generates a Fairness
Report passed as input to the Audit Node to inform
HR personnel about flagged terminology.

Support organisational aware-
ness and long-term bias reduc-
tion in job descriptions.

FH4 Retrain the AI Prescreener model using synthetic,
demographically balanced data to counteract skewed
patterns in the original training set.

Reduce model bias during can-
didate ranking by ensuring that
historical or demographic imbal-
ances do not influence learned
representations.

FH6 Implement prompt engineering rules that explicitly in-
struct the AI Prescreener to document the rationale
behind each candidate ranking.

Improve transparency, inter-
pretability, and contestability of
AI decisions.

FH7

and
FH8

Introduce a second Human Recruiter Node operating
in parallel with the first, to independently review the
AI-generated shortlist.

Mitigate overreliance on AI out-
puts and subjective judgments.

Add a Disagreement Discussion Node to consolidate
and compare the evaluations of the two recruiters, sim-
ulating a consensus phase when discrepancies occur.

Resolve divergences between hu-
man reviewers.

Step E. Iterative Refinement. Once all the mitigation actions have been
performed, the new workflow is analysed from Step B.

5 HumAInFlow

HumAInFlow is a no-code, agentic platform, that we designed to model, sim-
ulate, and analyse socio-technical workflows where humans and software, in-
cluding AI agents, co-exist and collaborate [5]. The platform is planned for
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open-source release following completion of validation and testing phases. Unlike
existing agentic AI frameworks (e.g., Langflow, Flowise AI, AutoGen Studio),
HumAInFlow explicitly represents human roles as first-class nodes and allows
their simulation through large language models (LLMs)—by instantiating per-
sonas through embedded prompts—making it suitable for studying processes
that combine automated reasoning with human judgment.

We used HumAInFlow as a supporting tool for the AI-assisted hiring analysis,
modelling and simulating all workflow nodes and mitigation strategies through
LLMs (Figure 4 shows the original, non-mitigated, workflow).

Fig. 4: AI-assisted hiring workflow modelled in HumAInFlow

This setup enables end-to-end analysis of socio-technical interactions under
controlled and reproducible conditions. Within FHA, HumAInFlow supports
both the identification and assessment of fairness hazards by allowing analysts
to model workflow components—human and technical—as autonomous agents
whose behaviour can be systematically varied. For instance, intentionally biased
or imperfect nodes (e.g., a human recruiter affected by confirmation bias or an
AI prescreener overvaluing specific features) can be introduced to observe how
their behaviour influences downstream decisions. This allows analysts to system-
atically examine how fairness hazard can emerge and propagate. Furthermore,
mitigation strategies can be modelled and simulated within the same environ-
ment to evaluate their effectiveness in reducing or eliminating bias.

For simulation purposes, the model provides a simplified abstraction of re-
ality. For instance, human discussions or model retraining are represented by
additional simulation nodes or prompt engineering mechanisms. To ensure a re-
alistic representation of each actor in the AI-assisted hiring process, a careful
prompt engineering phase was conducted to design prompts that could repro-
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duce the expected behaviour of both human and technical entities. Standard
prompting techniques—such as chain-of-thought reasoning and persona-based
design—were applied in accordance with the OpenAI guidelines [18]. Since fair-
ness hazards may also emerge from the wording or framing of prompts, three
authors of this paper independently reviewed and iteratively refined all node
prompts, selecting the formulations that best balanced realism and neutrality.

6 Preliminary Evaluation
At this stage, the FHA method and HumAInFlow are at the proof of concept
level. Given their preliminary nature, we did not evaluate them across differ-
ent scenarios, but we performed a first treatment validation with users in a
controlled environment—following design science terminology and concepts—
to identify relevant points of improvements before actual implementation, i.e.,
introduction of the artifact in practice. We validated the approach in two two-
hour focus groups with 6 people each, involving twelve academics (33.4% Female,
66.7% Male) with different degrees of expertise in fairness (58% Basic or None,
42% Intermediate to Advanced). The focus groups were moderated by the first
and last authors. They included a presentation of the approach and a video
showing the capability of HumAInFlow to model and simulate socio-technical
workflows to support FHA. During the presentation, the participants could ask
questions and provide observations. At the end of the presentation, a set of
eight questions was posed to participants to trigger further reflection on FHA
and HumAInFlow, concerning ease of use, usefulness, and recommendations for
improvement—questions reported in the replication package due to space limita-
tions. The focus groups were recorded and automatically transcribed. Then, the
last author conducted a thematic analysis to identify points of improvements.
The results of the thematic analysis about the FHA method are in Table 4,
while Table 5 reports the themes related to improvement recommendations for
the HumAInFlow tool.

Overall, the participants were positive about the method and the tool, speci-
fying that: “The approach feels structured and clear, especially for those familiar
with requirements engineering.”; “It helps identify fairness issues throughout the
process...not only in the AI component.”; and that “The tool nicely complements
the method...it translates the analysis steps into something operational.”

They also provided several recommendations for improvements. Concerning
the method (Table 4), participants emphasised the need to clarify and contextu-
alise the concept of fairness by explicitly defining it within each analysis context
and incorporating ethical frameworks that distinguish between acceptable and
unacceptable biases. They suggested strengthening the detection and representa-
tion of bias by improving tool support, clarifying the distinction between human
and algorithmic sources, and enabling exploration of hidden or emergent bi-
ases. Enhancing the analytical rigour and usability of FHA was also highlighted,
calling for clearer guidance on risk evaluation, the inclusion of domain-specific
templates, and the provision of practical tutorials or worked examples. In terms
of mitigation, participants recommended integrating automated suggestions for
fairness interventions, supporting human–AI collaboration to balance oversight,
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and ensuring transparent documentation of mitigation rationales. They also en-
couraged positioning fairness as an ongoing, reflective practice by embedding
feedback loops into the method and reframing bias identification as a construc-
tive opportunity for learning and ethical growth.

Concerning the tool (Table 5), participants highlighted the importance of im-
proving its overall usability and visualization to better manage complex socio-
technical workflows. They recommended introducing automated layouting, hi-
erarchical representations, and semi-automatic abstractions to enhance clarity
and reduce visual clutter. Strengthening model validation and knowledge reuse
was also considered essential, suggesting pre-execution checks, breakpoints for
debugging, and mechanisms to recall and warn about known fairness hazards or
mitigation patterns when reusing existing components. The group particularly
valued the tool’s simulation and analytical potential, encouraging the ability to
model biased human or AI agents, as well as feedback loops, to explore how bias
propagates and evolves over time. In terms of extensibility and interoperability,
participants proposed a modular plugin architecture and textual export options
to facilitate integration with external models and analytical tools. Finally, they
recommended broadening the analytical scope of the tool to assess the side effects
of fairness interventions on other system qualities and to consider differentiated
impacts across multiple stakeholder groups.

7 Conclusion
This paper introduced Fairness Hazard Analysis (FHA), a structured approach
for identifying, analysing, and mitigating fairness risks in socio-technical work-
flows. By adapting hazard analysis principles from safety engineering, FHA en-
ables fairness-by-design through early, requirements-level reasoning rather than
post-hoc evaluation. The AI-assisted hiring case and preliminary focus group
evaluation demonstrated the method’s feasibility and its value in promoting in-
terdisciplinary reflection on fairness. Future work will extend FHA to larger,
practitioner-led case studies and integrate automated support for bias detec-
tion and mitigation within the HumAInFlow platform, advancing fairness as a
first-class non-functional requirement in socio-technical system design.
Acknowledgments. Research supported by the EU Project CODECS GA 101060179.
The authors acknowledge the use of ChatGPT to refine the text.
Data Availability. We made our supplementary material available in [4].

References

1. Afreen, J., Mohaghegh, M., Doborjeh, M.: Systematic literature review on bias
mitigation in generative ai. AI and Ethics pp. 1–53 (2025)

2. Alves, N.S., et al.: Identification and management of technical debt: A systematic
mapping study. Information and Software Technology 70, 100–121 (2016)

3. Bennaceur, A., Hassett, D., et al.: Values@runtime: An adaptive framework for
operationalising values. In: ICSE – SEIS. pp. 175–179. IEEE (2023)

4. Broccia, G., et al.: Fairness as a first-class requirement: A fairness hazard analysis
approach to socio-technical processes - supplementary material (Oct 2025). https:
//doi.org/10.5281/zenodo.17472752

https://doi.org/10.5281/zenodo.17472752
https://doi.org/10.5281/zenodo.17472752
https://doi.org/10.5281/zenodo.17472752
https://doi.org/10.5281/zenodo.17472752


Fairness as a First-Class Requirement 13

5. Broccia, G., et al.: Humainflow : a no-code platform for modelling and simulating
human-ai workflows. Tech. Rep. 011, ISTI-CNR (2025)

6. Chen, C., et al.: Ethical perspective on ai hazards to humans: A review. Medicine
102(48), e36163 (2023)

7. Chen, Z.: Ethics and discrimination in artificial intelligence-enabled recruitment
practices. Humanities and social sciences communications 10(1), 1–12 (2023)

8. Dolata, M., Schwabe, G., Schwabe, D.: Fairness as a sociotechnical concept in
information systems. Information Systems Journal 33(4), 970–995 (2023)

9. Ericson, C.A., et al.: Hazard analysis techniques for system safety. John Wiley &
Sons (2015)

10. Fabris, A., Messina, S., Silvello, G., Susto, G.A.: Algorithmic fairness datasets: the
story so far. Data Mining and Knowledge Discovery 36(6), 2074–2152 (2022)

11. Farahani, A., et al.: On adaptive fairness in software systems. In: Proc. of SEAMS.
pp. 97–103. IEEE (2021)

12. Ferrara, C., et al.: Refair: Toward a context-aware recommender for fairness re-
quirements engineering. In: Proc. of ICSE. IEEE (2024)

13. Gichoya, J.W., et al.: Ai pitfalls and what not to do: mitigating bias in ai. The
British Journal of Radiology 96(1150), 20230023 (2023)

14. Glickman, M., Sharot, T.: How human–ai feedback loops alter human perceptual,
emotional and social judgements. Nature Human Behaviour 9(2), 345–359 (2025)

15. Leveson, N.G.: Safeware: system safety and computers. ACM (1995)
16. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.

MIT Press, Cambridge, MA (2011)
17. Lutz, R.R.: Analyzing software requirements errors in safety-critical, embedded

systems. In: Proc. of RE. pp. 126–133. IEEE (1993)
18. OpenAI: Openai cookbook: Examples and guides for using the openai api. https:

//github.com/openai/openai-cookbook (2025), accessed: 2025-10-15
19. Pagano, T.P., et al.: Bias and unfairness in machine learning models: a system-

atic review on datasets, tools, fairness metrics, and identification and mitigation
methods. Big data and cognitive computing 7(1), 15 (2023)

20. Palomba, F., Ferrara, C., Sellitto, G., De Lucia, A., Ferrucci, F.: Fairness-aware
machine learning engineering: How far are we? ESE 29(1), 9 (2024)

21. Rismani, S., et al.: Applying system-theoretic process analysis (stpa) to identify
ethical and social risks in machine learning systems. In: Proc. of FAccT. pp. 2540–
2553. ACM (2023)

22. Selbst, A.D., Boyd, D., et al.: Fairness and abstraction in sociotechnical systems.
In: Proc. of FAT*. pp. 59–68. ACM (2019)

23. Soremekun, E., Papadakis, M., Cordy, M., Le Traon, Y.: Software fairness: An
analysis and survey. ACM Computing Surveys (2022)

24. de Souza Santos, R., et al.: Software fairness debt: Building a research agenda for
addressing bias in ai systems. ACM TOSEM 34(5), 1–21 (2025)

25. Tamburri, D.A., et al.: Social debt in software engineering: insights from industry.
Journal of Internet Services and Applications 6(1), 10 (2015)

26. Varona, D., Suárez, J.L.: Discrimination, bias, fairness, and trustworthy ai. Applied
Sciences 12(12), 5826 (2022)

27. Voria, G., et al.: Fairness-aware practices from developers’ perspective: A survey.
Information and Software Technology 182, 107710 (2025)

28. Wieringa, R.: Design science methodology for information systems and software
engineering. Springer (2014)

https://github.com/openai/openai-cookbook
https://github.com/openai/openai-cookbook


14 G. Broccia et al.

Table 4: Recommendations for improving the Fairness Hazard Analysis method
Improvement
Area

Recommendation Rationale / Description Exemplary Quote (Partic-
ipant)

1. Clarify and
Contextualize
Fairness Con-
cepts

Define fairness explic-
itly for each analysis
context

The concept of fairness is inherently subjec-
tive; the method should require explicit eth-
ical framing and domain-specific definitions.

“For me, the word ‘fairness’ it-
self is tricky. What’s fair de-
pends on perspective — fair-
ness is inherently biased.”

Distinguish between
acceptable and unac-
ceptable bias

The tool could allow users to tag certain bi-
ases as “intended” or “undesired” to reflect
context-dependent ethics.

“There are desired and unde-
sired biases — for instance,
preferring candidates from
high-ranking universities
might be intentional.”

Include ethical princi-
ple templates

Offer pre-defined ethical or fairness frame-
works (e.g., distributive justice, equal oppor-
tunity) to guide consistent analysis.

“Every system should state
openly which ethical principles
it follows, so users know what
definition of fairness applies.”

2. Strengthen
Bias Detection
and Representa-
tion

Enhance bias-
identification support
in the tool

Add structured prompts, examples, and
checklists for detecting common human and
algorithmic biases.

“AI systems often perpetuate
existing inequalities, like pay-
ing men more than women.”

Model both human
and algorithmic biases
distinctly

The method should clearly separate bias
types and provide visualization of how they
interact.

“You should distinguish be-
tween human and machine bi-
ases — and possibly even com-
bine their strengths to reduce
weaknesses.”

Support exploration of
hidden biases

Include sensitivity analysis or simulation
tools to uncover biases not explicitly known
by analysts.

“But how do we detect biases
we don’t know about?”

3. Improve Ana-
lytical Rigor and
Usability of FHA

Provide clearer guid-
ance on risk evaluation

Develop scales or calibration aids for judging
likelihood and impact to reduce subjectivity.

“Judging likelihood and im-
pact is subjective — calibra-
tion is needed.”

Offer domain-specific
templates or libraries

Create FHA templates for common socio-
technical domains (e.g., hiring, healthcare)
to ease application.

“It’s important to start with
frequent, well-known recruit-
ment cases — that’s where
this model can bring the most
value.”

Provide interactive
tutorials or example
analyses

Tutorials can make the structured steps of
FHA easier to apply and interpret.

“The approach feels structured
and clear, especially for those
familiar with requirements en-
gineering.”

4. Enhance Fair-
ness Mitigation
and Iteration
Support

Integrate mitigation
strategy suggestions

When a hazard is identified, the tool could
suggest potential mitigation actions (e.g.,
retraining models, adding review nodes).

“If we know a bias exists —
for example, gender bias in his-
torical data — we can retrain
models or balance datasets to
mitigate it.”

Promote human–AI
collaboration mecha-
nisms

Explicitly model roles for human oversight,
such as review checkpoints or multi-human
consensus steps.

“Use two human recruiters and
a discussion node to reduce
over-reliance on AI.”

Support documen-
tation of mitigation
rationale

Encourage users to record why certain ac-
tions were chosen, increasing transparency
and accountability.

“The tool allows process sim-
ulation to uncover unexpected
biases through analysis of out-
puts.”

6. Support Re-
flective and
Ongoing Fairness
Practice

Encourage iterative,
dialogic reflection

Build feedback mechanisms for revisiting
fairness assumptions as systems evolve.

“Fairness itself must be contex-
tually defined.”

Frame bias as a learn-
ing opportunity

Treat the discovery of bias as a positive step
toward ethical improvement, not merely a
flaw.

“We’re all biased about what
counts as bias! Some biases
might align with ethical values
or goals.”
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Table 5: Recommendations for HumAInFlow
Improvement
Area

Recommendation Rationale / Description Exemplary Quote (Partic-
ipant)

1. Usability &
Visualization

Provide auto-layout
and clearer node ar-
rangement

Reduce visual clutter in complex workflows;
support automatic layouting so links and de-
pendencies remain readable as models grow.

“The interactions between
nodes are tangled; we need a
clearer layout.”

Add hierarchical views
/ macro-nodes

Allow grouping nodes into higher-level
“macro-nodes” and switching between levels
of granularity to manage complexity.

“It would help to group single
nodes into a macro-node and
get a higher-level view.”

Semi-automatic high-
level abstractions

Offer semi-automated cluster-
ing/abstraction of related nodes to generate
higher-level visualizations without extra
modeling burden.

“High-level views could be
auto-generated to avoid mod-
eling every abstraction level by
hand.”

2. Model Valida-
tion & Knowl-
edge Reuse

Pre-execution valida-
tion & breakpoints

Add preflight checks (missing links, invalid
connections) and debugging breakpoints to
pinpoint execution failures early.

“Does the tool signal when
something does not make
sense?”

Warnings on risky pat-
terns / loops

Detect problematic loops or ill-formed con-
nections and guide users to resolve non-
termination or structural errors.

“We discussed adding break-
points to understand where
the problem arises.”

Memory of known haz-
ards & reuse guidance

When importing nodes/models, surface past
analyses (known fairness risks, typical miti-
gations) and suggest checks by node type.

“When importing something,
the tool could run an analy-
sis and warn: you should add
a mitigation here.”

3. Simulation &
Analytical Capa-
bilities

Simulate biased agents
and propagation

Let users simulate biased humans/LLMs to
observe how bias propagates through the
socio-technical workflow and where mitiga-
tions help.

“I want to simulate a biased
human or AI and see how the
bias propagates and whether
mitigation works.”

Temporal/feedback-
loop simulation

Support time-evolving scenarios and feed-
back loops to evaluate whether mitigations
hold over repeated interactions.

“Consider simulating feedback
loops to verify if mitigations
survive in the long term.”

4. Extensibility
& Interoperabil-
ity

Plugin architecture for
models/nodes

Enable adding local/remote models and cus-
tom nodes via plugins so organizations can
integrate proprietary or fine-tuned compo-
nents.

“It would be nice to add plug-
ins or new nodes not initially
foreseen by the system.”

Textual ex-
port/import
(JSON/XML)

Provide an editable textual representation
for complex models to support version-
ing, reviews, and interoperability with other
tools.

“Having a textual representa-
tion of the diagram helps man-
age complex models.”

5. Broader Ana-
lytical Scope

Assess side-effects on
other NFRs

When planning fairness mitigations, analyze
collateral impacts on other qualities (e.g.,
performance, usability, security).

“Mitigating fairness may affect
other non-functional require-
ments; we should reason about
side effects too.”

Multi-stakeholder im-
pact weighting

Allow per-actor impact/risk weighting and
trade-offs, since hazards may affect stake-
holders differently.

“Risks can differ for recruiters
vs. candidates; we should
weight impacts and tailor mit-
igations.”
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