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Abstract—Code smells have been defined as symptoms of poor
design and implementation choices. Previous studies showed
the negative impact of code smells on the comprehensibility
and maintainability of code. For this reasons, several detection
techniques have been proposed. Most of them rely on the analysis
of the properties extractable from the source code. In the context
of this work, we highlight several aspects that can possibly
contribute to the improvement of the current state of the art and
propose our solutions, based on the analysis on how code smells
are actually introduced as well as the usefulness of historical and
textual information to realize more reliable code smell detectors.
Finally, we present an overview of the open issues and challenges
related to code smell detection and management that the research
community should focus on in the next future.

I. CONTEXT

In 1993, Ward Cunningham coined the methaphor of techni-
cal debt [1] to explain the compromise between delivering the
most appropriate but still immature product in the shortest time
possible [1]. One of the key factors contributing to technical
debts are the so called bad code smells (a.k.a. code smells
or simply smells), namely symptoms of the presence of poor
design or implementation choices applied by programmers
during the development of a software system [2]. For instance,
a Long Method represents a method that implements a main
functionality together with auxiliary functions that should be
managed in different methods. Such methods can rapidly grow
out of control, making it harder and harder for developers to
understand them, to fix bugs or to add new features.

In the past and, most notably, in recent years, several
studies have been carried out in order to study the relevance
of code smells from developers’ perspective [3], [4], their
evolution and longevity in real software systems [5], [6], and,
more importantly, their impact on non-functional properties of
source code [7]–[10]. Specifically, previous work empirically
demonstrated that classes involved in design flaws are more
change- and fault-prone [7], other than less comprehensible
[8] and less maintainable than non-smelly classes [9], [10].

For all the aforementioned motivations, the research com-
munity has been particularly active in the definition of ap-
proaches able to promptly detect portion of source code
affected by a smell [11]–[13]. Most of them proposed the
identification of design flaws by (i) characterizing their key
symptoms using a set of thresholds based on the measurement
of structural metrics (e.g., if lines of code > k), and (ii)
combining the identified symptoms, leading to the final rule
for detecting the smells [11]–[13]. All these techniques mainly

differ in the set of structural metrics used for the detection
— which depends on the type of smell to identify — and
by how the symptoms identified are combined. For example, a
combination can be performed using AND/OR operators, such
in the case of the detection strategies proposed by Marinescu
[11]. In this context, Moha et al. [12] introduced DECOR, a
method for specifying and detecting smells using a Domain-
Specific Language (DSL). Specifically, DECOR detects four
types of smells, i.e., Blob, Swiss Army Knife, Functional
Decomposition, and Spaghetti Code.

Code smells can be also identified through the analysis of
the portions of code that need to be refactored. As an example,
Tsantalis et al. [13] defined JDeodorant, a tool able to detect
instances of the Feature Envy smell by analyzing the source
code in order to suggest where to apply operations of Move
Method refactorings. Following a similar phylosophy, Bavota
et al. proposed the use of Relational Topic Modeling to suggest
operations of Move Method [14] refactoring able to remove
the Feature Envy smell. The problem of smell detection has
been also formulated as an optimization problem, leading to
the usage of search algorithms to solve it [15]. The basic idea
is to use genetic algorithms to detect smells following the
assumption that what significantly diverges from good design
practices is likely to represent a design problem.

II. RESEARCH STATEMENT

Although existing approaches exhibit good detection accu-
racy, during our research we highlighted several aspects that
can be improved, summarizable as follow:

1) Previous research is mainly based on common wisdom
rather than be guided by the state-of-the-practice. In-
deed, the smell detectors proposed in literature do not
consider the circumstances that could have caused the
smell introduction, thus providing a detection only based
on structural properties characterizing the current version
of a system. The misalignment between theory and prac-
tice can cause an additional problem: smells detectable
by using current approaches might be far from what
developers actually perceive as design flaws [3], thereby
leading developers to not refactor smells [16], [17]. In our
opinion, to better support developers in planning actions
to improve source code quality, it is imperative to have a
contextualized understanding of the circumstances under
which particular smells occur.



2) The proposed techniques still might not be adequate for
detecting many of the smells described by Fowler [2].
In particular, while there are smells where the use of
structural analysis is suitable (e.g., the Complex Class
smell, a class having a high cyclomatic complexity), there
are also several other design flaws not characterized by
structurally visible problems. For example, a Divergent
Change occurs when a class is changed in different ways
for different reasons [2]. In this case, the smell is intrinsi-
cally characterized by how source code changes over time
and, therefore, the use of historical information may help
in its identification. At the same time, existing approaches
do not take into account the vocabulary of the source
code, that can be more effective in the identification
of poorly cohesive or more complex classes, as already
pointed out in previous research related to other software
engineering tasks [18], [19]. For instance, a Long Method
might be effectively identified by analyzing the textual
scattering in the source code of a method.

Based on these observations, our research has the goal to
address the following research questions:

• RQ1: When and why code smells are actually introduced
by developers?

• RQ2: How do approaches based on alternative sources
of information, such as the historical and the textual one,
perform in detecting code smells?

• RQ3: Are code smells detectable using alternative
sources of information more close to developers’ percep-
tion of design problems?

The final goal is to provide developers with more usable
detectors, able to (i) accurately detect design flaws taking into
account the way smells are generally introduced in the source
code, and (ii) propose recommendations that are closer to the
developers’ perspective.

III. RESEARCH RESULTS

The research conducted so far achieved the results reported
in the following.

A. When and Why Code Smells are Introduced?

We investigated how code smells are introduced by setting
up a large-scale empirical study conducted on the change
history of 200 open source projects belonging to three soft-
ware ecosystems, namely Android, Apache and Eclipse. The
study aimed at investigating (i) when smells are introduced
in software projects, and (ii) why they are introduced (i.e.
under what circumstances smell introductions occur and who
are the developers responsible for introducing smells) [20].
To address these research questions, we developed a metric-
based methodology for analyzing the evolution of code entities
in change histories of software projects to determine when
smells start manifesting themselves and whether this happens
suddenly (i.e., because of a pressure to quickly introduce a
change), or gradually (i.e., because of medium-to-long range

design decisions). We mined over 0.5M commits and we
manually analyzed 9,164 of those that were classified as
smell-introducing. The results achieved allowed us to report
quantitative and qualitative evidence on when and why smells
are introduced in software projects as well as implications of
these results, often contradicting common wisdom.

In particular, we found that most of the smells are intro-
duced when the (smelly) code artifact is created in the first
place, and not as the result of maintenance and evolution
activities performed on such an artifact. Moreover, code
artifacts becoming smelly as consequence of maintenance
and evolution activities are characterized by peculiar metrics’
trends, different from those of clean artifacts. These results
encourage the development of techniques able to recommend
smells by using information about the changes applied on code
artifacts. As for the motivations behind smells appearence, we
found that they are generally introduced by developers when
they work on the implementation of new features or enhancing
existing ones, even if we found almost 400 cases in which
refactoring operations introduced smells. Finally, newcomers
are not necessary responsible for introducing bad smells, while
developers with high workloads and release pressure are more
prone to introducing them.

B. Using Alternative Sources of Information for Smell Detec-
tion

To evaluate the suitability of alternative sources of infor-
mation in the context of smell detection, in our research we
developed two approaches relying on historical information
and textual analysis, coined as HIST (Historical Information
for Smell deTection) [21], [22] and TACO (Textual Analysis
for Code smell detectiOn) [23], respectively. In the following
subsections, we report a sketch of the features of the tech-
niques, as well as of the results achieved in the empirical
studies conducted to evaluate them.

HIST: The approach detects smells based on change history
information mined from versioning systems, and, specifically,
by analyzing co-changes occurring between source code ar-
tifacts [21], [22]. We instantiated HIST for detecting five
types of smells. Three of them—Divergent Change, Shotgun
Surgery, and Parallel Inheritance—are symptoms that can be
intrinsically observed from the project’s history. The remaining
two—Blob and Feature Envy—are smells that are tradition-
ally detected using structural information (e.g., [12], [13]).
However, we conjectured that in these cases the historical
information can help in capturing complementary, additionally
useful properties with respect to structural analysis.

To gather historical information from a versioning system
such as Git, HIST includes the Change History Miner
developed in the context of the MARKOS European project1,
a tool that is able to extract fine-grained changes, i.e., the
changes occurring to methods in every single commit of
the software system under analysis. In particular, the tool
(ii) downloads the change history log of a system, and (ii)

1http://markosproject.sourceforge.net



analyzes each pair of subsequent commits in order to identify
which methods have been changed from a commit to another.
The set of fine-grained changes computed by the Change
History Miner is provided as an input to the Code
Smell Detector, that identifies the list of code compo-
nents (if any) affected by specific smells. While the exploited
underlying information is the same for all target smells (i.e.,
the change history information), HIST uses custom detection
heuristics for each smell. For sake of space limitation, in this
paper we only provide indication about how our approach
detects the previously mentioned Divergent Change smell.

Given the definition of this smell, our conjecture is that
classes affected by Divergent Change present different sets of
methods each one containing methods changing together but
independently from methods in the other sets. The Code Smell
Detector mines association rules [24] for detecting subsets
of methods in the same class that often change together.
Association rule discovery is an unsupervised learning tech-
nique used for local pattern detection highlighting attribute
value conditions that occur together in a given dataset [24].
In HIST, the dataset is composed of a sequence of change
sets—e.g., methods—that have been committed (changed)
together in a version control repository. An association rule,
Mleft ⇒ Mright, between two disjoint method sets implies
that, if a change occurs in each mi ∈ Mleft, then another
change should happen in each mj ∈ Mright within the same
change set. The strength of an association rule is determined
by its support and confidence [24]:

Support =
|Mleft ∪Mright|

T

Confidence =
|Mleft ∪Mright|
|Mleft|

where T is the total number of change sets extracted from
the repository. In our approach, we perform association rule
mining using a well-known algorithm, namely Apriori [24].
Note that, minimum Support and Confidence to consider an
association rule as valid can be set in the Apriori algorithm.
Once HIST detects these change rules between methods of the
same class, it identifies classes affected by Divergent Change
as those containing at least two sets of methods with the
following characteristics:

1) The cardinality of the set is at least γ;
2) All methods in the set change together, as detected by

the association rules; and
3) Each method in the set does not change with methods in

other sets as detected by the association rules.
We have evaluated HIST in two empirical studies. In the first
the goal was to evaluate HIST detection accuracy in terms
of two well-known and widely-used Information Retrieval
metrics, namely precision and recall [25], against a manually-
produced oracle. Furthermore, whenever possible, we also
compared HIST with results produced by approaches that
detect smells by analyzing structural properties of the source
code, such as JDeodorant [13] (for the Feature Envy smell)

and our re-implementations of the DECOR’s [12] detection
rules (for the Blob smell) and of the approach by Rao et al.
[26] (for Divergent Change and Shotgun Surgery). The results
indicate that HIST’s precision is between 72% and 86%, and
its recall is between 58% and 100%. When comparing HIST to
alternative approaches, we observed that HIST tends to provide
better detection accuracy, especially in terms of recall, since
it is able to identify smells that other approaches are not able
to capture. Moreover, we observed a strong complementarity
of the structural-based approaches with respect to HIST,
suggesting that even better performances can be achieved by
combining these two complementary sources of information.

In the second empirical study we evaluated whether our
approach is actually able to provide recommendations about
code design problems that are recognized as such by software
developers. For this reason, we surveyed twelve developers in
order to investigate to what extent the smells detected by HIST
(and by the alternative structural techniques) reflect develop-
ers’ perception of poor design and implementation choices.
The results of this second study highlight that over 75%
of the smell instances identified by HIST are considered as
design/implementation problems by developers, that generally
suggest refactoring actions to remove them.

TACO: The approach [23] is able to identify five types
of smells related to promiscuous responsibilities, i.e., Long
Method, Blob, Promiscuous Package, Feature Envy, and Mis-
placed Class, using a three-step process, i.e., (i) textual content
extraction, (ii) application of IR normalization process, and
(iii) application of specific heuristics in order to detect the
target smells. In the first step TACO extracts all textual
elements needed for the textual analysis process of a software
project, i.e., source code identifiers and comments. Then, the
approach applies a standard IR normalization process [25]
aimed at (i) separating composed identifiers, (ii) reducing to
lower case letters the extracted words, (iii) removing special
characters, programming keywords and common English stop
words, and (iv) stemming words to their original roots via
Porter’s stemmer [27]. Thus, the smell detection process
relies on Latent Semantic Indexing (LSI) [28], an extension
of the Vector Space Model (VSM) [25], that models code
components as vectors of terms occurring in a given software
system. LSI uses Singular Value Decomposition (SVD) [29] to
cluster code components according to the relationships among
words and among code components (co-occurrences). The
original vectors (code components) are then projected into a
reduced k space of concepts to limit the effect of textual noise.
To this aim, TACO uses the well-known heuristic proposed
by Kuhn et al. [30], i.e., k = (m × n)0.2 where m denotes
the vocabulary size and n denotes the number of documents
(code components). Finally, smells are detected by measuring
the lack of textual similarity among their constituent code
components (e.g., vectors) using the cosine distance. For
example, a Blob is detected (i) by computing the average
similarity among the methods of the class, which correspond
to the textual cohesion of a class defined by Marcus and



Poshyvanyk [18]; and (ii) by applying the following formula
in order to calculate the probability PB that a class is affected
by the Blob smell:

PB(C) = 1− ClassCohesion(C) (1)

where ClassCohesion(C) represents the textual cohesion
of the class C [18]. For all the types of smells, TACO outputs
a value ranging in [0; 1], which indicates the probability of a
code component to be affected by a specific smell.

TACO has been evaluated in an empirical study involving
10 systems where our aim was to (i) evaluate the accuracy
of TACO in the detection of smells, and (ii) compare our ap-
proach with state-of-the-art structural-based detectors, namely
DECOR [12] for the Blob smell, JDeodorant [13] for the
Feature Envy smell, and the approaches proposed in [31] and
[32] for the Promiscuous Package and Misplaced Class smells,
respectively. The results of our study indicate that the precision
of TACO ranges between 67% and 77%, while its recall is
between 72% and 84%. When compared with the alternative
structural-based detectors, we experienced that most of the
times TACO outperforms these existing approaches. Finally,
we observed some complementarities between textual and
structural information suggesting, also in this case, that better
performance can be achieved by combining the two sources
of information.

IV. OPEN ISSUES AND CHALLENGES FOR THE FUTURE

The issues related to the management of code smells
have attracted an ever increasing attention by the research
community, interested in studying the dynamics behind code
smell introduction and evolution as well as of their detection
and removal. Although several steps ahead have been done
in recent years, there are still a number of problems which
preclude the transfer of such concepts in industry.

Open Issue #1: The techniques able to discover the
presence of code smells are not perfect. As highlighted in
our work, different techniques capture different smells using
different types of information [22], [23]. Thus, to obtain a
technique that significatively improves the current state-of-
the-art smell detectors, a combination of different sources
of information is needed. However, such a combination is
not trivial. For example, during the development of TACO
[23], we evaluated a simple combination between textual
and structural information obtained using AND/OR operators
for the detection of the Feature Envy smell: in the AND
case we experienced a strong increase of the precision (i.e.,
+17% than TACO, +27% than JDeodorant), accompanied by
a strong decreases of the recall (-34% than TACO, -31% than
JDeodorant). Similarly, in the OR case the recall strongly
increases (+24% than TACO, +34% than JDeodorant), while
the precision decreases of almost 39% for TACO and 36% for
JDeodorant). The construction of a hybrid technique is part of
our future agenda.

Open Issue #2: The quality of the suggestions matters.
As recently pointed out [16], [17], only a small percentage

of code smells is actually removed by developers. In our
opinion, the reason behind this data is twofold. First of all,
since the removal of code smells is a time-consuming and
error-prone task [33], it is important that such techniques
find relevant suggestions about which parts of the source
code a developer should care about. To this aim, the research
community needs to focus its attention on how to rank code
smells based on their importance for developers and/or the
context a developer is working on. While some attempts in
this direction have already carried out [34], [35], we believe
that these aspects need to be still improved in next years.
Secondly, as revealed in our research on how code smells
are introduced [20], code components are generally affected
by bad smells since their creation. This means that new
recommenders implementing a just-in-time philosophy would
be worthwhile. On the other hand, we found that there are
also several cases in which code smells are introduced as
consequence of several maintenance activities performed on
a code artifact. In these cases, such code components are
characterized by peculiar metrics’ trends, different from those
of clean artifacts. This implies the possibility to define a new
generation of recommenders able to predict which classes will
become smelly over time and, therefore, allow a more suitable
way to manage code smells.

Open Issue #3: Improving the Usability of Code Smell
Detectors. Detection tools might require the definition of
several parameters. Thus, they might be hard to understand and
to work with, making developers more reluctant to use such
tools. In addition, it is necessary to define a good strategy for
the visualization and the analysis of candidate smells. This
issue is particular important since the smells identified by
any detection tool need to be validated by the user. Thus,
a good graphic metaphor is required to highlight problems
to the developer’s eye, allowing her to decide which of the
code components suggested by the tool really represent design
problems.

Open Issue #4: Smell detection is not just a problem
for its own sake. Although part of the research community
is still skeptical about the problem of code smell detection
(even considering that smells are generally not removed),
the information about the bad designed source code may be
useful not only for detecting portion of code that should be
refactored. Indeed, as demonstrated in our recent work, the
quality of source code can be effectively used in different other
software engineering tasks. For example, we demonstrated
the usefulness of smell-related information for improving
bug prediction performance [36], as well as in the context
of automatic test case generation [37]. We believe that the
research community should investigate these aspects more in
depth.
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