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ABSTRACT

Code smells are symptoms of poor design choices that can harm
software quality. Their relation to fault-proneness has been studied
in statically typed languages, such as Java, but less so in dynamic
languages like JavaScript, which are becoming increasingly cen-
tral given their primary role in rendering AI models accessible to
their intended audience. Previous work on JavaScript was limited in
scope, which affected the generalizability of its findings. This paper
replicates and extends Johannes et al.’s study “A Large-scale Em-
pirical Study of Code Smells in JavaScript Projects” to examine how
code smells impact the fault-proneness of JavaScript applications.
We analyze a large sample of 50 projects and nearly 100k commits
across multiple domains, applying survival analysis with Cox mod-
els and robustness checks. We confirm that files with smells, such as
Variable Re-Assignment, Complex Code, and Conditional Assignment,
are more prone to faults. We also find that smell survivability varies
across projects and that smells introduced at file creation often
persist. These results offer a more ecologically valid and replicable
perspective on the impact of code smells on JavaScript systems.
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1 INTRODUCTION

JAVASCRIPT has long been the most widely used programming lan-
guage worldwide [33], supporting an ecosystem that spans web
development to mobile and desktop applications. Its centrality is
further reinforced today by the diffusion of large language mod-
els (LLMs), for which JavaScripT is among the most frequently
generated outputs.! In practice, this means that JAVASCRIPT is not
only the language through which most modern systems are ren-
dered accessible to end users, but also one whose quality directly
affects the reliability of Al-assisted development. This makes it
particularly urgent to understand how design flaws emerge and
persist in JAVASCRIPT systems, especially given the prevalence of
code smells—design symptoms that can indicate deeper structural
problems and are associated with higher fault-proneness [12].

Beyond their impact on maintainability, such flaws also affect
code comprehension, a cornerstone of both human reasoning and
automated analysis. Poorly structured or inconsistent code hinders
developers’ ability to understand system behavior and intentions,
slowing maintenance and evolution. At the same time, it can ham-
per the performance of LLM-based tools, which depend on code
readability and consistency to produce accurate summaries, repairs,
and recommendations.

Despite the practical relevance of the problem, the software
engineering (SE) research community has primarily focused on
statically typed languages such as Java [3, 8, 16, 40], leaving dy-
namic languages like JAVASCRIPT comparatively less studied. This
imbalance is striking, as it overlooks a language that is both ubiq-
uitous in practice and increasingly central, especially in the era of
Al-assisted programming.

A notable exception is the study by Johannes et al. [18], which
represents one of the first systematic efforts to empirically examine
code smells in JAVASCRIPT systems. Their work provides initial
evidence of how smells manifest in real-world projects and their
relationship to software quality. Analyzing more than 1,800 releases
from 15 popular open-source projects, the authors demonstrated
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that files affected by code smells are considerably more prone to
faults, with specific smells, such as Variable Re-Assignment, Assign-
ment in Conditional Statements, and Complex Code, being strongly
associated with faults. At the same time, their release-based per-
spective could not capture issues introduced and resolved between
releases, and the limited project sample reduces ecological validity.

In this replication study, we extend their work by examining
97,636 commits across 50 real-world projects of varying sizes, do-
mains, and contributor communities. Our commit-level perspective
allows us to capture a more fine-grained evolution of code smells
and faults, revealing phenomena that remain invisible in release-
based designs. Our results confirm that smelly files are generally
more fault-prone and provide new insights. Specifically, smell sur-
vivability varies significantly across projects, and smells introduced
at file creation tend to persist, amplifying their long-term impact
on code quality. By offering a broader and more detailed account
of how code smells emerge and persist, this study contributes evi-
dence that is increasingly pressing, given the language’s ubiquity
and its growing role in Al-assisted software development.

2 RELATED WORK

Fowler and Beck originally defined code smells as symptoms of
poor design that may signal deeper structural problems in software
systems [12]. Building on this definition, the software engineering
community has investigated code smells from multiple perspectives,
particularly in the context of Java.

Several studies explored the evolutionary dimension of code
smells. Giordano et al. analyzed their relationship with design
mechanisms such as design patterns, inheritance, and delegation,
finding that certain smells are positively correlated with these tech-
niques [14, 15]. Tufano et al. [35] examined when and why smells
arise, showing that they are often introduced in the earliest stages
of development and are typically removed only when files them-
selves are deleted. Other works investigated the consequences of
smells: Li and Shatnawi [29] linked them to a higher likelihood of
bugs, while Sjoberg et al. [31] found only limited effects on mainte-
nance effort. In contrast, Abbes et al. [1] reported negative effects
on code understandability. Khomh et al. [20] and Palomba et al. [25]
provided further evidence that classes affected by code smells are
more change- and fault-prone, though the benefits of removing
smells are not always clear-cut.

While these studies provide substantial evidence for statically
typed languages, far fewer works have addressed dynamic lan-
guages such as JavaScripT. This is an important gap, since JAVASCRIPT
has unique language features and is increasingly central in both
traditional development and Al-assisted programming. Our study
contributes to filling this gap by replicating and extending prior
research in the context of JAvAScripT, offering new evidence on the
prevalence, persistence, and impact of smells in real-world projects.

Research specifically on JAVASCRIPT code smells has largely fo-
cused on tool support. Fard et al. [10] introduced JNoOSE, capable
of detecting 13 smell types, with Lazy Object and Long Method
emerging as the most common. Nguyen et al. [23] developed a tool
to detect intermixing issues across HTML, CSS, and JAVASCRIPT,
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while static analyzers such as ESLINT,? JSLint [5], and JSHINT [4]
enforce coding conventions and best practices.

Complementary to detection, Saboury et al. [28] conducted an
empirical study on the impact of 12 code smells in JAVAScRrIPT
server-side applications. By analyzing 537 releases across five projects
and surveying over 1,400 developers, they showed that smells such
as Variable Re-Assignment, Assignment in Conditional Statements,
and Nested Callbacks increase fault-proneness and hinder maintain-
ability. Their findings highlight the practical relevance of smells
in JAVAScRIPT and resonate with later evidence from Johannes et
al. [18] and with our own replication study.

Table 1: Code Smells Detectable by the Framework of Jo-
hannes et al. [18], grouped by category.

Code Smell Description

Syntactic Concerns

Lengthy Lines A single line of code contains too many characters, reducing readability and
increasing the likelihood of horizontal scrolling and visual clutter.
Chained Methods Excessive method chaining within a single statement makes debugging harder

and obscures the individual method effects, especially when side effects are
involved.

Long Parameter List Functions with many parameters are harder to read, test, and call correctly,
often suggesting that the function does too much or lacks proper abstraction.
Long Method Methods that span many lines are often harder to understand, maintain, and
reuse, and tend to violate the single-responsibility principle.

Switch statements with many cases become unwieldy and error-prone, often
indicating the need for better abstraction or use of polymorphism.

Structural Complexity

Nested Callbacks Deeply nested asynchronous callbacks—also known as "callback hell’—make
control flow hard to follow and error handling difficult.

Complex Switch Case

Depth Smell Excessive levels of indentation indicate deep nesting, which reduces readability
and signals high structural complexity.

Complex Code High cyclomatic complexity makes the code harder to test, understand, and
maintain, increasing the likelihood of faults.

Extra Bind Unnecessary use of .bind(ctx) introduces redundant code and may confuse
readers about whether the context is actually needed.

This Assign Assigning this to a variable such as self creates ambiguity in scope manage-

ment and can signal outdated patterns, especially in modern JavaScript that
uses arrow functions.

Semantic Misuses

Variable Re- | Reassigning a variable with a value of a different type or purpose in the same
Assignment scope undermines code clarity and can lead to type-related bugs in dynamically
typed languages.

Assignment in Condi- | Using an assignment instead of a comparison inside conditionals may result in
tional Statements unintended logic and hard-to-detect bugs, often due to typographical errors.

3 THE REFERENCE WORK

The reference work for our replication is the empirical study by
Johannes et al. [18], which represents a foundational effort in ana-
lyzing the role of code smells in the context of JavaScripT devel-
opment. Their study was among the first to examine the presence,
impact, and evolution of code smells tailored to the idioms and
characteristics of a language like JavaScripT, offering a reusable
analytical framework that has informed subsequent research.

The study addresses three research questions: (1) whether files
affected by code smells are more fault-prone than clean files; (2)
whether different types of code smells exhibit varying levels of
fault-proneness; and (3) how long code smells tend to persist over
time. To address these questions, the authors analyze 1,807 releases
across 15 popular open-source JAVASCRIPT projects. They develop
a static analysis framework based on ESLINT to detect a catalog of
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12 JAvAScrIpPT-specific code smells, derived from widely adopted
community style guides.

This smell catalog covers both stylistic and semantic concerns
frequently encountered in JavAScrIPT code. Table 1 provides an
overview of the 12 smells and their corresponding descriptions
that can be grouped into three broad categories: Syntactic concerns,
referring to surface-level violations of readability and formatting
conventions (e.g., excessively long lines, method chaining); Struc-
tural complexity, which includes smells that increase cognitive load
through deep nesting or convoluted control flow (e.g., Nested Call-
backs, Depth Smell); and Semantic misuses, capturing patterns that
may lead to confusion or unintended behavior (e.g., Variable Re-
Assignment with conflicting meanings or assignment operators in
conditional expressions).

To assess the relationship between code smells and software qual-
ity, Johannes et al. identify fault-inducing changes using the SZZ
algorithm [32], combined with heuristics proposed by Da Costa et
al. [6] to reduce false positives in bug-fixing commit detection. The
approach relies on commit message patterns to identify fixes, which
are then traced back using git blame to associate faults with the
lines that introduced them. The authors then apply survival analy-
sis using the Cox Proportional Hazards Model [21] to estimate the
relative risk of faults in smelly versus smell-free files. Their results
indicate that smelly files are, on average, 33% more fault-prone than
clean ones and 45% more fault-prone when considering their depen-
dencies with other files. Certain smells, i.e., Variable Re-Assignment,
Assignment in Conditional Statements, and Complex Code, stand
out as particularly fault-prone. Furthermore, code smells are often
introduced early in the lifecycle of a file and tend to persist across
multiple releases, raising concerns about long-term maintainability.

Replication Statement

While the study by Johannes et al. [18] provides important em-
pirical insights and a reusable methodology, our replication is
motivated by the need to assess whether its findings hold across
different development contexts. The original analysis focuses
on 15 highly popular and mature projects, conducting survival
analysis at the release level to ensure data quality, stability, and
sufficiently long evolutionary histories. This design, while well-
suited for an exploratory investigation, inherently captures sys-
tem states at release points, meaning that issues introduced and
resolved between two releases are not observable.

Replications play a crucial role in strengthening the evidence
base around empirical claims by evaluating whether observed pat-
terns remain consistent across broader and more diverse samples.
In this spirit, our study adopts the same methodological frame-
work while substantially expanding the dataset to 50 projects and
97,636 commiits, and conducting the analysis at the commit level.
This approach captures finer-grained evolution and encompasses
a wider range of JavaScript ecosystems, development styles, and
contributor communities.

4 RESEARCH METHOD

The goal of this study is to assess the ecological validity of the
findings of Johannes et al. [18] on the relationship between code
smells and fault-proneness in JAVASCRIPT systems, using a broader
and more diverse set of open-source projects. The quality focus is
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on assessing whether previously observed correlations between
specific code smells and the likelihood of faults hold across different
development contexts and project characteristics. The perspective
is of both researchers and practitioners: the former benefits from
a replication that strengthens the evidence base and explores the
generalizability of earlier results, while the latter gains a deeper
understanding of how persistent code smells may affect maintain-
ability and fault risk in a broader range of real-world systems.
Following the original study [18], our investigation centers on
the same three research questions that aim to understand how code
smells affect the fault-proneness of JavaScripT applications.

RQ;. Comparison of Fault-Proneness Between Smelly and
Non-Smelly Files. Is the fault-proneness risk higher in files with
code smells than for those without code smells?

The goal of the RQ; is to compare the failure time between
JavaScrirrt files with and without code smells. The study conducted
by Johannes et al. [18] on 15 projects revealed that files without code
smells have a 33% lower risk of failure and 45% when dependencies
with other files are considered. By expanding the analysis to 50
projects and changing the granularity from releases to commits,
we aim to confirm or revise these percentages.

RQ3. On the varying fault-proneness of different smell types.
Are JavaScript files with code smells equally fault-prone?

ROQ; aims to identify which code smells have the greatest im-
pact on software quality, helping to determine which should be
prioritized during refactoring. The study conducted by Johannes
et al. [18] found that the smells Variable Re-Assignment, Assign-
ment in Conditional Statements, and Complex Code are among those
most strongly associated with a high fault-proneness. By extending
the analysis to 50 JavaScript projects, we aim to assess whether
these findings hold across a broader dataset or if additional high
fault-prone smell patterns emerge.

RQ3. On code smell survivability. How long do code smells
survive in JavaScript projects?

RQ3 explores the survivability of code smells by analyzing when
they are introduced and how long they persist in JavaScript files.
The study by Johannes et al. [18] revealed that many code smells are
present since a file is created and tend to persist over time. Among
them, Variable Re-Assignment emerged as the most long-lived code
smell. By expanding the analysis to a larger number of projects
and commits, we aim to assess whether the lifespan of code smells
varies depending on the type or complexity of the project.

When conducting our empirical experiment, we adopted the
Software Engineering practices described by Wohlin et al. [39].
In terms of reporting, we leverage the ACM/SIGSOFT Empirical
Standards.? Specifically, we used the “General Standard”, “Data
Science”, and “Repository Mining” guidelines.

Figure 1 overviews the research method of this study. We started
by selecting open-source JAVASCRIPT repositories from GITHUB.
Then, we ran the framework of Johannes et al. [18] and extracted

Shttps://github.com/acmsigsoft/EmpiricalStandards
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information about smelliness, including the introduction and re-
moval of code smells, as well as information about faults. After data
extraction, the framework applied the Cox Proportional Hazards
model [13] to evaluate the correlation between code smells and
fault proneness over time.

4.1 Project Selection

The selection of software systems was driven by various consider-
ations. First, we used GITHUB SEARCH [7], a specialized platform
designed to identify open-source projects hosted on GrTHUB. Given
the focus of our study, we randomly selected 50 JAVASCRIPT projects,
applying a minimum threshold of 800 stars as a filtering criterion.
Our motivation for using stars as a filtering criterion is that they
have been shown to be a reliable proxy for estimating both the
popularity of repositories and their quality [27].

Table 2: Statistical Description of Projects Analyzed.

Statistic Issues Stars  Contributors LOC

Mean | 1,143.06 | 17,553.28 199.14 | 138,621.4

Standard Deviation 768.18 | 15,614.79 154.98 | 206,071.1
Min 2 864 39 3,041

25th Percentile 648.25 10,425 90 | 29,808.25
Median (50%) 1,227 14,900 157.5 65,314

75th Percentile | 1,504.75 19,800 265.5 146,356
Max 4,752 106,000 836 | 1,252,611

Table 2 provides the statistical description of the projects ana-
lyzed. The median number of stars is 14,900, while the maximum
value is 106,000, suggesting the presence of outliers. The number
of contributors shows variability, with a median of 157.5 and a
maximum of 836. The distribution of lines of code is extensive: al-
though the median is 65,314, some projects exceed 1.2 million, while
others remain below 10,000. These results highlight the heterogene-
ity of the dataset, which includes both lightweight and extremely
large-scale projects.

Moreover, the dataset is heterogeneous in terms of its functional
scope as well. The selected projects can be grouped into eight
main categories: documentation and code-quality tools (8 projects),
frameworks and development utilities (8 projects), build systems
and automation (5 projects), data management and persistence (3
projects), validation libraries (4 projects), networking solutions (6
projects), user interface and visualization libraries (10 projects), and
a miscellaneous group of specialized toolkits (6 projects).

By encompassing this broad functional spectrum, the dataset
not only reflects the diversity of modern JavaScripT development
but also mitigates potential biases that could arise from focusing
on a single application domain or project type. As a result, the
ensuing analysis is grounded in a representative cross-section of
real-world software artifacts, enabling more generalizable insights
into widely-adopted development practices, maintenance patterns,
and ecosystem-wide trends. Furthermore, this heterogeneity has
direct implications for code comprehension. Projects that differ
in purpose, size, and architectural complexity pose distinct cogni-
tive challenges to developers, influencing how code is navigated,
understood, and maintained over time.
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4.2 Operationalization of the Research Method

In the following, we outline the research method employed to
address the research question. To conduct our investigation, we
employed the framework proposed by Johannes et al. [18] to extract
information about faults, code smells, and survivability analysis
through three dedicated modules.

RQ;. Comparison of Fault-Proneness Between Smelly and
Non-Smelly Files. Building the experimental design of Johannes
et al. [18], we addressed the first research question by performing
survival analysis. Specifically, we compare the time until a fault
occurs in files containing code smells with those that have a match
between faulty and smelly lines, and files without code smells. For
each file and for each commit c (i.e., corresponding to a commit),
we also compute the following metrics: (i) Time in terms of the
number of hours between the previous commit of the file and the
commit c; (ii) Smelly with a binary outcome, i.e., 1 for commit c
with a file containing a code smells, 0 otherwise; and (iii) Event
that is equal to 1 if the commit ¢ is a fault-fixing change and if there
is at least one match between the faulty lines and the code smell
lines, 0 otherwise. If there is no match, we consider the fault-fixing
change unrelated to code smells.

Using the smelly metric, we split the data into two groups: one
containing files with code smells (smelly = 1) and another contain-
ing files without any of the 12 studied code smells (smelly = 0). For
each group, we create an individual Cox Proportional Hazard Model,
i.e., a statistical method used in survival analysis to examine how
various factors influence the time until an event occurs.

RQy. On the varying fault-proneness of different smell types.
To evaluate whether all code smells contribute equally to fault-
proneness, the framework adopts a research method similar to the
one used in RQq, but in a more fine-grained manner. Rather than
considering code smells as a single aggregated factor, the frame-
work considers the effect of each code smell category separately,
enabling the assessment of the specific impact each type of smell
has on fault occurrence. Therefore, for each smell category, the
framework defines a binary Smelly metric, which indicates whether
the corresponding smell is present in a given file at a particular com-
mit. This disaggregated representation allows the survival model to
estimate the unique contribution of each smell type to the overall
hazard of fault introduction. In addition to the presence or absence
of specific smells, the model accounts for several control variables
that could influence the likelihood of a fault. These include the lines
of code (LOC), the extent of code churn [22], and the number of
previously reported faults associated with the file, which serves as
a proxy for its historical effectiveness.

For each subject system, the framework constructs a Cox Propor-
tional Hazards Model and performs tests for non-proportionality
to verify that the model’s assumptions are satisfied and that the
hazard ratios can be interpreted reliably. This approach enables the
determination of whether certain code smells are more closely cor-
related with software faults than others, and whether some smells
represent a disproportionately higher risk to software reliability.

RQs. Code Smell Identification and Survivability. To address
RQ3, the framework tracks all commits that modify smelly files,
enabling the monitoring of smell evolution over time. Specifically,
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Figure 1: Research Method Overview.

given two commits, C; and C, on a file F, if a smell appears in
C, but is absent in Cy, then Cy is marked as the smell-introducing
commit. Conversely, if a smell is present in C; but not in Cy, Cy is
marked as the smell-removal commit. If a smell is never removed,
the framework assumes that it persists in the project.

To assess similarity between smells, the framework considers
two factors: (1) whether the smell categories match, and (2) a textual
similarity score between descriptions. If the categories match, a
similarity score ranging from 0 to 1 is computed. If this score exceeds
a predefined threshold, the smells are considered equivalent.

5 ANALYSIS OF THE RESULTS

This section describes the main results of our research questions
(RQs). At the end of each research question, we also perform a com-
parison of our findings with those provided by Johanes et al. [18].

Extra Bind ® 235
Depth Smell @ 6333
Assignment in Conditional Statements @ 11,904
Complex Switch Case @ 34,425
Long Parameter List @ 85,535
This Assign @ 97,388
Long Methods @ 123,788

Nested Callbacks 255,003
289,742
1,355,036
3,100,620

3,413,657

Complex Code
Chained Methods
Lengthy Lines
Variable Re-assign

0 1,000,000 2,000,000 3,000,000 4,000,000

Figure 2: Diffusion of Code Smells in JavaScript Systems. The
X-Axis Reports The Number Of Occurrences, While Bubble
Size Is Proportional To The Number Of Code Smells.

Before analyzing the results, we provide some preliminary con-
siderations regarding the diffusion of smells into JAVASCRIPT sys-
tems. Figure 2 illustrates the diffusion of code smells into the
analyzed projects. The three most dominant smells are Variable
Re-Assignment, Lengthy Lines, and Chained Methods, respectively,
potentially indicating that stylistic and structural issues are partic-
ularly prevalent across the analyzed codebases. Other smells such
as Complex Code, Nested Callbacks, and Long Methods appear with
significantly lower frequency. These patterns suggest that while
deeper structural issues exist, they are less common compared to
more surface-level readability concerns. At the lower end of the
spectrum, smells like Assignment in Conditional Statements, Depth
Smell, and Extra Bind are relatively rare, potentially reflecting either
better developer awareness of these issues or limited applicability
depending on the programming paradigm used.

5.1 RQ;.On the Hazard Ratio between Smelly
and not-Smelly Files

Concerning RQj, the results reveal three distinct patterns. Across
18 projects, we observe that files affected by a code smell exhibit
a higher probability of long-term survival than their non-smelly
counterparts. In contrast, 21 projects display the opposite behavior:
smelly files are more likely to fail or be removed earlier, suggest-
ing lower survivability and possibly higher maintenance effort. In
the remaining 11 projects, no substantial difference in survivabil-
ity in terms of fault is observed between smelly and non-smelly
files, indicating a similar evolutionary behavior. In other words, in
these cases, the presence of a code smell does not seem to signifi-
cantly affect the long-term stability of the file, suggesting that other
factors—such as the file’s role in the system or the development
practices adopted—may play a more relevant role in determining
its persistence over time.

These findings partially support the hypothesis that code smells
can be associated with a higher fault-proneness. However, the vari-
ation across projects highlights that the impact of code smells on
survivability is not consistent and may depend on several contex-
tual factors, such as the type of smell, system architecture, team
practices, or project lifecycle. In particular, it emerges that the rela-
tionship between the presence of code smells and software degra-
dation is far from uniform: while in some systems smells seem to
accelerate the decay process, in others they may persist without
leading to observable negative effects. This suggests that the influ-
ence of code smells is likely mediated by the specific characteristics
of each project, including how developers handle maintenance ac-
tivities, the overall quality culture within the team, and the maturity
of the codebase itself.

Smell Files First Non-Smelly Files First Similar trends

— Nonsmen]
Smei

o8

08
00 02 04 06 08 10
06

04
)

00 02

0 10000 20000 30000 40000 50000 o

Figure 3: Survival Curves of Lines of Code with Code Smell
Compared to Lines without Code Smell.

Figure 3 illustrates representative examples of each of the three
observed trends. The first plot (“Smell Files First”) shows that lines
of code within smelly files tend to decay faster than those without
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smells. The second plot (“Non-Smelly Files First”) presents the
opposite pattern, where smelly lines survive longer. Finally, the
third plot (“Similar trend”) shows comparable decay rates for smelly
and non-smelly lines, suggesting minimal difference in survival
between the two. The full set of survival plots, along with project-
level classifications and detailed statistical results, is available in
our publicly accessible replication package [24].

Table 3: Hazard Ratio and Significance per project without
dependencies.

Project Risk Coef. ‘ Risk Coef. Sig.

JSDoc 2,5 Excel]S 0,1
Axios 0,16 Chrome Ext. 0,2
Sam.
Flux 0,2 Blockly Samples 0,7
Highlight.js 0,05 Handlebars.js 0,2
Jasmine 2 Prism 0,3
Async 0,2 Karma 0,2
Browserify 0,1 JQueryValidation 0,9
Emotion 1.1 Forever 0,1
Gulp 0,2 - Validatorjs 0,2
LocalForage 1 Markdown 7.7
Popmotion 0 - Stf 0,4
Reactstrap 0,4 GpuJS 0,1
Sweetalert2 0,1 Nodemailer 0,1
Fetch 0,2 Anime 0
Standard 0,3 Sortable 0,1
Winston 0 WS 0
Yargs 0 Piskel 0,2
Katex 0,1 Prepack 0,8
Ungit 1 Recompose 0,4
Places 1 Just 0
Razzle 0,4 Bpmn.js 1,5
Artillery 0,1 Gridsome 0,7
Parsley.s 0,5 NLP.js 5,5
Aura 0,9 VisBug 1
A Dark Room 0,1 - Diagram.js 3,9

Note: colored cells indicate statistical significance p < 0.05.

Table 3 reports, for each project, the Hazard Ratio, and the p-
value, expressed on a green scale. Color green indicates p-value
< 0.05 and the significance code from the Cox Proportional Hazards
Model contrasting smelly vs. clean files without considering depen-
dencies. The Table shows a predominance of statistically significant
effects (mostly at the 1-5% levels), alongside a non-trivial minority
of non-significant cases (e.g., jQuery Validation, Emotion, LocalFor-
age, Ungit, Places), highlighting that the smell-fault association is
not universal across repositories.

Effect sizes vary markedly across projects. Several systems ex-
hibit a large Hazard Ratio > 1 (e.g., JSDoc 2.539; Jasmine 2.027;
Markdown 7.686; Bpmn-js 1.577; NLPjs 5.541), consistent with sub-
stantially elevated hazard in smelly files. Conversely, other projects
display Hazard Ratio < 1 with strong significance (e.g., Excel]S
0.10; Axios 0.156; Karma 0.228; Winston 0.042), indicating con-
texts where clean files experience higher hazard under the model
specification. This dispersion in both sign and magnitude suggests
project-specific moderators (codebase scale, practices, domain) that
shape the operational meaning of “smelly” in practice.

Aggregating per-project estimates, the mean Hazard Ratio is
0.758.% Interpreted by inversion to express the effect for smelly

4The arithmetic mean of the 50 per-project coefficients, 37.91/50 = 0.758.
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files, this corresponds to ~ 32% higher hazard (1/0.758 - 1), aligning
closely with Johannes et al. [18], who report a 33% increase.

Table 4 shows the hazard ratio with dependencies. The mean
Hazard Ratio is 1.588 (79.4/50), which, when inverted, corresponds
to an average 37% lower hazard for smelly files. This means that,
on average, LOC in files affected by a code smell are less likely to
be removed or modified than those in non-smelly files.

Compared with the 45% increase reported by Johannes et al. [18],
our results suggest a slightly weaker association between the pres-
ence of code smells and increased maintenance risk.

Table 4: Hazard Ratio and Significance per project with de-
pendencies.

Risk Coct__Sig Risk Coel

JSDoc 1 Excel]S 1,5
Axios 1 Chrome Ext. 2,2
Sam.
Flux 1,3 Blockly Samples 1
Highlight.js 1 Handlebars.js 1
Jasmine 1 Prism 1
Async 1 Karma-runner 1
Browserify 1 JQueryValidation 1
Emotion 1 Forever 1
Gulp 1,1 Validator.js 1
Localforage 1 Markdownit 7
Popmotion 1,3 Stf 73
Reactstrap 1 GpuJS 1
Sweetalert 1 Nodemailer 2,5
Fetch 1 Anime 1
Standard 1 Sortable 1
Winston 1 Ws 1
Yargs 1 Piskel 1,1
Katex 1 Prepack 1
Ungit 1 Recompose 11
Places 1 Just 13,1
Razzle 1 Bpmn-js 1
Artillery 1,1 Gridsome 1
Parsleyjs 1 NLP.js 1,2
Aura 1 VisBug 1
A Dark Room 1,6 Diagram.js 1

Note: colored cells indicate statistical significance p < 0.05.

Table 5: Comparison of RQ1 results: Fault-proneness of
smelly vs. clean files.

Aspect Johannes et al. (2019) Our replication

Findings Smelly files show at least a 33%  Smelly files exhibit a 32% higher
higher hazard rate, increasing up  hazard rate, rising to 37% with
to 45% when dependencies are  dependencies.
considered.

Similarities Both studies confirm that smelly files are significantly more fault-
prone than clean ones.

Differences Baseline risk 33% (up to 45% with ~ Similar baseline (32% vs. 33%);

dependencies); analysis based on
15 projects.

weaker effect with dependencies
(37% vs. 45%); broader dataset (50
vs. 15 projects).

Table 5 shows the results of RQ; by comparing our replication
with the findings of Johannes et al. [18], highlighting the main re-
sults, commonalities, and differences regarding the fault-proneness
of smelly versus clean files. Both studies consistently indicate that
the presence of smells substantially increases the likelihood of
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faults, with our replication revealing an even stronger effect when
accounting for dependencies.

5.2 RQ,. On the fault-proneness in files
containing smells

Figure 4 depicts the distribution of the Hazard Ratio for each code
smell across the analyzed projects. Overall, most smells exhibit
median values in the range of 0.2-0.3, confirming a general but
moderate association with fault proneness. However, the disper-
sion varies substantially: Variable Re-Assignment, Lengthy Lines,
and This Assign show wider interquartile ranges and long upper
whiskers, indicating that in some projects these smells are linked to
considerably higher risks. In contrast, Extra Bind and Depth Smell
exhibit narrow interquartile ranges and limited spread, suggesting
a weaker and more stable relationship across projects. Interestingly,
Nested Callbacks and Long Methods, often cited as critical design
flaws, display consistently elevated medians, reinforcing their role
as predictors of faults. The variability observed for other smells (e.g.,
Complex Switch and Assign in Condition) suggests a more context-
dependent impact, which may depend on project-specific practices
or architectural choices. These patterns highlight that while some
smells systematically increase fault hazard, others exert their ef-
fect only under certain conditions, pointing to the importance of
project-aware prioritization in smell detection and refactoring.

Distribution of coefficients per smell

Extra Bind

Depth Smell

e
I
assignin cond. | ——— (I
Chained Methods | ———— R
s resgn | ———
Long Param. List {  —————{ RN
Long Methods {  ————{——————
Complex Switch | I ——————————
—
—
—
— T

Lengthy Lines

Nested Callbacks

Complex Code

Var Re-assign

Figure 4: Hazard Ratio for Smells. Bars Show The Distribution
Per Smell, With Median And Interquartile Range.

Table 6: Risk Rate Associated with Each Type of Code Smell.

Variable Re-Assignment 34,60%
Complex Code 31,40%
Assignment in Conditional Statements 30,00%
Nested Callbacks 26,50%
Chained Methods 26,50%
Long Parameter List 23,75%
Lengthy Lines 21,75%
Long Methods 20,50%
Extra Bind 20,00%
This Assign 19,50%
Complex Switch Case 17,60%
Depth Smell 16,25%
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Table 6 shows the risk rate for each smell. The highest risk rates
are for Variable Re-Assignment (34,60%), Complex Code (31,40%),
and Assignment in Conditional Statements (30,00%). A second tier
includes Nested Callbacks and Chained Methods (both 26,50%), fol-
lowed by Long Parameter List (23,75%), Lengthy Lines (21,75%), and
Long Methods (20,50%). These findings align with the results re-
ported by Johannes et al. [18], who identified Variable Re-Assignment
as the most critical smell, associated with a 34.60% increase in the
likelihood of fault introduction. Similarly, Complex Code and Assign-
ment in Conditional Statements were linked to elevated fault risks of
31.40% and 30.00%, respectively, reinforcing their relevance as indi-
cators of error-proneness and maintenance difficulties. Smells such
as Depth Smell and Complex Switch Case were found to have lower
associated risk levels, with average fault probabilities of 16.25%
and 17.60%. Although these smells may still affect code readability
and maintainability, their actual contribution to fault occurrence
appears notably less severe compared to the more impactful smells.

Table 7: Comparison of RQ; results: Equality of code smells
in fault-proneness.

Aspect Johannes et al. (2019) Our replication

Identifies three most critical —Confirms the same three smells
smells: Variable Re-assignment, as the most critical, but shows
Assignment in Conditional State-  that not all smells are equally
ments, and Complex Code. harmful.

Findings

Similarities Both studies converge on the same three smells as the most fault-
prone
Differences Emphasizes a fixed set of three  Finds that only a subset is con-

critical smells. sistently harmful, while others
(e.g., Long Method, Nested Call-
backs) exhibit variable impact

across projects.

Table 7 summarizes the results of RQ2 and compares our find-
ings with the work of Johannes et al. [18] in terms of the equality
of code smells in fault-proneness. It highlights the main findings,
similarities, and differences regarding which smells are most harm-
ful and whether their impact is consistent across contexts. Overall,
while both studies identify the same critical smells, our replication
nuances these findings by revealing that the fault-proneness of
smells is context-dependent rather than uniform.

5.3 RQs. On the Smells Survivability in
JavaScript Systems

Table 8 overviews of smell survivability across the projects, report-
ing the percentage of smells removed or still active at the time of
the last analyzed commit, along with the average survivability of
smells expressed in both days and commits.

Based on the percentage of smells removed, the projects can
be grouped into three categories: those with a high removal rate
(over 70%), such as JSDoc, ExcelS, and Axios, totaling 32 projects;
those with a low removal rate (below 45%), including Handlebars.js
and Prepack, comprising 10 projects; and those with a moderate
removal rate (between 45% and 70%), such as Piskel and Gridsome,
accounting for 8 projects.

The survivability values reveal notable differences in how long
smells persist across codebases. On the one hand, projects such as
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Handlebars.js and Prism exhibit some of the highest mean surviv-
ability—exceeding 3,000 days (= 8 years) and over 1,000 commits.
This suggests that smells in these systems are not only tolerated,
but may become deeply embedded in the codebase, possibly due to
architectural inertia, limited refactoring, or a perception that they
are not harmful enough to warrant prompt removal.

On the other hand, projects like Sweetalert2, Just, and Ungit
exhibit extremely low survivability—sometimes under 100 days
or commits—indicating the need for more proactive maintenance,
where issues are addressed promptly. This may reflect agile devel-
opment practices or a stronger emphasis on quality assurance.

Interestingly, projects with moderate removal rates exhibit mixed
survivability trends. For instance, Piskel and Gridsome show rel-
atively high survivability in both time and number of commits,
suggesting that although smells are eventually removed, they often
persist for a considerable period.

Table 8: Survivability and Status of Entities per Project.

Project Smells from
Day One

% Removed % Active Mean Surviv- Mean Sur-
ability (#Days)  vivability

(#Commits)

JSDoc | 99.3% 0,7% 425 424 | 59.6%
ExcelJ$ 97,9% 2,1% 618 342 62.2%
Axios | 86.4% 13,6% 599 204 | 16.4%
Chrome Ext, Samples  9,6% 90,4% 3228 1048 95,5%
Flux | 72.5% 27,5% 604 115 | 703%
Blockly Samples 41,8% 58,2% 776 725 81,1%
Highlight js | 99.4% 0,6% 825 759 | 56,29
Handlebars,js 39,5% 60,5% 3350 1212 53,7%
Jasmine | 96.1% 3,9% 813 373 | 42.4%
Prism 27,5% 72,5% 1448 1329 512%
Async | 74.4% 25,6% 989 351 | 50,1%
Karma 92,9% 7,1% 441 504 81.2%
Browserify | 78.8% 21,2% 282 504 | 36.5%
JQuery Validation 50,4% 49,6% 2264 303 784%
Emotion | 88.4% 11,6% 413 220 | 51.2%
Forever 76% 24% 755 160 38%

Gulp | 66.7% 333% | 520 207 | 23.7%
Validatorjs 100% 0% 394 159 30,6%
LocalForage | 76.5% 23,5% 1005 200 | 71.7%
Markdown 100% 0% 1201 328 347%
Popmotion | 93.4% 6,5% 170 155 | 59.9%
Stf 45% 55% 1085 891 413%
Reactstrap | 97.3% 2,6% 504 261 | 94.6%
Gpu,js 98,8% 12% 319 269 51,3%
Sweetalert2 | 99.6% 0.4% 122 155 | 503%
Nodemailer 99.8% 0,1% 285 84 49,4%
Fetch | 47.8% 522% | 829 154 | 8.6%
Anime 26,8% 73,2% 1538 235 75,8%
Standard | 64.9% 351% 469 369 | 46.8%
Sortable 48% 52% 1136 171 353%
Winston | 91.7% 8,3% 1007 384 | 38.3%
Ws 100% 0% 919 399 26,8%
Yargs | 97.1% 2,9% 316 289 | 20%

Piskel 60,6% 39,4% 1522 525 66,9%
Katex | 98.8% 1,1% 365 161 | 55.8%
Prepack 23,1% 76,9% 999 730 85%

Ungit | 100% 0% 64 139 | 96,2
Recompose 94,1% 5,9% 221 214 47,1%
Places | 98.6% 14% 210 98 | 100%
Just 99% 1% 59 58 96%

Razzle | 21% 79% 686 703 | 93.8%
Bpmn-js 98,7% 13% 517 351 50%

Artillery | 4427 55,8% 469 512 | 83,5%
Gridsome 61,5% 38,5% 554 600 89,7%
Parsley,js | 50% 50% 1732 438 | 77.5%
NLP,js 41% 96% 1409 1479 99,8%
Aura | 97.9% 21% 202 109 | 79.7%
VisBug 100% 0% 832 1069 100%
A Dark Room | 77.8% 222% | 1067 226 | 314%
Diagram,js 100% 0% 442 216 46,5%
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Figure 5: Smell Survivability across Projects.

Looking at the percentage of smells introduced at file creation
(last column), we observe three distinct groups: 14 projects in-
troduced fewer than 45% of their smells from the beginning, 17
projects introduced between 45% and 70%, and 19 projects intro-
duced more than 70%. When cross-referencing these groups with
the smell removal categories, a clear pattern emerges: projects with
low removal rates tend to also have a higher proportion of smells
introduced from day one (average 76%), while those with moderate
or high removal rates introduce significantly fewer smells at file
creation (averaging around 53-56%). This may suggest that projects
with more persistent smells also suffer from initial code quality
issues, which in turn may hinder long-term maintainability.

Figure 5 further illustrates how survivability varies across dif-
ferent types of code smells. We can observe that Long Method and
Variable Re-Assignment exhibit the highest average survivability,
890 and 865 days, respectively. This suggests that developers are
often reluctant or slow to refactor these issues, possibly due to their
perceived harmlessness or the complexity involved in restructuring
such code. At the same time, Extra Bind and Depth Smell are re-
solved far more quickly, surviving on average for just 124 and 423
days respectively. These smells may be more easily detected, more
clearly harmful, or simpler to fix, prompting quicker action. We also
observed that, while some smells like Chained Methods and This
Assignment also survive for extended periods (766-779 days), their
median survivability is noticeably lower than the mean, indicating
that while most instances are resolved in a reasonable time, a subset
persists for much longer—skewing the average upward.

Extra Bind 0
Depth Smell 2
Lengthy Lines 9
Nested Callbacks - 16
Long parameter List - 18
Complex Code - 26
As. in Cond.Statements - 42
Complex Switch Case - 52
This Assign 75
Chained Methods 1,163
Long Methods 5010
Variable Re-assign 5316
4 1,000 2,000 3,000 4,000 5,000

Figure 6: Most Common Smells Introduced at File Creation.
Bubble size is proportional to smell diffusion.

Figure 6 complements these findings by showing which smells
are most commonly introduced at file creation. Notably, over 94%
of Variable Re-assignment and Long Method instances appear at file
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creation, aligning with their high survivability and suggesting these
smells are often part of the initial design and rarely revisited. In
contrast, smells like Depth Smell and Extra Bind, which are resolved
quickly, are almost never introduced at file creation. The results are
in line with Johannes et al. [18] who find Variable Re-Assignment is
the most prevalent smell introduced during file creation.

Table 9 summarizes the results of RQ3, comparing our findings
with those reported by Johannes et al. [18]. Both studies confirm that
code smells tend to persist once introduced, though our replication
reveals substantial variation in their survivability across projects.

Table 9: Comparison of RQs3 results: Survivability of code
smells in JavaScript projects.

Aspect Johannes et al. (2019) Our replication

Findings Many smells are introduced at  Confirms the persistence of early
file creation and persist long-  smells, but shows survivability
term; Variable Re-assign emerges  varies considerably: e.g., Long
as the most prevalent and long- Method and Variable Re-assign
lived. persist for ~900 days on average.

Similarities Both studies agree that smells introduced early tend to persist
throughout the project lifetime.

Differences Emphasizes the survivability of ~ Highlights strong project depen-

smells introduced at creation,
with the prevalence of Variable
Re-assign.

dency: some systems (e.g., Ax-
ios) remove smells quickly, while
others (e.g., Handlebarsjs) retain
them for years.

6 DISCUSSION AND IMPLICATIONS

We first discuss the results of our study in relation to the replicated
work, highlighting differences and explanations. We then present
the implications for developers, tool vendors, and researchers.

6.1 Comparison with the Original Study

Our study confirms several findings of the original study, while also
revealing notable differences that offer new perspectives. Both stud-
ies consistently show that the presence of certain code smells, i.e.,
Assignment in Conditional Statements and Complex Code, is associ-
ated with an increased risk of faults. This convergence strengthens
prior evidence that specific smell types may serve as reliable indi-
cators of quality risks, even across different samples and project
ecosystems. Moreover, both analyses reveal that many smells are
introduced at the moment of file creation and tend to persist across
subsequent releases. This pattern suggests that early-stage design
decisions have lasting implications for maintainability and fault-
proneness. These findings contribute to the body of knowledge on
code smells in JAVAScRIPT by reinforcing the idea that not all smells
are equal in severity and that certain patterns consistently signal
technical debt with long-term effects. They also echo earlier results
from studies conducted in statically typed languages, where the
early introduction and long-term survivability of smells has like-
wise been reported [35]. This cross-language consistency implies
that some smell-related risks are not merely artifacts of a particular
programming paradigm or ecosystem, but may reflect more general
principles of software evolution and design degradation.
However, differences also emerge. First, our replication identi-
fies a smaller number of smells with statistically significant fault
associations than the original study. While Johannes et al. found
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a broader subset of the 12 JavaScripT-specific smells to be risk-
inducing, our results suggest that only a limited group, namely
Assignment in Conditional Statements and Complex Code, consis-
tently correlates with fault-proneness across a more varied project
landscape. This discrepancy may stem from differences in project
maturity, development practices, contributor dynamics, or domain-
specific idioms. For instance, Ahmed et al. [2] found that code
quality in open-source systems is more strongly influenced by the
growth in the number of contributors than by codebase size itself,
suggesting that community structure may mediate how smells are
introduced and addressed. These findings point to a critical insight
for code smell research: the diffuseness and severity of smells are
highly context-dependent. This challenges earlier assumptions, often
implicit in foundational studies on code smells, that all smells are
equally harmful or universally indicative of poor design. While
prior work has explored developers’ subjective perceptions of smell
severity [26, 34], there is still limited empirical evidence on how
intrinsic project characteristics (e.g., size, contributor churn, matu-
rity, domain) influence the actual fault-related risks associated with
smells. Our findings emphasize the need for project-aware smell as-
sessment frameworks that account for contextual variability, rather
than relying on fixed smell taxonomies or uniform severity labels.

Second, while both studies confirm that smells are frequently in-
troduced at file inception, a finding aligned with earlier observations
on smell lifespan [35], our replication reveals greater heterogeneity
in their persistence and their relationship to faults. In some projects,
smelly files persisted across multiple releases without increasing
fault-proneness, whereas in others, such files were short-lived and
closely linked to defects. This variability may reflect the influence of
project-specific quality assurance mechanisms. For instance, some
repositories may employ just-in-time quality assurance tools [19],
AI- or LLM-assisted code reviews [36], or pre-merge validation
pipelines that limit the propagation of risky changes [37, 38]. Addi-
tionally, differences in contribution guidelines [9] and enforcement
practices can affect how actively smells are detected, tolerated, or
refactored over time. These findings suggest that the lifecycle and
impact of smells are shaped by organizational and process-level
factors, not solely by their presence or structural characteristics,
and highlight the importance of investigating the socio-technical
context in which smells evolve, moving beyond static detection to
more holistic models of smell management.

6.2 Implications of the Study

This replication study carries implications for developers (¢/?), tool
vendors (&), and researchers (&a). The implications are relevant
given the widespread adoption of JAVASCRIPT and its growing pres-
ence in automatically generated code.

First, not all code smells are equally harmful. Among the 12
JavaScripT-specific smells investigated, only a subset exhibits a
statistically significant association with fault-proneness. Practition-
ers should therefore focus remediation efforts on high-risk smells,
rather than applying uniform effort across all detected issues.

<[> Not all code smells are equally harmful; prioritizing high-risk
smells (e.g., Variable Re-Assignment, Complex Code) leads to more
effective quality improvements.
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Second, many smells are introduced at the earliest stages of a
file’s life cycle and tend to persist indefinitely. In some projects,
more than 70% of smells originated at file creation, underscoring
the importance of early-stage code hygiene. Preventive measures,
such as CI checks or review practices, are particularly important
when introducing new modules or automatically generated code.

<[> Most smells introduced during file creation persist over the long
term; applying quality in the early stages is critical to reduce long-
term technical debt.

Third, the survivability and fault-proneness of smells vary across
projects. In some systems, smelly files persisted without increasing
fault risk, while in others they were quickly removed or strongly
correlated with defects. This variability implies that smell manage-
ment policies should be grounded in project-specific data, rather
than guided by generic refactoring rules.

<[> Code smell behavior varies across projects; management policies
must be adapted to historical and contextual evidence.

From a tooling perspective, static analyzers could be enhanced
by reporting not only rule violations but also fault correlations and
survivability trends. Features such as the detection of “born-smelly”
files, introduced with critical smells and rarely modified afterward,
would help in identifying persistent sources of technical debt.

& Static analysis tools should communicate fault risk and survivabil-
ity, supporting more informed refactoring decisions.

Ultimately, our findings suggest avenues for future research.
Since this study relies exclusively on open-source projects, repli-
cation in industrial contexts is needed to assess generalizability.
Moreover, while our analysis focuses on risk, future work should
consider the cost of remediation and model the trade-offs between
removal effort and actual reliability or maintainability gains.

&3 Future research should validate these findings in industrial settings
and investigate cost-benefit trade-offs in smell remediation.

7 THREATS TO VALIDITY

In this section, we discuss threats to validity and the mitigation
strategies we applied [39].

Construct Validity. Following Johannes et al. [18], we estimated
prior faults by identifying fault-fixing commits through keyword-
based mining of commit logs (e.g., FIX, #, GH-) and bug IDs [11].
Although widely adopted and validated in prior work (e.g., [17, 30]),
this heuristic may miss fixes due to incomplete or inconsistently
formatted messages.

The SZZ algorithm used to trace fault-inducing commits is also
imperfect. To mitigate inaccuracies, we applied the refinements
proposed by Da Costa [6], excluding commits that modify only
blank or comment lines and those temporally distant from the
associated issue. As in the original study, we restricted the analysis
to the master branch, acknowledging that cross-branch timing
differences may introduce minor imprecision.

For reconstructing smell genealogies, we adopted the same 70%
similarity threshold as in the original work [18], which was selected
via sensitivity analysis. While this threshold may occasionally
merge distinct smells or separate similar ones, it ensures method-
ological consistency with the baseline study.
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Internal Validity. We adopted the same metric approach as the
original study, relying on the AST generated by ESLint. Accordingly,
our results depend on the accuracy of ESLint’s analysis, which we
consider sufficiently reliable. Unlike the original release-level analy-
sis, we operate at the commit level, enabling finer-grained tracking
of code smell and fault evolution. However, this choice may intro-
duce additional variability, as commits can reflect transient changes
or refactorings that would be consolidated in releases. Thus, some
observed modifications or removals may capture only commit prac-
tices rather than the intrinsic properties of smelly code. As in the
original work, we applied a logarithmic link function for selected
covariates in the survival models. Although alternative link func-
tions might improve fit for specific variables, non-proportionality
tests indicate that the models remain appropriate for our dataset.

External Validity. We analyzed 50 open-source JavaScript projects
and over 90,000 commits. While these projects span diverse domains
and vary in size, the scope remains limited. Therefore, additional
validation across a broader range of JavaScript systems and a more
comprehensive set of code-smell types would be beneficial.

Conclusion Validity. We relied on the Cox Proportional Hazards
Model to assess the relationship between code smells and fault-
proneness. While this model is well-established and suitable for
survival analysis, its conclusions depend heavily on correct specifi-
cation and the validity of underlying assumptions. We performed
non-proportionality tests to verify model fit and ensure that the
assumptions were adequately met.

8 CONCLUSIONS

This work is a replication of the study of Johannes et al. [18], which
examined the relationship between smells and fault-proneness in
JAVASCRIPT systems. By analyzing 50 open-source projects, we
confirmed that smelly files are more fault-prone, with Variable
Re-Assignment, Complex Code, and Assignment in Conditional State-
ments emerging as particularly harmful. Our results revealed that
smell persistence varies substantially across projects, and that those
introduced at file creation often persist over time.

This paper provides three contributions: (i) A large-scale em-
pirical investigation of smells in JAVASCRIPT projects, highlighting
their persistence and association with fault-proneness; (ii) An ex-
tension of the methodology by Johannes et al. [18], enhancing
robustness and enabling a more fine-grained evaluation across a
broader project set; and (iii) A publicly available replication package
with all data, scripts, and results to support reproducibility [24].

In the future, we plan to analyze a wider range of JAVASCRIPT
projects and complement quantitative analyses with developer stud-
ies. Our long-term goal is to design context-aware approaches for
detecting and managing smells, thereby supporting more effective
maintenance and refactoring practices.
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