
Smells like Teen Spirit: Improving Bug Prediction
Performance using the Intensity of Code Smells

Fabio Palomba∗, Marco Zanoni†, Francesca Arcelli Fontana†, Andrea De Lucia∗, Rocco Oliveto‡
∗University of Salerno, Italy, †University of Milano-Bicocca, Italy, ‡University of Molise, Italy

fpalomba@unisa.it, marco.zanoni@disco.unimib.it, arcelli@disco.unimib.it, adelucia@unisa.it, rocco.oliveto@unimol.it

Abstract—Code smells are symptoms of poor design and
implementation choices. Previous studies empirically assessed
the impact of smells on code quality and clearly indicate their
negative impact on maintainability, including a higher bug-
proneness of components affected by code smells. In this paper we
capture previous findings on bug-proneness to build a specialized
bug prediction model for smelly classes. Specifically, we evaluate
the contribution of a measure of the severity of code smells (i.e.,
code smell intensity) by adding it to existing bug prediction
models and comparing the results of the new model against
the baseline model. Results indicate that the accuracy of a bug
prediction model increases by adding the code smell intensity
as predictor. We also evaluate the actual gain provided by the
intensity index with respect to the other metrics in the model,
including the ones used to compute the code smell intensity.
We observe that the intensity index is much more important
as compared to other metrics used for predicting the buggyness
of smelly classes.

I. INTRODUCTION

In the last decade, the research community has spent a
lot of effort in investigating bad code smells (shortly “code
smells” or simply “smells”), i.e., symptoms of poor design
and implementation choices applied by programmers during
the development of a software project [1]. Besides approaches
for the automatic identification of code smells in source code
[2]–[7], empirical studies have been conducted to understand
when and why code smells appear [8], the relevance they
have for developers [9], [10], their evolution and longevity
in software projects [11]–[14], as well as the negative ef-
fects of code smells on software understandability [15], and
maintainability [16]–[19]. Recently, Khomh et al. [20] have
also empirically demonstrated that classes affected by design
problems (“antipatterns”) are more prone to contain bugs in the
future. Although this study showed the potential importance of
code smells in the context of bug prediction, these observations
have not been captured in bug prediction models yet. Indeed,
while previous work has proposed the use of predictors based
on product metrics (e.g., see [21]–[23]), as well as the analysis
of change-proneness [24]–[26], the entropy of changes [27], or
human-related factors [28]–[30] to build accurate bug predic-
tion models, none of them takes into account a measure able
to quantify the presence and the severity of design problems
affecting code components.

In this paper, we aim at making a further step ahead by
studying the role played by bad code smells in bug prediction.
Our hypothesis is that taking into account the severity of
a design problem affecting a source code element in a bug

prediction model can contribute to the correct classification of
the buggyness of such a component. To verify this conjecture,
we use the intensity index (i.e., a metric able to estimate the
severity of a code smell) defined by Arcelli Fontana et al. [31]
to build a bug prediction model that takes into account the
presence and the severity of design problems affecting a code
component. Specifically, we evaluate the predictive power of
the intensity index by adding it in a bug prediction model
based on structural quality metrics [32], and comparing its
accuracy against the one achieved by the baseline model on
six large Java open source systems. We also quantified the gain
provided by the addition of the intensity index with respect
to the other structural metrics in the model, including the
ones used to compute the intensity. Finally, we report further
analyses aimed at understanding (i) the accuracy of a model
where a simple truth value reporting the presence/absence of
code smells rather than the intensity index is added to the
baseline model, (ii) the impact of false positive smell instances
identified by the code smell detector, and (iii) the contribution
of the intensity index in bug prediction models based on
process metrics.

The results of our study indicate that:

• The addition of the intensity index as predictor of buggy
components positively impact the accuracy of a bug
prediction model based on structural quality metrics.
We observed an improvement of the accuracy of the
classification up to 25% as compared to the accuracy
achieved by the baseline model.

• The intensity index is more important than other quality
metrics for the prediction of the bug-proneness of smelly
classes.

• The presence of a limited number of false positive smell
instances identified by the code smell detector does not
impact the accuracy and the practical applicability of the
proposed specialized bug prediction model.

• The intensity index positively impacts the performance
of bug prediction models based on process metrics,
increasing the accuracy of the classification up to 47%.

Structure of the paper. Section II discusses the related liter-
ature on bug prediction models, while Section III presents the
specialized bug prediction model for smelly classes. Section
IV describes the design and the results of the case study aimed
at evaluating the accuracy of the proposed model. Section V
discusses the results of the additional analyses we conducted.



Finally, Section VI concludes the paper and outlines directions
for future work.

II. RELATED WORK

The research community spent a lot of effort in the def-
inition of techniques aimed at predicting bug-prone code
components, mainly proposing the use of product metrics and
process metrics as indicators of the bug-proneness of a code
component.

A. Bug Prediction using Structural-based Predictors

Basili et al. [21] proposed the use of the Object-Oriented
metric suite (i.e., CK metrics) [33] as indicators of the
presence of buggy components. They demonstrated that 5 of
them are actually useful in the context of bug prediction. El
Emam et al. [34] and by Subramanyam et al. [22] corroborate
the results previously observed in [21]. On the same line,
Gyimothy et al. [23] reported a more detailed analysis among
the relationships between code metrics and the bug-proneness
of code components. Their findings highlight that the Coupling
Between Object metric [33] is the best metric among the
CK ones in predicting defects. Ohisson et al. [35] conducted
an empirical study aimed at evaluating to what extent code
metrics are able to identify bug-prone modules. Their model
has been experimented on a system developed at Ericsson, and
the results indicate the ability of code metrics in detecting
buggy modules. Nagappan and Ball [36] exploited the use
of static code analysis tools to predict the bug density of
for Windows Server, showing that it is possible to perform
a coarse grained classification between high and low quality
components with an accuracy of 83%. Nagappan et al. [37]
also investigated the use of metrics in the prediction of buggy
components across 5 Microsoft projects. Their main finding
highlights that while it is possible to successfully exploit
complexity metrics in bug prediction, there is no single metric
that could act as a universally best bug predictor (i.e., the
best predictor is project-dependent). Complexity metrics in the
context of bug prediction is also the focus of the work by
Zimmerman et al. [38], which reports a positive correlation
between code complexity and bugs. Finally, Nikora et al. [39]
showed that measurements of a system’s structural evolution
(e.g., number of executable statements) can serve as predictors
of the number of bugs inserted into a system during its
development.

B. Bug Prediction using Process-based Predictors

Khoshgoftaar et al. [40] assessed the role played by debug
churns (i.e., the number of lines of code changed to fix
bugs) in the identification of bug-prone modules, while Graves
et al. [41] experimented both product and process metrics
for bug prediction. Their findings contradict in part what
observed by other authors, showing that product metrics are
poor predictors of bugs. D’Ambros et al. [42] performed an
extensive comparison of bug prediction approaches relying
on process and product metrics, showing that there is not a
technique that works better in all contexts. Hassan and Holt

[43] introduced the concept of entropy of changes as a measure
of the complexity of the development process. Moser et al.
[24] performed a comparative study between the predictive
power of product and process metrics. Their study, performed
on Eclipse, highlights the superiority of process metrics in
predicting buggy code components. Moser et al. [25] also
performed a deeper study on the bug prediction accuracy of
process metrics, reporting that the past number of bug-fixes
performed on a file (i.e., bug-proneness), and the number
of changes involving a file in a given period (i.e., change-
proneness) are the best predictors of buggy components. Bell
et al. [26] confirm that the change-proneness is the best
bug predictor. Hassan [27] exploit the entropy of changes to
build two bug prediction models which mainly differ for the
choice of the temporal interval where the bug proneness of
components is studied. The results of a reported case study
indicate that the proposed techniques have higher prediction
accuracy than models purely based on code components
changes. All of the predictors above do not consider how many
developers apply changes to a component, neither how many
components they changed at the same time. Ostrand et al.
[28], [29] propose the use of the number of developers who
modified a code component in a give time period as a bug-
proneness predictor, demonstrating that products and process
metrics is poorly (positively) impacted by also considering the
developers’ information. Finally, Di Nucci et al. [30] exploited
the role of two metrics, i.e., structural and semantic scattering
of changes performed by a developer in bug prediction. Their
findings demonstrate on the one hand the superiority of the bug
prediction model built using scattering metrics with respect
other state-of-the-art models. Moreover, they also show that
the proposed metrics are orthogonal with respect to other
predictors.

III. A SPECIALIZED BUG PREDICTION
MODEL FOR SMELLY CLASSES

Previous work has proposed the use of structural quality
metrics to predict the bug-proneness of code components. The
underlying idea behind these prediction models is that the
presence of bugs can be predicted by analyzing the quality
of source code. However, none of them take into account
the presence and the severity of well-known indicators of
design flaws, i.e., code smells, affecting the source code. In
this paper, we explicitly consider this information. Indeed, we
believe that a more clear description and characterization of the
severity of design problems affecting a source code instance
can help a machine learner in distinguishing those components
having higher probability to be subject of bugs in the future.
To this aim, once the set of code components affected by
code smells have been detected, we build a prediction model
that, other than relying on structural metrics, also includes the
information about the severity of design problems computed
using the intensity index defined by Arcelli Fontana et al. [31].
Specifically, the index is computed by JCodeOdor, a code
smell detector which relies on detection strategies applied on



TABLE I
CODE SMELL DETECTION STRATEGIES (THE COMPLETE NAMES OF THE METRICS ARE GIVEN IN TABLE II)

Code Smells Detection Strategies: LABEL(n) → LABEL has value n for that smell

God Class LOCNAMM ≥ HIGH(176) ∧ WMCNAMM ≥ MEAN(22) ∧ NOMNAMM ≥ HIGH(18) ∧ TCC ≤ LOW(0.33) ∧ ATFD ≥ MEAN(6)

Data Class WMCNAMM ≤ LOW(14) ∧ WOC ≤ LOW(0.33) ∧ NOAM ≥ MEAN(4) ∧ NOPA ≥ MEAN(3)

Brain Method (LOC ≥ HIGH(33) ∧ CYCLO ≥ HIGH(7) ∧ MAXNESTING ≥ HIGH(6)) ∨ (NOLV ≥ MEAN(6) ∧ ATLD ≥ MEAN(5))

Shotgun Surgery CC ≥ HIGH(5) ∧ CM ≥ HIGH(6) ∧ FANOUT ≥ LOW(3)

Dispersed Coupling CINT ≥ HIGH(8) ∧ CDISP ≥ HIGH(0.66)

Message Chains MaMCL ≥ MEAN(3) ∨ (NMCS ≥ MEAN(3) ∧ MeMCL ≥ LOW(2))

metrics. The tool is able to detect, filter [44] and prioritize [31]
instances of six kinds of code smells [1], [45]:

• God Class: A large class implementing different respon-
sibilities;

• Data Class: A class whose only purpose is holding data;
• Brain Method: A large method that implements more than

one function;
• Shotgun Surgery: A class where every change triggers

many little changes to several other classes;
• Dispersed Coupling: A class having too many relation-

ships with other classes;
• Message Chains: A method containing a long chain of

method calls.

The intensity index is an estimation of the severity of a code
smell, and its value is defined in the range [1,10]. In particular,
given a code smell instance, its intensity is computed by
relying on different kinds of information, i.e., (i) the code
smell detection strategy, (ii) the metric thresholds used in the
detection strategy, (iii) the statistical distribution of the metric
values computed on a large dataset represented as a quantile
function, and (iv) the actual values of the metrics used in the
detection strategies.

Above all, the detection strategies used are the ones pro-
posed in JCodeOdor, reported in Table I. Detection strategies
have often been used in the literature [45], [46] for code smell
detection. They rely on the evaluation of a set of metric values
against defined thresholds, composed in a logical proposition.
A code component is detected as smelly if one of the logical
propositions shown in Table I is true, namely if the actual
metrics of the code component exceed the threshold values
composing a detection strategy. The list of the metrics applied
in the detection rules is reported in Table II (see [31] for
reference). The thresholds are represented as logical values
associated to an actual value, and they are derived from the
statistical distribution [47] of metrics in 74 systems of the
Qualitas Corpus [48]. Table III reports all the threshold values
associated to each of the detected code smells. Specifically,
for each metric used in a detection strategy, JCodeOdor
extracts five meaningful values to be used as thresholds:
VERY-LOW, LOW, MEAN, HIGH, VERY-HIGH. For metrics
representing ratios defined in the range [0,1] (e.g, the Tight
Class Cohesion), these values are fixed to 0.25, 0.33, 0.5, 0.66

TABLE II
METRICS USED FOR CODE SMELLS DETECTION

Short Name Long Name

ATFD Access To Foreign Data
*ATLD Access To Local Data
CC Changing Classes
CDISP Coupling Dispersion
CINT Coupling Intensity
CM Changing Methods
CYCLO McCabe Cyclomatic Complexity
FANOUT Number of Called Classes
LOC Lines Of Code
*LOCNAMM Lines of Code Without Accessor or Mutator Methods
*MaMCL Maximum Message Chain Length
MAXNESTING Maximum Nesting Level
*MeMCL Mean Message Chain Length
*NMCS Number of Message Chain Statements
NOAM Number Of Accessor Methods
NOLV Number Of Local Variables
*NOMNAMM Number of Not Accessor or Mutator Methods
NOPA Number Of Public Attributes
TCC Tight Class Cohesion
*WMCNAMM Weighted Methods Count of Not Accessor or Mutator Methods
WOC Weight Of Class

and 0.75, respectively. For all other metrics, they are associated
to percentile values on the metric distribution [47]. If a code
component is detected as a code smell, the actual value of a
given metric used for the detection will exceed the threshold
value, and it will correspond to a percentile value on the metric
distribution placed between the threshold and the maximum
observed value of the metric in the system under analysis. The
placement of the actual metric value in that range represents
the “exceeding amount” of a metric with respect to the defined
threshold. Finally, the value is normalized in the range [1,10].
The intensity index of the code smell is given by the mean of
the exceeding amounts of the metrics used for the detection.
The higher the intensity index, the higher the severity of the
code smell under analysis. More details on the computation
of the intensity index can be found in [31].

When considered as bug predictor, the intensity has two
relevant properties: (i) its value is derived from a set of other
metric values, and (ii) since it relies on the statistical distri-
bution of metrics, it can be seen as a non-linear combination
of their values. We include the intensity index as additional
predictor of a structural metrics-based bug prediction model.
Indeed, we cannot use the intensity index as single predictor,
since in this case we could not predict the bug-proneness



TABLE III
DEFAULT THRESHOLDS FOR ALL SMELLS

Metric VERY-LOW LOW MEAN HIGH VERY-HIGH

G
od

C
la

ss LOCNAMM 26 38 78 176 393
WMCNAMM 11 14 22 41 81
NOMNAMM 7 9 13 21 30
TCC 0.25 0.33 0.5 0.66 0.75
ATFD 3 4 6 11 21

D
at

a
C

la
ss WMCNAMM 11 14 21 40 81

WOC 0.25 0.33 0.5 0.66 0.75
NOPA 1 2 3 5 12
NOAM 2 3 4 7 13

B
ra

in
M

et
ho

d LOC 11 13 19 33 59
CYCLO 3 4 5 7 13
MAXNESTING 3 4 5 6 7
NOLV 4 5 6 8 12
ATLD 3 4 5 6 11

Sh
ot

gu
n

Su
rg

er
y CC 2 3 4 5 10

CM 2 3 4 6 13
FANOUT 2 3 4 5 6

D
is

p.
C

ou
p. CINT 3 4 5 8 12

CDISP 0.25 0.33 0.5 0.66 0.75

M
es

sa
ge

C
ha

in
s MaMCL 2 3 3 4 7

MeMCL 2 2 3 4 5
NMCS 1 2 3 4 5

of classes not affected by any design problem (the intensity
index for non-smelly classes is equal to 0). Thus, to build the
proposed bug prediction model we firstly split the training set
by considering smelly (as identified by the code smell detector)
and non-smelly classes. We then assign to smelly classes
an intensity index according to the evaluation performed by
JCodeOdor, while we set the intensity of non-smelly classes
to 0. Finally, we add the information about the intensity to a
set of structural metrics in order to apply the predictions.

IV. EVALUATION OF THE PROPOSED MODEL

The goal of the empirical study is to evaluate the contri-
bution of the intensity index in a prediction model aimed at
discovering bug-prone code components, with the purpose of
improving the allocation of resources in the verification &
validation activities focusing on components having a higher
bug-proneness. The quality focus is on the prediction accuracy
and completeness as compared to state-of-the-art approaches,
while the perspective is of researchers, who want to evaluate
the effectiveness of using information about code smells when
identifying bug-prone components.

The context of the study consists of six software
systems having different size and scope, namely Apache
Xerces1, Apache Xalan2, Apache Velocity3,
Apache Tomcat4, Apache Lucene5, and Apache
Log4j6. Table IV reports the characteristics of the analyzed

1http://xerces.apache.org
2http://xalan.apache.org
3http://velocity.apache.org
4http://tomcat.apache.org
5http://lucene.apache.org
6http://logging.apache.org/log4j/2.x/

TABLE IV
SOFTWARE PROJECTS IN OUR DATASET

System Classes KLOCs % Buggy Cl. % Smelly Cl.

Apache Xerces 1.4.4 588 141 74 5
Apache Xalan 2.7 909 428 86 12
Apache Velocity 1.6.1 229 57 15 7
Apache Tomcat 6.0 858 301 6 4
Apache Lucene 2.4 338 103 59 10
Apache Log4j 1.2 205 38 87 15

software systems in terms of (i) system’s size considering
number of classes and KLOC, (ii) the percentage of buggy
files (identified as explained later), and (iii) the percentage of
classes affected by design problems (detected as explained
later). All the data used in the study are publicly available in
our online appendix [49].

A. Empirical Study Definition and Design

In the context of this empirical investigation, we formulated
the following research questions:

RQ1: To what extent the intensity index contributes
to the prediction of bug-prone code components?

RQ2: What is the gain provided by the intensity
index to the bug prediction model when compared
to the other predictors?

To answer RQ1, we firstly need an oracle reporting the
presence of bugs in the source code of the analyzed soft-
ware projects. Fortunately, all the systems are hosted on the
PROMISE repository [50], which collects a large dataset
of bugs and provides oracles for all the projects in this
study. Secondly, we need to instantiate the prediction model
presented in Section III to define (i) the basic predictors,
(ii) the code smell detection process, and (iii) the machine
learning technique to use for classifying buggy instances. As
for the software metrics to use as basic predictors in the
model, the related literature proposes several alternatives, with
a main distinction between product metrics (e.g., lines of
code, code complexity, etc) and process metrics (e.g., past
changes and bug fixes performed on a code component). To
better understand the predictive power of the intensity index,
we decide to test its contribution in a bug prediction model
composed by structural predictors, and in particular the 20
quality metrics exploited by Jureczko et al. [32]. Our choice
is guided by the will to investigate whether the use of a
single additional structural metric representing the intensity of
code smells is able to add useful information in a prediction
model already characterized by structural predictors, as well
as by the set of code metrics used for the computation of
the intensity index. Thus, to measure the extent to which the
contribution of the intensity index is useful for predicting bugs,
we experimented the following bug prediction models:

• Basic Model: The model based on the 20 software metrics
defined by Jureczko et al. [32];

http://xerces.apache.org
http://xalan.apache.org
http://velocity.apache.org
http://tomcat.apache.org
http://lucene.apache.org
http://logging.apache.org/log4j/2.x/


• Basic Model + Intensity: The model above based on the
20 software metrics plus the intensity index. It is worth
remembering that, for non-smelly classes, the intensity
value is set to 0.

Applying this procedure, we were able to control the
effective contribution of the index during the prediction of
bugs. Regarding the code smell detection process, our study
is focused on the analysis of the code smells for which an
intensity index has been defined (see Section III). To this
aim, we rely on the detection performed by JCodeOdor [31],
because on the one hand it has been empirically validated
demonstrating good performances in detecting code smells,
and on the other hand it detects all the code smells considered
in the empirical study. Finally, it computes the value of
Intensity on the detected code smells. To build a bug prediction
model that discriminates actual smelly and non-smelly classes,
we decide to discard the false positive instances from the
set of candidate code smells given by the detection tool (in
other words, we set the intensity of false positives to 0). To
this aim, we manually discard such instances by comparing
the results of the tool against an annotated set of code smell
instances publicly available [51]. It is worth observing that the
best solution would be that of considering all the actual smell
instances in a software project (i.e., the golden set). However,
the smell instances which are not detected by JCodeOdor do
not exceed the structural metric thresholds that allow the tool
to detect and assign them an intensity value. As a consequence,
the intensity index assigned to these instances would be equal
to 0, and still have no effect on the prediction model. The
final step is the definition of the machine learning classifier to
use. We experimented several classifiers, namely Multilayer
Perceptron [52], ADTree [53], Naive Bayes [54], Logistic
Regression [55], Decision Table Majority [56], and Simple
Logistic [57]. We empirically compared the results achieved by
the prediction model on the software systems used in our study
(more details on the adopted procedure later in this section).
A complete comparison among the experimented classifiers
can be found in our online appendix [49]. Over all the
systems, the best results on the baseline model were obtained
using the Simple Logistic, confirming previous findings in
the field [42], [58]. Thus, in this paper we report the results
of the models built with this classifier. This classifier uses
a statistical technique based on a probability model. Indeed,
instead of simple classification, the probability model gives
the probability of an instance belonging to each individual
class (i.e., buggy or not), describing the relationship between
a categorical outcome (i.e., buggy or not) and one or more
predictors [57].

Once the model has been instantiated, to assess its perfor-
mance we adopted the 10-fold cross-validation strategy [59].
This strategy randomly partitions the original set of data into
10 equal sized subset. Of the 10 subsets, one is retained as
test set, while the remaining 9 are used as training set. The
cross-validation is then repeated 10 times, allowing each of
the 10 subsets to be the test set exactly once [59]. We used

this test strategy since it allows all observations to be used for
both training and test purpose, but also because it has been
widely-used in the context of bug prediction (e.g., see [28],
[60]–[62]). Finally, we answer RQ1 by reporting three widely-
adopted metrics, namely accuracy, precision and recall [63].
In addition, we also report the Area Under the Curve (AUC)
obtained by the prediction model. The AUC quantifies the
overall ability of a prediction model to discriminate between
buggy and non-buggy classes. The closer the AUC to 1,
the higher the ability of the classifier to discriminate classes
affected and not by a bug. On the other hand, the closer
the AUC to 0.5, the lower the accuracy of the classifier.
Besides the analysis of the performance of the specialized
bug prediction model and its comparison with the baseline
model, we also investigate the behavior of the experimented
models in the classification of smelly and non-smelly instances.
Specifically, we compute the percentage of smelly and non-
smelly classes correctly classified by each of the prediction
models, to evaluate whether the intensity-including model is
actually able to give a contribution in the classification of
classes affected by a code smell, or whether the addition of
the intensity index also affects the classification of smell-free
classes.

As for RQ2, we conduct a fine-grained investigation aimed
at measuring how important is the intensity index with respect
to the other features (i.e., metrics) composing the model.
In particular, we use an information gain algorithm [64] to
quantify the gain provided by adding the intensity index in the
prediction model. Formally, let M be a bug prediction model,
let P = {p1, . . . , pn} be the set of predictors composing M , an
information gain algorithm [64] applies the following formula
to compute a measure which defines the difference in entropy
from before to after the set M is split on an attribute p1:

InfoGain(M,pi) = H(M)−H(M |pi) (1)

where the function H(M) indicates the entropy of the model
that includes the predictor pi, while the function H(M |pi)
measures the entropy of the model that does not include pi.
Entropy is computed as follow:

H(M) = −
n∑

i=1

prob(pi) log2 prob(pi) (2)

In other words, the algorithm quantifies how much un-
certainty in M was reduced after splitting M on attribute
p1. In the context of our work, we apply the Gain Ratio
Feature Evaluation algorithm [64], which ranks p1, . . . , pn
in descending order based on the contribution provided by
pi to the decisions made by M . In particular, the output of
the algorithm is a ranked list in which the predictors having
the higher expected reduction in entropy are placed at the
top. Using this procedure, we evaluate the relevance of the
predictors in the prediction model, possibly understanding
whether the addition of the intensity index gives a higher
contribution with respect to the structural metrics from which
it is derived (i.e., metrics used for the detection of the smells)



TABLE V
ACCURACY, PRECISION, RECALL, F-MEASURE, AUC-ROC, AND

PERCENTAGE OF BUGGY CLASSES AFFECTED (AND NOT) BY A SMELL
CORRECTLY CLASSIFIED BY THE EXPERIMENTED PREDICTION MODELS

Project Model Accuracy Precision Recall F-Measure AUC-
ROC

% Cor. Class.
S-Cl. NS-Cl.

Apache Xerces Basic 94 93 94 93 95 72 92
Basic + Int. 95 96 95 95 95 97 92

Apache Xalan Basic 99 99 100 99 99 94 100
Basic + Int. 100 100 100 100 100 99 100

Apache Velocity Basic 67 18 28 22 89 56 32
Basic + Int. 92 31 46 37 90 100 35

Apache Tomcat Basic 56 9 16 12 81 34 17
Basic + Int. 79 20 31 24 94 83 20

Apache Lucene Basic 78 75 76 75 81 50 78
Basic + Int. 80 80 80 80 83 82 77

Apache Log4j Basic 94 99 96 97 89 55 93
Basic + Int. 95 100 98 99 93 74 93

or with respect the other structural metrics contained in the
model.

B. Analysis of the Results

In the following we will discuss the achieved results aiming
at providing an answer to our research questions.

To what extent the intensity index contributes to the
prediction of bug-prone code components? Table V reports
for each considered software project, the results achieved when
considering (i) the baseline prediction model built using the
structural metrics in [32] and (ii) the model built by adding
to the baseline model the intensity index of smelly classes. In
addition, the column % Cor. Class. S-Cl. of Table V reports the
percentages of smelly classes correctly classified (with respect
to buggyness) by each of the analyzed models, while % Cor.
Class. NS-Cl. reports the percentage of correctly classified
non-smelly instances.

Looking at Table V, the first thing that leaps to the eye
is that, overall, the basic prediction model is able to achieve
high accuracy. For instance, on Apache Xalan the basic
model obtains 100% of recall, 99% of precision and accuracy.
From a practical point of view, this result means that the
model misclassifies a small subset of instances. On the other
hand, taking into account the intensity index of the smelly
classes results in 100% for all the considered metrics, correctly
classifying the instances missed by the basic model. It is
worth noting that obtaining an increment of the performance
in situations when the Basic model works well is quite
hard. Still, in this situations the intensity index is able to
contribute by refining the predictions of the Basic model,
and increasing model’s accuracy. Analyzing the percentage
of smelly and non-smelly classes correctly classified by the
specialized bug prediction model, we can understand that the
increment of the performance is due to a better classification
of instances composing the set of classes having design flaws
(+5%), while the non-smelly classes are treated generally in
the same way by both the models. An interesting example
is represented by the class ElemTextLiteral contained
in the org.apache.xalan.templates package. This
class contains a Brain Method code smell having an intensity

index of 5.5. The basic model classifies this class as buggy,
since its structural metrics are considered by the Basic model
as indicators of the presence of a bug. Conversely, the low
level of intensity allows the intensity-including model to
correctly mark this class as non-buggy. On the other hand,
an example of code component correctly classified as buggy
thank to the use of the intensity index computed for the
Message Chains smell is the XSLTProcessorApplet class
from the org.apache.xalan.client package. In this
case, the Basic model misclassifies this class as non-buggy,
while the specialized model correctly classifies it as buggy.
It is important to note that the ElemTextLiteral and
XSLTProcessorApplet classes have similar metrics (as
shown in Table VI), and the only predictor able to distinguish
them is the intensity index.

Looking at the other software systems analyzed, we can
observe for Apache Xerces and Apache Log4j a be-
havior of the intensity index similar to the one achieved on
Apache Xalan. In these cases, the performances of the
Basic model are always slightly improved by the addition
of the intensity index. Also, the intensity index enables the
correct classification of smelly instances, while the predictions
made on classes not affected by design problems remain
exactly the same.

A different analysis can be done for the other systems. In-
deed, when the performances of the Basic model are quite low,
the intensity index is able to give a strong contribution in the
classification of buggy components. For instance, the accuracy
of the intensity-including model in Apache Velocity is
25% higher than the one achieved by the basic one. Here we
can note that the proposed bug prediction model is not only
able to correctly classify all the instances affected by smells,
but also gives a slight contribution (+3%) to the classification
of the non-smelly instances. This result clearly highlights the
importance of considering the design quality characteristics of
a code component when predicting bugs.

Summary for RQ1. The addition of the intensity index
as predictor of buggy components generally increases
the performance of the baseline bug prediction model
over all the analyzed projects. We observed cases in
which the prediction accuracy increases up to 25% with
respect to the performance achieved not considering the
intensity metric.

What is the gain provided by the intensity index to the bug
prediction model when compared to the other predictors?
Table VII shows the results achieved when applying the Gain
Ratio Feature Evaluation algorithm [64] on the set of predic-
tors composing the intensity-including bug prediction model.
Specifically, for each software system, we report the ranking
of the predictors based on their importance for the model,
together with a value representing the expected reduction in
entropy caused by partitioning the prediction model according
to a given predictor (i.e., column Gain). The results show
that the Coupling Between Objects (CBO) metric is highly



TABLE VI
COMPARISON BETWEEN ELEMTEXTLITERAL AND XSLTPROCESSORAPPLET (APACHE XALAN) IN TERMS OF STRUCTURAL METRICS

Class W
M

C

D
IT

N
O

C

C
B

O

R
FC

L
C

O
M

C
A

C
E

N
PM

L
C

O
M

3

L
O

C

D
A

M

M
O

A

M
FA

C
A

M

IC C
B

M

A
M

C

M
A

X
(C

C
)

AV
G

(C
C

)

In
te

ns
ity

org.apache.xalan.templates.ElemTextLiteral 11 3 0 9 22 29 6 4 11 0.88 127 0.8 0 0.95 0.34 2 5 10 2 1 5.5
org.apache.xalan.client.XSLTProcessorApplet 12 5 0 7 23 31 5 2 11 0.89 125 0.9 1 0.94 0.28 3 5 11 2 1 9.1

TABLE VII
GAIN PROVIDED BY EACH METRIC TO THE PREDICTION MODEL.

Apache Xerces Apache Xalan Apache Velocity Apache Tomcat Apache Lucene Apache Log4j
Metric Gain Metric Gain Metric Gain Metric Gain Metric Gain Metric Gain

CBO 0.47 RFC 0.38 CAM 0.66 CBO 0.41 Intensity 0.47 CBO 0.49
CE 0.39 NPM 0.37 NPM 0.58 RFC 0.39 RFC 0.45 Intensity 0.49
CA 0.22 LCOM 0.22 RFC 0.56 MOA 0.38 CBO 0.45 CA 0.47
AMC 0.17 WMC 0.22 Intensity 0.53 LOC 0.37 NPM 0.43 NPM 0.38
AVG(CC) 0.17 Intensity 0.21 WMC 0.53 Intensity 0.32 CE 0.42 LCOM 0.33
MFA 0.15 CE 0.20 CE 0.48 MAX(CC) 0.30 WMC 0.41 CE 0.31
LOC 0.12 CBO 0.19 LCOM 0.46 WMC 0.22 LCOM 0.29 LCOM3 0.31
DIT 0.11 LOC 0.14 DIT 0.35 AMC 0.22 DAM 0.26 NOC 0.29
CBM 0.11 CAM 0.13 LCOM3 0.35 CAM 0.21 CAM 0.24 DIT 0.29
IC 0.11 DIT 0.11 CA 0.35 DAM 0.19 LOC 0.22 RFC 0.29
Intensity 0.10 IC 0.09 CBO 0.29 AVG(CC) 0.19 AMC 0.16 LOC 0.26
LCOM3 0.07 CBM 0.09 NOC 0.28 LCOM 0.17 IC 0.11 AVG(CC) 0.25
MAX(CC) 0.07 MFA 0.08 AVG(CC) 0.28 NPM 0.16 CA 0.11 AMC 0.19
CAM 0.06 MAX(CC) 0.08 CBM 0.25 NOC 0.11 MAX(CC) 0.10 MAX(CC) 0.15
DAM 0.05 NOC 0.07 MAX(CC) 0.23 DIT 0.08 MFA 0.09 DAM 0.14
RFC 0.05 AMC 0.06 AMC 0.21 IC 0.05 CBM 0.07 CBM 0.08
MOA 0.04 CA 0.03 IC 0.19 CA 0.05 NOC 0.07 IC 0.06
WMC 0.02 MOA 0.03 DAM 0.08 MFA 0.05 DIT 0.07 CAM 0.04
NOC 0.01 DAM 0.01 MFA 0.06 CBM 0.03 AVG(CC) 0.06 MFA 0.04
LCOM 0.01 AVG(CC) 0.01 MOA 0.03 LCOM3 0.02 LCOM3 0.05 MOA 0.02
NPM 0.01 LCOM3 0.01 LOC 0.02 CE 0.02 MOA 0.02 WMC 0.01

relevant for the predictions made on 3 of the analyzed projects
(i.e., Apache Xerces, Apache Tomcat, and Apache
Log4j), confirming the findings by Gyimóthy et al. [23] on
the predictive power of the metric. On the other systems,
different complexity metrics (e.g., RFC and CAM) appear
to the top of the ranked list. As for the intensity index, we
observe that the contribution given by the metric is valuable
on all the object projects (minimum gain=0.10, maximum
gain=0.53), since it is generally included at the first places
of the ranked list. This is a quite surprising result, since
the goal of the addition of the intensity index is not to
provide the most relevant predictor, but to complement the
information used by a prediction model with a metric able
to quantify in a single value the severity of design problems
affecting a class. For instance, it is interesting to discuss the
result achieved on the Apache Lucene project, where the
intensity metric is evaluated as the most important by the Gain
Ratio Feature Evaluation algorithm, which quantifies as 0.47
the gain of the metric in reducing the entropy of the prediction
model. Looking at the ranking, we can see that the single
quality metrics from which the intensity index is computed
(i.e., metrics used for the smell detection) are placed by the
algorithm to the bottom of the ranked list (e.g., LCOM3 is only
partially relevant and it provides a small gain of 0.05). In other
words, the single metrics do not reduce in the same measure
the entropy with respect to the case in which such metrics
are condensed in a single value representing the intensity of a
code smell. As an example, the intensity index contributes in
reducing the entropy of the prediction model 25% more than

TABLE VIII
PERFORMANCE OF JCODEODOR ON THE SOFTWARE PROJECTS OBJECT OF

THE EMPIRICAL STUDY

Code Smell Precision Recall F-Measure # TP # FP # FN

Blob 78% 81% 79% 25 7 6
Data Class 89% 100% 94% 8 1 8
Brain Method 87% 92% 89% 124 19 11
Shotgun Surgery 60% 64% 62% 9 6 5
Dispersed Coupling 76% 81% 78% 25 8 6
Message Chains 65% 79% 71% 15 8 4
Overall 81% 87% 84% 206 49 32

the LOC metric, 18% more than LCOM metric, and 6% more
than WMC metric. It is worth noting that, as a consequence,
the ability of the specialized bug prediction model to correctly
classify smelly instances on Apache Lucene increases of
22% (see Table V). Another interesting observation can be
made by looking at the results of Apache Velocity. Also
in this case, the metrics used for the detection of smells are
partially relevant for the prediction model when considered
individually (e.g., CBO=0.29), while the intensity measure
is instead considered as a very useful predictor (gain=0.53).
Here the performance provided by the intensity-including bug
prediction model are 25% better than the baseline model and
this is due to the fact that the specialized model is able to
correctly classify all the smelly instances in the system. In the
worst case, the intensity index is ranked as the eleventh more
useful predictor on Apache Xerces with a gain equals to
0.10. However it is important to highlight, as shown in Table
V, that on this project the performances of the baseline model
are high, and the intensity index contributes to the increment
of 1% in terms of accuracy.

Summary for RQ2. The intensity index has a higher
predictive power with respect to the individual metrics
from which it is derived. On all the projects of the study,
we found that the intensity metric is one of the most
important predictors of the model. As a consequence,
the gain provided by the intensity index to the baseline
prediction model is highly relevant.

C. Threats to Validity

Threats to construct validity are related to the relationship
between theory and observation. Above all, we relied on
JCodeOdor [31] for detecting code smells. We have validated
the code smell detector performance on the software projects



analyzed in this paper. Table VIII reports precision, recall,
and F-measure values obtained by considering the instances
of all the projects as a single dataset (i.e., overall). A detailed
analysis of the performance of the detector for each project
can be found in our online appendix [49]. We can observe
that the performance of the detector ranges between 62% and
94% in terms of F-Measure. Despite the quite high precision
(i.e., 81% on overall), the tool still identifies 49 false positives
which we discarded to make the set of code smells as close
as possible to the golden set. As removing false positives
is not always feasible, in Section V we evaluate the effect
of including false positives in the construction of the bug
prediction model. On the other hand, the tool achieves an
overall recall of 87%. In the empirical study, we were not
able to include false negative smell instances, because the tool
assigns an intensity index equal to zero to such instances. Even
if this could have influenced our results, it is worth noting that
only 32 of such instances (out of the total 238) are missed
from the analysis. Future work will be devoted to improve
the detection performance of the tool by including rules used
by other smell detectors (e.g., DECOR [4]). Another threat to
construct validity regards the annotated set of bugs and code
smells used in the empirical study. As for bugs, we rely on
the publicly available oracles in the PROMISE repository [50]
which have been widely used in previous research [32], [65]–
[68]. For code smells, we rely on the oracles publicly available
in [51], previously used in [5], [6], [8], [9], [69]. However, we
cannot exclude that the oracle we used misses some bugs or
smells, or else include some false positives.

Threats to conclusion validity concern the relation between
the treatment and the outcome. The metrics used to evaluate
the bug prediction models, i.e., accuracy, precision, recall, F-
Measure, and AUC-ROC are widely used in the evaluation of
the performances of bug prediction techniques [42]. Moreover,
we analyzed to what extent the intensity index is important
with respect to the other metrics by analyzing the gain
provided by the addition of the severity measure in the model.

Finally, threats to external validity concern the generaliza-
tion of results. We analyzed six different software projects
from different application domains and with different charac-
teristics (size, number of classes, etc). However, our future
agenda includes the analysis of other systems aimed at cor-
roborating our findings. Another threat in this category regards
the choice of the baseline model. We selected the model by
Jureczko et al. [32] since it is more interesting and challenging
of the predictive power of the intensity index when it is added
to a model characterized by other structural metrics, including
the ones used for the computation of the intensity index.
Moreover, the selected model contains a comprehensive set
of quality metrics, which allowed a more detailed analysis of
the gain provided by the intensity index in the context of the
structural-based bug prediction model. However, as pointed
out by Moser et al. [24], predictors based on process metrics
can achieve better performances in predicting bugs. To deal
with this threat, in Section V we discuss the results achieved
when considering the intensity index as additional predictor

of models including process metrics.

V. DISCUSSION AND FURTHER ANALYSIS

The results of the empirical study reveal the usefulness of
considering the intensity of code smells as additional predictor
in order to classify instances affected by design problems.
From a practical perspective, results indicate that smells having
low severity are less prone to be affected by a bug with
respect to smells with high severity. In this sense, the use of
an indicator of intensity is beneficial to correctly discriminate
the bug-proneness of smelly classes. Moreover, the results also
reveal that the structural metrics (including the ones used for
detecting smells) are not effective when applied to predict the
buggyness of classes affected by design flaws. Even if this
can appear as a quite surprising result, we observe that when
evaluating the bug-proneness of smelly classes, the prediction
model is not able to correctly deal with the whole set of
software metrics. In other words, several quality indicators
considered in isolation work worse than a single aggregative
metric reporting the degree of severity of the design flaw
affecting a class.

In the context of our work, we exploited the use of the
intensity index, rather than using a simple truth value pro-
viding information about the presence of a design problem.
Indeed, the latter solution could also provide a complementary
information with respect to the structural metrics, leading to
improvements similar to the ones achieved by considering
the intensity index. This issue is analyzed in Section V-A.
Another discussion point is related to the threats to validity
pointed out in Section IV-C. On the one hand, in the empirical
study we discarded the false positive instances given by the
smell detection tool to consider in the prediction model a
set of code smells as close as possible to the golden set.
However, removing such instances could not be practically
applicable for several reasons (e.g., effort needed to validate
smells). In order to evaluate the impact that false positives have
on the performance of the prediction model, in Section V-B
we evaluate the performance of the model obtained without
removing the false positive code smell instances detected by
the tool. Finally, a threat to the generalizability of the results
regards the choice of the baseline model. To evaluate the
contribution of the intensity index in different contexts, Section
V-C reports the results achieved when adding the intensity of
code smells in a prediction model based on process metrics, as
well as the analysis of the contribution of the intensity index
in a model composed by both structural and process metrics.
Note that for all the additional analyses we follow the same
experimental design described in Section IV.

A. Comparing the presence/absence of smells rather than the
intensity index

We have added to the baseline bug prediction model defined
in [32] the boolean information about the presence of code
smells in a class (note that we used the golden set of code
smells in this case, to avoid bias deriving from the use of a
particular tool). The results are reported in Table IX. However,



TABLE IX
ACCURACY METRICS FOR THE MODEL BUILT BY ADDING TO THE

BASELINE MODEL A TRUTH VALUE INDICATING THE PRESENCE OF A
SMELL.

Project Model Accuracy Precision Recall F-Measure AUC-
ROC

% Cor. Class.
S-Cl. NS-Cl.

Apache Xerces Basic + Truth 94 93 94 93 95 72 92
Apache Xalan Basic + Truth 99 99 100 99 99 94 100
Apache Velocity Basic + Truth 67 18 28 22 89 56 32
Apache Tomcat Basic + Truth 56 9 16 12 81 34 17
Apache Lucene Basic + Truth 78 75 76 75 81 50 78
Apache Log4j Basic + Truth 94 99 96 97 89 55 93

comparing Table V and IX, this choice would not lead to
improvements in the performance of the baseline model (the
performance of the two models are exactly the same). Indeed,
the addition of such information does not provide any type
of complementary information that the model can use to
predict the bug-proneness of smelly classes. As a consequence,
the presence of the additional predictor is totally irrelevant.
This is because the simple truth value does not quantify
the extent to which the design problem is actually harmful.
For instance, let us recall the example shown in Table VI.
In this case, both the instances are smelly but they have
different intensity. A prediction model based on the simple
thruth value would not distinguish their bug-proneness, and it
would not be able to correctly classify the buggyness of the
XSLTProcessorApplet class.

B. Evaluating the Impact of False Positive Smells in the Bug
Prediction Model

Table X reports the results achieved when building the
proposed bug prediction model without filtering the false
positive instances from the set of candidate smells identified
by JCodeOdor. Comparing these results with the performance
of the models shown in Table V, we can provide two main
observations. First of all, without filtering false positives, the
bug prediction model obtains accuracy values always higher
than the baseline model. This means that, even in the presence
of false positive instances, the use of the proposed model in
a practical case guarantees higher performance with respect
to the baseline prediction model. Indeed, it is important to
observe that the smelly instances correctly classified by the
model ranges between 71% and 99%, clearly indicating its
ability to distinguish the bug-proneness of classes affected
by design problems. At the same time, the performance
of the model in the classification of non-smelly classes are
in line with the ones of the baseline. On the other hand,
discarding false positive code smell instances does not result in
significantly better performances with respect to including the
false positives detected by the tool (compare Tables V and X).
Indeed, in this case the performances of the non-filtered false
positives model are only slightly lower, indicating that false
positive instances do not have a significative impact on the
results and do not need to be necessarily validated and filtered
out. Summarizing, we can claim that a fully automatic code
smell detection still improves the performance of the baseline
bug prediction model.

TABLE X
ACCURACY METRICS FOR THE MODEL WHERE FALSE POSITIVE SMELLS

ARE NOT FILTERED.

Project Model Accuracy Precision Recall F-Measure AUC-
ROC

% Cor. Class.
S-Cl. NS-Cl.

Apache Xerces Basic + Int. 94 94 94 91 95 96 92
Apache Xalan Basic + Int. 100 100 100 100 100 99 100
Apache Velocity Basic + Int. 90 28 43 35 89 97 35
Apache Tomcat Basic + Int. 77 18 29 24 93 80 20
Apache Lucene Basic + Int. 79 77 78 77 83 80 77
Apache Log4j Basic + Int. 95 99 97 95 93 71 92

C. Evaluating the Contribution of the Intensity Index in a
Process Metrics-based Bug Prediction Model

In order to evaluate the contribution of the intensity index in
a process metrics-based bug prediction model, we exploit the
model defined by Hassan [27], which is built by considering
the entropy of changes as predictor of buggy components. The
choice of using this process-based model is not random, but
guided to the will to select a bug prediction model having good
performance [27] and quite representative of the state-of-the-
art [30]. The analysis of the contribution of the intensity index
in other process metrics-based bug prediction models (e.g., the
ones proposed in [28] and [30]) is part of our future agenda.
As we can see from Table XI, the process model relying only
on the entropy of changes does not obtain higher performances
with respect to the models considering structural properties. At
the same time, we can observe that the use of the intensity
index as additional feature in the model can increase the
number of correctly classified instances, resulting in a higher
accuracy. This is a quite expected result, since the addition of
the intensity index adds an orthogonal source of information
with respect to the process metric. It is worth noting that in the
cases when the prediction accuracy of the baseline process-
based model is low, the intensity can increase the quality
of the predictions up to 47%. This is the case of Apache
Velocity project, where the baseline model reaches 33% of
accuracy in the predictions. By adding the intensity index, the
prediction model increases its performances to 80% (+47%),
demonstrating that a better characterization of the classes
having design problems can help in obtaining more accurate
predictions. It is also interesting to analyze the results on
the percentage of smelly classes correctly classified. On the
Apache Velocity project, the baseline model correctly
classifies half of the smelly classes, while the model con-
sidering the intensity is able to capture 100% of the buggy
and smelly classes. As for the other software projects, we can
outline a similar trend observed in the case of the structural-
based prediction model. Indeed, the intensity index is able to
refine the predictions of the baseline model, ensuring slightly
higher performances in cases where the performances of the
baseline are already high (e.g., see the results achieved on
Apache Xerces and Apache Log4j). In the other cases,
we can always observe an improvement of both precision
and recall (and, consequently, of the F-measure), but also an
improvement of the AUC-ROC metric, which indicates the
higher overall ability of the model considering the intensity in



TABLE XI
ACCURACY METRICS FOR THE MODELS BASED ON PROCESS METRICS AND A COMBINATION OF STRUCTURAL AND PROCESS METRICS.

Project Model Process Metrics Combined Metrics

Accuracy Precision Recall F-Measure AUC-
ROC

% Cor. Class. Accuracy Precision Recall F-Measure AUC-
ROC

% Cor. Class.
S-Cl. NS-Cl. S-Cl. NS-Cl.

Apache Xerces
Basic 91 91 91 91 71 41 89 94 93 94 93 94 68 91
Basic + Int. 94 94 94 94 95 86 89 95 96 95 95 95 97 91

Apache Xalan
Basic 99 99 99 99 98 89 99 100 100 100 100 100 92 100
Basic + Int. 99 99 99 99 97 92 99 100 100 100 100 100 94 100

Apache Velocity
Basic 33 33 33 33 76 50 45 67 18 28 22 79 57 32
Basic + Int. 80 80 80 80 78 100 46 94 32 47 38 80 100 33

Apache Tomcat
Basic 29 29 29 29 56 50 31 63 9 16 12 82 35 18
Basic + Int. 67 67 67 67 68 92 30 82 21 33 26 85 83 26

Apache Lucene
Basic 60 60 60 60 55 41 63 79 76 77 76 82 47 60
Basic + Int. 71 71 71 71 62 79 63 81 79 80 79 83 85 60

Apache Log4j
Basic 92 92 93 92 52 63 88 99 93 96 94 90 52 89
Basic + Int. 93 93 94 93 60 71 87 97 99 98 98 93 76 90

discriminating between buggy and non-buggy classes.
Finally, we also evaluated the contribution of the intensity

index in a bug prediction model composed by both structural
and process metrics. Looking at the results reported in Table
XI (i.e., see the Combined model), we can observe that
the addition of the process metric does not have the same
impact with respect to the addition of the intensity index in
the baseline structural model. Indeed, the Combined model
never outperforms the performance achieved by the structural
model which considers the intensity as additional feature.
Thus, we can conclude that the addition of the intensity
index is actually needed also in this case to achieve higher
performances. Moreover, when adding the intensity index to
the Combined model, we observe that the contribution of the
intensity index is still valuable. For example, let us consider
the cases of Apache Velocity and Apache Tomcat. In
the first project, the performance of the Combined model are
not better with respect to the prediction model purely based on
structural code metrics. However, when adding the intensity to
the mixed set of metrics characterizing the Combined model,
the performance are not only better than the baseline structural
model (+27% of accuracy), but they are also better than all
the other structural and process based prediction models that
include the intensity index (i.e., the Combined + Int. model has
higher performance with respect to the Basic + Int. structural
models). In the second case, the Combined model is 7% more
accurate of the baseline structural model. This indicates that
the entropy of changes actually complements the structural
metrics in the predictions of buggy components. However,
also in this case the addition of the intensity index allows
the prediction model to obtain a strong higher value of the
prediction accuracy (+19%). This results in the achievement
of higher values for all the other evaluation metrics: indeed,
the precision increases of 12%, the recall of 17% and the
AUC-ROC of 3%. A similar discussion can be done for the
other software systems analyzed, where the intensity index
actually contributes to the improvement of the performance
of the Combined bug prediction model. Finally, as expected,
we can observe that the buggy and smelly classes are mainly
correctly classified by the model including the intensity index.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the contribution of code smell
intensity in the context of bug prediction. Specifically, we
evaluate to what extent the addition of the intensity index
(i.e., a metric that quantifies the severity of code smells) in
an existing structural metrics-based bug prediction model is
useful in order to increase the performances of the baseline
model. We also quantify the actual gain provided by the
intensity index with respect to the other metrics composing
the model, including the ones used to compute the code smell
intensity. Moreover, we report additional analyses aimed at
showing (i) the accuracy of a model where a simple truth
value reporting the presence of code smells rather than the
intensity index is added to the baseline model, (ii) the impact
of false positive smell instances identified by a code smell
detector, and (iii) the contribution of the intensity index in
bug prediction models based on process metrics.

According to our experiments, the intensity always posi-
tively contributes to state-of-the-art prediction models, even
when they already have high performances. In particular, the
intensity index helps discriminating bug-prone code elements
affected by code smells in bug prediction models based on
product metrics, process metrics, and a combination of the
two. Our initial results suggest that the intensity of code smells
is helpful in all of these cases, and cannot be substituted by a
simple indicator of the presence or absence of a code smell.
More importantly, the presence of a limited number of false
positive smell instances identified by the code smell detector
does not impact the accuracy and the practical applicability of
the proposed specialized bug prediction model. The achieved
findings highlight—on one hand—the value of code smell
detection in the context of bug prediction, and on the other
hand the importance of considering the intensity of such design
problems as additional indicator in bug prediction models.

As future work, we plan to extend the number of systems
analyzed with this method in order to corroborate the results
achieved in this paper, and evaluate the contribution of the
intensity index into other existing bug-prediction models.



REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[2] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mantyla, “Code smell
detection: Towards a machine learning-based approach,” in Software
Maintenance (ICSM), 2013 29th IEEE International Conference on, Sept
2013, pp. 396–399.

[3] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia,
“Methodbook: Recommending move method refactorings via relational
topic models,” IEEE Transactions on Software Engineering, vol. 40,
no. 7, pp. 671–694, July 2014.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2010.

[5] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia, “A
textual-based technique for smell detection,” in Proceedings of the 24th
International Conference on Program Comprehension (ICPC 2016).
Austin, USA: IEEE, 2016, p. to appear.

[6] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462–489, May
2015.

[7] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[8] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,” in
Proceedings of the International Conference on Software Engineering
(ICSE) - Volume 1. IEEE, 2015, pp. 403–414.

[9] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do
they really smell bad? a study on developers’ perception of bad code
smells,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2014, pp. 101–110.

[10] A. F. Yamashita and L. Moonen, “Do developers care about code smells?
an exploratory survey,” in Proceedings of the Working Conference on
Reverse Engineering (WCRE). IEEE, 2013, pp. 242–251.

[11] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory survey,”
in Proceedings of the International Workshop on Refactoring Tools.
ACM, 2011, pp. 33–36.

[12] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad
smells in object-oriented code,” in Proceedings of the International Con-
ference on the Quality of Information and Communications Technology
(QUATIC). IEEE, 2010, pp. 106–115.

[13] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the impact
of bad smells using historical information,” in Proceedings of the
International workshop on Principles of Software Evolution (IWPSE).
ACM, 2007, pp. 31–34.

[14] D. Ratiu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proceedings of
the European Conference on Software Maintenance and Reengineering
(CSMR). IEEE, 2004, pp. 223–232.

[15] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, Blob and Spaghetti Code, on
program comprehension,” in 15th European Conference on Software
Maintenance and Reengineering, CSMR 2011, 1-4 March 2011, Old-
enburg, Germany. IEEE Computer Society, 2011, pp. 181–190.

[16] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dybå, “Quantifying the effect of code smells on maintenance effort,”
IEEE Trans. Software Eng., vol. 39, no. 8, pp. 1144–1156, 2013.

[17] A. F. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in Proceedings of the International Conference
on Software Maintenance (ICSM). IEEE, 2012, pp. 306–315.

[18] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell re-
lations on software maintainability: An empirical study,” in Proceedings
of the International Conference on Software Engineering (ICSE). IEEE,
2013, pp. 682–691.

[19] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study
of the impact of code smells on software change-proneness,” in Pro-
ceedings of the Working Conference on Reverse Engineering (WCRE).
IEEE, 2009, pp. 75–84.

[20] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[21] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented
design metrics as quality indicators,” Software Engineering, IEEE Trans-
actions on, vol. 22, no. 10, pp. 751–761, Oct 1996.

[22] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck met-
rics for object-oriented design complexity: Implications for software
defects,” Software Engineering, IEEE Transactions on, vol. 29, no. 4,
pp. 297–310, 2003.

[23] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software Engineering (TSE), vol. 31, no. 10, pp. 897–
910, 2005.

[24] W. P. Raimund Moser and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect predic-
tion,” in International Conference on Software Engineering (ICSE), ser.
ICSE ’08, 2008, pp. 181–190.

[25] R. Moser, W. Pedrycz, and G. Succi, “Analysis of the reliability of
a subset of change metrics for defect prediction,” in Proceedings
of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’08. New
York, NY, USA: ACM, 2008, pp. 309–311. [Online]. Available:
http://doi.acm.org/10.1145/1414004.1414063

[26] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Does measuring
code change improve fault prediction?” in Proceedings of the 7th
International Conference on Predictive Models in Software Engineering,
ser. Promise ’11. New York, NY, USA: ACM, 2011, pp. 2:1–2:8.
[Online]. Available: http://doi.acm.org/10.1145/2020390.2020392

[27] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Software Engineering, 2009. ICSE 2009. IEEE 31st International
Conference on, May 2009, pp. 78–88.

[28] R. Bell, T. Ostrand, and E. Weyuker, “The limited impact of individual
developer data on software defect prediction,” Empirical Software
Engineering, vol. 18, no. 3, pp. 478–505, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10664-011-9178-4

[29] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Programmer-based
fault prediction,” in Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, ser. PROMISE ’10.
New York, NY, USA: ACM, 2010, pp. 19:1–19:10. [Online]. Available:
http://doi.acm.org/10.1145/1868328.1868357

[30] D. D. Nucci, F. Palomba, S. Siravo, G. Bavota, R. Oliveto, and
A. D. Lucia, “On the role of developer’s scattered changes in bug
prediction,” in Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on, Sept 2015, pp. 241–250.

[31] F. Arcelli Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards a
prioritization of code debt: A code smell intensity index,” in Proceedings
of the Seventh International Workshop on Managing Technical Debt
(MTD 2015). Bremen, Germany: IEEE, Oct. 2015, pp. 16–24, in
conjunction with ICSME 2015.

[32] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
ser. PROMISE ’10. New York, NY, USA: ACM, 2010, pp. 9:1–9:10.
[Online]. Available: http://doi.acm.org/10.1145/1868328.1868342

[33] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476–493, Jun 1994.

[34] W. M. Khaled El Emam and J. C. Machado, “The prediction of faulty
classes using object-oriented design metrics,” Journal of Systems and
Software, vol. 56, no. 1, pp. 63–75, 2001.

[35] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules
in telephone switchess,” Software Engineering, IEEE Transactions on,
vol. 22, no. 12, pp. 886–894, 1996.

[36] N. Nagappan and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New York,
NY, USA: ACM, 2005, pp. 580–586. [Online]. Available: http:
//doi.acm.org/10.1145/1062455.1062558

[37] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. New York,
NY, USA: ACM, 2006, pp. 452–461. [Online]. Available: http:
//doi.acm.org/10.1145/1134285.1134349

http://doi.acm.org/10.1145/1414004.1414063
http://doi.acm.org/10.1145/2020390.2020392
http://dx.doi.org/10.1007/s10664-011-9178-4
http://doi.acm.org/10.1145/1868328.1868357
http://doi.acm.org/10.1145/1868328.1868342
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1134285.1134349
http://doi.acm.org/10.1145/1134285.1134349


[38] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in Proceedings of the Third International Workshop
on Predictor Models in Software Engineering, ser. PROMISE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 9–. [Online].
Available: http://dx.doi.org/10.1109/PROMISE.2007.10

[39] A. P. Nikora and J. C. Munson, “Developing fault predictors for
evolving software systems,” in Proceedings of the 9th IEEE International
Symposium on Software Metrics. IEEE CS Press, 2003, pp. 338–349.

[40] A. N. Taghi M. Khoshgoftaar, Nishith Goel and J. McMullan, “Detection
of software modules with high debug code churn in a very large legacy
system,” in Software Reliability Engineering. IEEE, 1996, pp. 364–371.

[41] J. S. M. Todd L. Graves, Alan F. Karr and H. P. Siy, “Predicting fault
incidence using software change history,” Software Engineering, IEEE
Transactions on, vol. 26, no. 7, pp. 653–661, 2000.

[42] M. DAmbros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Software Engineering, vol. 17, no. 4, pp. 531–577, 2012.

[43] A. E. Hassan and R. C. Holt, “Studying the chaos of code development,”
in Proceedings of the 10th Working Conference on Reverse Engineering,
2003.

[44] F. Arcelli Fontana, V. Ferme, and M. Zanoni, “Poster: Filtering code
smells detection results,” in Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015), vol. 2. Florence,
Italy: IEEE, May 2015, pp. 803–804.

[45] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006.

[46] F. Palomba, A. D. Lucia, G. Bavota, and R. Oliveto, “Anti-pattern de-
tection: Methods, challenges, and open issues,” Advances in Computers,
vol. 95, pp. 201–238, 2015.

[47] F. Arcelli Fontana, V. Ferme, M. Zanoni, and A. Yamashita, “Automatic
metric thresholds derivation for code smell detection,” in Proceedings of
the 6th International Workshop on Emerging Trends in Software Metrics
(WETSoM 2015). Florence, Italy: IEEE, May 2015, pp. 44–53, co-
located with ICSE 2015.

[48] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The qualitas corpus: A curated collection of java code
for empirical studies,” in Proc. 17th Asia Pacific Software Eng. Conf.
Sydney, Australia: IEEE, December 2010, pp. 336–345.

[49] F. Palomba, M. Zanoni, F. A. Fontana, A. D. Lucia, and R. Oliveto,
“Smells like Teen Spirit: Improving Bug Prediction Performance Using
the Intensity of Code Smells,” Tech. Rep., 4 2016. [Online]. Available:
http://tinyurl.com/hgorj4z

[50] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and
B. Turhan. (2012, June) The promise repository of empirical software
engineering data. [Online]. Available: http://promisedata.googlecode.
com

[51] F. Palomba, D. D. Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshy-
vanyk, and A. De Lucia, “Landfill: An open dataset of code smells with
public evaluation,” in Proceedings of the Working Conference on Mining
Software Repositories (MSR). IEEE, 2015, pp. 482–485.

[52] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms. Spartan Books, 1961.

[53] L. M. Y. Freund, “The alternating decision tree learning algorithm,”
in Proceeding of the Sixteenth International Conference on Machine
Learning, 1999, pp. 124–133.

[54] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in Eleventh Conference on Uncertainty in Artificial
Intelligence. San Mateo: Morgan Kaufmann, 1995, pp. 338–345.

[55] S. le Cessie and J. van Houwelingen, “Ridge estimators in logistic
regression,” Applied Statistics, vol. 41, no. 1, pp. 191–201, 1992.

[56] R. Kohavi, “The power of decision tables,” in 8th European Conference
on Machine Learning. Springer, 1995, pp. 174–189.

[57] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic
regression analysis and reporting,” The Journal of Educational Research,
vol. 96, no. 1, pp. 3–14, 2002.

[58] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact
of classification techniques on the performance of defect prediction
models,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, vol. 1, May 2015, pp. 789–800.

[59] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach,
1982.

[60] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in systems
code,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 57–72, Oct. 2001.
[Online]. Available: http://doi.acm.org/10.1145/502059.502041

[61] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the Centre
for Advanced Studies on Collaborative Research, October 27-30, 2008,
Richmond Hill, Ontario, Canada. IBM, 2008, p. 23.

[62] E. J. W. J. Sunghun Kim and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering (TSE),
vol. 34, no. 2, pp. 181–196, 2008.

[63] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[64] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986. [Online]. Available: http://dx.doi.org/10.1023/A:
1022643204877

[65] H. Lu, E. Kocaguneli, and B. Cukic, “Defect prediction between
software versions with active learning and dimensionality reduction,” in
Software Reliability Engineering (ISSRE), 2014 IEEE 25th International
Symposium on, Nov 2014, pp. 312–322.

[66] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Software Engineering (ICSE), 2011 33rd International
Conference on, May 2011, pp. 481–490.

[67] T. Menzies and J. Di Stefano, “How good is your blind spot sampling
policy,” in High Assurance Systems Engineering, 2004. Proceedings.
Eighth IEEE International Symposium on, March 2004, pp. 129–138.

[68] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some
comments on the nasa software defect datasets,” Software Engineering,
IEEE Transactions on, vol. 39, no. 9, pp. 1208–1215, Sept 2013.

[69] F. Palomba, “Textual analysis for code smell detection,” in Proceedings
of the International Conference on Software Engineering (ICSE) -
Volume 2. IEEE, 2015, pp. 769–771.

http://dx.doi.org/10.1109/PROMISE.2007.10
http://tinyurl.com/hgorj4z
http://promisedata.googlecode.com
http://promisedata.googlecode.com
http://doi.acm.org/10.1145/502059.502041
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/A:1022643204877

	Introduction
	Related Work
	Bug Prediction using Structural-based Predictors
	Bug Prediction using Process-based Predictors

	A Specialized Bug PredictionModel for Smelly Classes
	Evaluation of the Proposed Model
	Empirical Study Definition and Design
	Analysis of the Results
	Threats to Validity

	Discussion and Further Analysis
	Comparing the presence/absence of smells rather than the intensity index
	Evaluating the Impact of False Positive Smells in the Bug Prediction Model
	Evaluating the Contribution of the Intensity Index in a Process Metrics-based Bug Prediction Model

	Conclusion and Future Work
	References

