
Towards Automated Tools for Detecting Test Smells:
An Empirical Investigation into the Nature of Test Smells

Michele Tufano1, Fabio Palomba2, Gabriele Bavota3, Massimiliano Di Penta4

Rocco Oliveto5, Andrea De Lucia2, Denys Poshyvanyk1

1 The College of William and Mary, USA — 2 University of Salerno, Italy
3 Free University of Bozen, Italy — 4 University of Sannio, Italy — 5 University of Molise, Italy

ABSTRACT
Test smells have been defined as poorly designed tests and,
as reported by recent empirical studies, their presence may
negatively affect comprehension and consequently mainte-
nance of test suites. Despite this, there are no available au-
tomated tools to support identification and removal of test
smells. In this paper, we firstly investigate developers’ per-
ception of test smells in a study with 19 developers. The
results show that developers generally do not recognize (po-
tentially harmful) test smells, highlighting that automated
tools for identifying such smells are much needed. How-
ever, to build effective tools, deeper insights into the test
smells phenomenon are required. To this aim, we conducted
a large-scale empirical investigation aimed at analyzing (i)
when test smells occur in source code, (ii) what their surviv-
ability is, and (iii) whether their presence is associated with
the presence of design problems in production code (code
smells). The results indicate that test smells are usually in-
troduced when the corresponding test code is committed in
the repository for the first time, and they tend to remain
in a system for a long time. Moreover, we found various
unexpected relationships between test and code smells. Fi-
nally, we show how the results of this study can be used to
build effective automated tools for test smell detection and
refactoring.

1. INTRODUCTION
Testing represents a significant part of the whole software

development effort [9]. When evolving a software system,
developers evolve test suites as well by repairing them when
needed and by updating them to synch with the new ver-
sion of the system. To ease developers’ burden in writing,
organizing, and executing test suites, nowadays appropriate
frameworks (e.g., JUnit [9])—conceived for unit testing but
also used beyond unit testing—are widely used.

Concerning other code artifacts (in the following referred
to as “production code”) researchers have provided defini-
tions of symptoms of poor design choices, known as “code

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

smells” [12] for which refactoring activities are desirable.
Subsequently, researchers developed automated tools to de-
tect them (e.g., [6, 36]), and empirically studied the de-
velopers’ awareness of such smells [27] as well as the rela-
tionship between smells and negative phenomena such as
higher fault- and change-proneness [17]. At the same time,
researchers have also confuted some common wisdom about
“software aging”, showing that often the presence of code
smells is not necessarily due to repeated changes performed
on source code artifacts during their evolution, rather in
most cases smells are introduced when such artifacts are
created [37]. In conclusion, both researchers and practition-
ers are carefully looking at the code smells identification,
and, nowadays, smell detection is often included as a part
of continuous integration and delivery processes [5, 35].

A quite related phenomenon to code smells can also oc-
cur in test suites, which can be affected by test smells. Test
smells—defined by van Deursen et al. [38]—are caused by
poor design choices (similarly to code smells) when develop-
ing test cases: the way test cases are documented or orga-
nized into test suites, the way test cases interact with each
other, with the production code and with external resources
are all indicators of possible test smells. For instance, Mys-
tery Guest occurs when a test case is using an external re-
source such as a file or database (thus, making the test non
self-contained), and Assertion Roulette when a test case con-
tains multiple assertions without properly documenting all
of them [38].

Empirical studies have shown that test smells can hinder
the understandability and maintainability of test suites [7],
and refactoring operations aimed at removing them have
been proposed [38]. Nevertheless, it is still not clear how
developers perceive test smells and whether they are aware
of them at all. Also, it is not known whether test smells are
introduced as such when test suites are created, or whether
test suites become “smelly” during software evolution, and
whether developers perform any refactoring operations to
remove test smells. Such information is of paramount im-
portance for designing smell detection rules and building
automated detection tools to be incorporated in the devel-
opment process, and especially in the continuous integration
processes (where automated tools could make build fail be-
cause of test smells). Highlighting test smells in scenarios
where it is known that developers do not want and need to
maintain them—e.g., because there is no better solution—
would make automated smell detection tools usable, avoid-
ing recommendation overload [25] and even build failures.

1



Paper contribution. This paper reports a thorough em-
pirical investigation into the perceived importance of test
smells and of their lifespan across software projects’ change
histories. First, we conducted a survey with 19 develop-
ers in which we assessed whether developers could recognize
instances of test smells in software projects. Such a sur-
vey obtained a clear negative result, indicating that, unlike
what previously found for code smells [27], there is basi-
cally no awareness about test smells, highlighting the need
for (semi-) automatic support to aid in detecting these de-
sign issues. Thus, we conducted a mining study over the
change history of 152 software projects to gather the deeper
knowledge needed to design effective test smells detectors.
In the context of this study we investigate (i) when test
smells are introduced; (ii) how long test smells survive (and
whether developers try to remove them); and (iii) whether
test smells are related to the presence of smells in production
code, and, therefore, there can be synergies in their detection
and recommendation. The achieved results indicate that (i)
test smells mostly appear as the result of bad design choices
made during the creation of the test classes, and not as the
result of design quality degradation over time, (ii) test smells
stay in the system for a long time, with a probability of 80%
that a test smell would not be fixed after 1,000 days from its
introduction, and (iii) complex classes (e.g., Blob classes) in
the production code are often tested by smelly test classes,
thus, highlighting a relationship existing between code and
test smells.

Paper structure. Section 2 describes the survey we
performed to investigate the developers’ perception of test
smells. Section 3 details the mining study definition and
planning, while results are reported in Section 4. Threats to
the studies validity are discussed in Section 5. After a dis-
cussion of the related work (Section 6), Section 7 concludes
the paper and outlines directions for future work.

2. TEST SMELL PERCEPTION
Automatic detection tools are particularly needed when

developers are not able to identify (perceive) a design prob-
lem and, as a consequence, to refactor it. In this section,
we report the design and the results of a survey we con-
ducted with the aim of understanding whether developers
perceive test smells as design problems. Specifically, we aim
at answering the following research question:

• RQ0: Are test smells perceived by developers as actual
design problems?

Our study focuses on five types of test smells from the
catalogue by van Deursen et al. [38]:

1. Assertion Roulette (AR): As defined by van Deursen
et al. this smell comes from having a number of asser-
tions in a test method that have no explanation [38].
Thus, if an assertion fails, the identification of the as-
sert that failed can be difficult. Besides removing the
unneeded assertions, to remove this smell and make
the test more clear an operation of Add Assertion Ex-
planation can be applied [38].

2. Eager Test (ET): A test is affected by Eager Test when
it checks more than one method of the class to be
tested [38], making the comprehension of the actual
test target difficult. The problem can be solved by

applying Extract Method refactoring, splitting the test
method in order to specialize its responsibilities [12].

3. General Fixture (GF): A test class is affected by this
smell when the setUp method is too generic and the
test methods only access part of it [38]. In other words,
the test fixture is not only responsible for setting the
common environment for all the test methods. A suit-
able refactoring to remove the smell is the Extract
Method, which reorganizes the responsibilities of the
setUp method [12].

4. Mystery Guest (MG): This smell arises when a test
uses external resources (e.g., a file containing test data),
and thus it is not self-contained [38]. Tests containing
such a smell are difficult to comprehend and maintain,
due to the lack of information to understand them.
To remove a Mystery Guest a Setup External Resource
operation is needed [38].

5. Sensitive Equality (SE): When an assertion contains
an equality check through the use of the toString

method, the test is affected by a Sensitive Equality
smell. In this case, the failure of a test case can depend
on the details of the string used in the comparison, e.g.,
commas, quotes, spaces etc. [38]. A simple solution for
removing this smell is the application of an Introduce
Equality Method refactoring, in which the use of the
toString is replaced by a real equality check.

While several other smells exist in literature [38], we de-
cided to limit our analysis to a subset in order to focus the
questions for survey’s participants on a few smell types, al-
lowing to collect more opinions for the same smell. However,
we take into account a fairly diverse catalogue of test smells,
which are related to different characteristics of test code. As
reported in a previous work [8], our selection includes test
smells having the greatest diffusion in both industrial and
open source projects.

To answer our research question, we invited the original
developers of five software projects from the Apache and
Eclipse ecosystems, namely Apache James Mime4j, Apache
JSPWiki, Apache POI, Eclipse Mylyn, and Eclipse Platform
UI. These projects represent a subset of those considered
in our larger mining study described in Section 3, and they
were selected because they contain all types of smells from
the considered catalogue. For this study, smells were manu-
ally identified by one of the authors and double-checked by
another author.

We chose to involve original developers rather than ex-
ternal developers (i.e., developers with no experience on
the subject systems) since we wanted to collect the opin-
ions of developers that actually developed the systems un-
der analysis and, therefore, have a good knowledge about
the rationale behind the design choices applied during the
development of such systems. In total, we invited 298 de-
velopers receiving responses from 19 of them: three from
Apache James Mime4j, one from Apache JSPWiki, six from
Apache POI, one from Eclipse Mylyn, and eight from Eclipse
Platform UI. Note that even though the number of respon-
dents appears to be low (6.3% response rate), our results are
close to the suggested minimum response rate for the survey
studies, which is defined around 10% [15].

2.1 Survey Questionnaire Design
The general idea behind the study design was to show, to

2



each developer, one test smell instance of each type. This is
done to avoid having a long questionnaire that might have
discouraged developers to take part in our study. For each
test smell instance, the study participants had to look at the
source code and answer the following questions:

1. In your opinion, does this class have any design prob-
lem? Please, rate your opinion from 1=strongly dis-
agree to 5=strongly agree.

2. If you agreed or strongly agreed to the question
number 1, please explain what are, in your opinion,
the design problems of this class.

3. If you agreed or strongly agreed to the question
number 1, please explain why the design problem has
been introduced.

4. If you agreed or strongly agreed to the question
number 1, do you think that this class needs to be
refactored? Please, rate your opinion from 1=strongly
disagree to 5=strongly agree.

5. If you agreed or strongly agreed to the question
number 4, how would you refactor this class?

The survey was designed to be completed within approxi-
mately 30 minutes.

To automatically collect the answers, the survey was hosted
using a Web application, eSurveyPro1. Developers were
given 20 days to respond to the survey. Note that the Web
application allowed developers to complete the questionnaire
in multiple rounds, e.g., to answer the first two questions in
one session and finish the rest later. At the end of the re-
sponse period, we collected developers’ answers of the 19
complete questionnairs in a spreadsheet in order to perform
data analysis. Note that the developers of the five systems
were invited to evaluate only the test smells detected in the
system they contribute to.

2.2 Analysis Method
To answer RQ0 we computed:

1. The distribution of values assigned by developers when
evaluating whether the analyzed test classes had a de-
sign problem (question #1 of the survey).

2. The percentage of times the smell has been identi-
fied by the participants. By identified we mean cases
where participants, besides perceiving the presence of
a smell, were also able to identify the exact smell af-
fecting the analyzed test code, by describing it when
answering question #2 of the survey. Note that we
consider a smell as identified only if the design prob-
lems described by the participant are clearly traceable
onto the definition of the test smell affecting the code
component.

3. The distribution of values assigned by developers when
evaluating whether the test classes analyzed should be
refactored (question #4 of the survey).

4. The percentage of times the refactoring of the test
smell has been identified by the participants (ques-
tion #5 of the survey). In this case, by identified we
mean cases where participants correctly identified how
the design problems affecting the test class should be
removed.

1http://www.esurveyspro.com

Table 1: Answers to the survey for questions #1 and #4.

Question
Answer

1 2 3 4 5
#1 78 1 4 8 4
#4 87 1 1 7 0

Moreover, we collected the answers to question #3 in order
to understand the reasons why test smells are introduced.

2.3 Analysis of the Results
Table 1 reports the distribution of values assigned by de-

velopers when answering the questions #1 and #4, respec-
tively. We can see that often developers do not perceive test
smells as actual problems. Indeed, only in 17 cases (out of
the 95 total test smells analyzed by the developers) a design
flaw has been identified (i.e., answers to question #1 with
value > 1). These answers come from only five developers
(out of 19). In these cases, however, participants were of-
ten not able to correctly diagnose the test smell affecting
the analyzed test code (only in 2% of the cases developers
correctly identified a test smell). Moreover, when analyzing
the answers to question #4 of the survey, we found that al-
most always (91% of the cases) participants did not feel that
the refactoring activity would be beneficial to improve the
design of the considered test classes. For this reason, devel-
opers were not able to provide good suggestions for possible
refactoring operations (question #5).

The most important feedback we obtained from this study
is related to the answers provided when answering question
#3. As an example, analyzing an instance of Eager Test, a
developer from Apache POI claimed that “probably the code
was written in a hurry and was never reviewed”. Also, a de-
veloper from Eclipse Platform UI claimed that “the code
analyzed was introduced in 2002 and hasn’t got much atten-
tion”. This feedback highlights that, even when perceiving
design flaws, developers are not able to correctly identify
and explain the reasons behind test smell introduction. This
constitutes the need for automated tool support in order to
alert developers about the presence of test smells in the test
code that they produce.

3. TEST SMELL LIFECYCLE: DESIGN
The goal of the study is to analyze the change history of

software projects, with the purpose of investigating when
test smells are introduced by developers, what is their sur-
vivability, and whether they are associated with code smells
in production code. The context of the study consists of 152
open source projects belonging to two ecosystems (Apache
and Eclipse) for which we investigated the presence and evo-
lution of test smells.

3.1 Research Questions and Context
The study aims at answering the following research ques-

tions:

• RQ1: When are Test Smells introduced? This re-
search question aims at assessing whether test smells
are introduced as a consequence of maintenance ac-
tivities performed on test classes or whether they are
introduced as soon as the corresponding test class is
committed to the repository for the first time. Re-
sults of RQ1 will help understanding the kind of auto-

3



Table 2: Characteristics of the ecosystems under analysis.

Ecosystem #Proj. #Classes KLOC #Commits
Mean Story Min-Max

Length Story Length
Apache 164 4-5,052 1-1,031 207,997 6 1-15
Eclipse 26 142-16,700 26-2,610 264,119 10 1-13
Overall 190 - - 472,116 6 1-15

matic detection tools developers need to identify test
smells, and the way such tools should be integrated in
the development process. Indeed, if test smells are in-
troduced as the result of continuous maintenance and
evolution activities, then detectors can be executed pe-
riodically, or as a part of a continuous build process, as
it happens with approaches proposed in the literature
to catch code smells (e.g., [23, 28]). Instead, if test
smells are introduced when the test code is written
in the first place, then just-in-time refactoring tools
could be built; such tools should continuously monitor
the (test) code written in the IDE, alerting the devel-
oper when it is deviating from good design practices,
thus avoiding the introduction of the (test) smells in
the first place.

• RQ2: What is the longevity of Test Smells? This re-
search question aims at analyzing the lifetime of test
smells, with the goal of understanding to what extent
they remain in a software project from their introduc-
tion until their (possible) removal. Long living test
smells are likely to indicate design issues difficult to
catch for software developers, thus indicating the need
for (semi-)automated detection tools.

• RQ3: Are Test Smells associated with particular Code
Smells affecting the Production Code? In this research
question, we intend to assess whether test smells are
usually associated with design problems occurring in
production code. While test and code smells have a
different nature, uncovering relationships between the
two can highlight possible synergies in their detection
and refactoring recommendation.

The context of the study consists of 190 software projects
belonging to two different ecosystems, i.e., those managed
by the Apache Software Foundation and by the Eclipse Foun-
dation. Table 2 reports for each ecosystem (i) the number of
projects analyzed, (ii) size ranges in terms of the number of
classes and KLOC, (iii) the overall number of commits ana-
lyzed, and (iv) the average, minimum, and maximum length
of the projects’ history (in years) analyzed in each ecosys-
tem. All the analyzed projects are hosted in Git reposito-
ries. The Apache ecosystem consists of 164 Java systems
randomly selected among those available2, while the Eclipse
ecosystem consists of 26 projects randomly mined from the
list of GitHub repositories managed by the Eclipse Founda-
tion3. The choice of the ecosystems to analyze is not ran-
dom, but guided by the will to consider projects having (i)
different scope, (ii) different sizes, and (iii) different architec-
tures, e.g., we have Apache libraries as well as plug-in based
architectures in Eclipse projects. From the original dataset,
we discarded projects having no Test Case in their entire
change history. This was the case for 36 Apache projects
and 2 Eclipse projects, thus leading to 152 total projects an-
alyzed. Table 3 reports the distribution of number of Test

2https://projects.apache.org/indexes/quick.html
3https://github.com/eclipse

Table 3: Test Cases found in the analyzed projects.

Ecosystem Min. 1st Qu. Median Mean 3rd Qu. Max.
Apache 1 9 35 78 96 553
Eclipse 1 15 32 102 106 809

Cases identified in the 152 analyzed projects. The complete
list of projects and the number of Test Cases identified is
available in our (anonymized) online appendix [1].

The study focuses on the five types of test smells also con-
sidered in the survey: Assertion Roulette, Eager Test, Gen-
eral Fixture, Mystery Guest, and Sensitive Equality. Also,
since in the context of RQ3 we assess the possible relation-
ship between test and code smells, in our study we consider
the following types of code smells:

1. Blob Class: a large class with different responsibilities
that monopolizes most of the system’s processing [10];

2. Class Data Should be Private: a class that exposes
its attributes, thus, violating the information hiding
principle [12];

3. Complex Class: a class having a high cyclomatic com-
plexity [10];

4. Functional Decomposition: a class where inheritance
and polymorphism are poorly used, declaring many
private fields and implementing few methods [10];

5. Spaghetti Code: a class without structure that declares
long methods without parameters [10].

This analysis is limited to a subset of the smells that exist
in literature [10, 12] due to the computational constraints.
However, we preserve a mix of smells related to complex/large
code components (e.g., Blob Class, Complex Class) as well
as smells related to the lack of adoption of good Object-
Oriented coding practices (e.g., Class Data Should be Pri-
vate, Functional Decomposition).

3.2 Data Extraction
To answer our research questions, we firstly cloned the Git

repositories of the subject software systems. Then, we mined
the evolution history of each repository using a tool that we
developed, named HistoryMiner: it checks out each com-
mit of a repository in chronological order and identifies the
code files added and modified in each specific commit. Note
that only java files are considered as code files, while the
remaining files are discarded (e.g., building files, images).

3.2.1 Artifact lifetime log
For each commit HistoryMiner classifies code files in two

sets: test classes and production classes. Specifically, a file
is classified as a test class if the corresponding Java Class
extends the class junit.framework.TestCase. Those code
files, which are not classified as test classes, are considered as
production classes. Finally, for each test class identified, our
tool analyzes the structural dependencies of the test code
to identify the list of associated production classes (i.e., the
classes exercised by the test class). All production classes
having structural dependencies (e.g., method invocations)
with a test class Ct are considered as exercised by Ct.

The output of HistoryMiner is an artifact lifetime log for
each code file of a project repository. The tool generates two
different types of lifetime log for Test Cases and Production
Classes. For each test file ftc in the project repository, the
tool outputs a logtc which contains a row for each commit

4



Table 4: Rules used to detect test smells [7].
Name Abbr. Description
Assertion Roulette AR JUnit classes containing at least one

method having more than one assertion
statement, and having at least one asser-
tion statement without explanation.

General Fixture GF JUnit classes having at least one method
not using the entire test fixture defined in
the setUp() method

Eager Test EG JUnit classes having at least one method
that uses more than one method of the
tested class.

Mystery Guest MG JUnit classes that use an external resource
(e.g., a file or database).

Sensitive Equality SE JUnit classes having at least one assert
statement invoking a toString method.

which modified ftc. The i-th row contains the following
fields:

• ftc.name: the fully qualified name of ftc;

• ci.id: the commit hash of the i-th commit which mod-
ified ftc;

• ci.time: the timestamp when the i-th commit has been
performed in the repository;

• TStc: the list of the Test Smells affecting ftc at ci.time
(if any);

• PCtc: the list of fully qualified names of production
classes having structural dependencies with ftc. We
assume these classes to be the ones exercised by ftc.

Similarly, for each production class file fpc in the project
repository, the tool outputs a logpc which contains a row for
each commit which modified fpc. The i-th row contains the
following fields:

• fpc.name: the fully qualified name of ftc;

• ci.id: the commit hash of the i-th commit which mod-
ified fpc;

• ci.time: the timestamp when the i-th commit has been
performed in the repository;

• CSpc: the list of the Code Smells affecting fpc at
ci.time (if any).

With the collected information we are able to identify for
a given test file ftc the list of code smells affecting the pro-
duction classes it tests (PCtc) at any moment in time (this
is needed in order to answer RQ3). In particular, given a
commit ci modifying ftc, we retrieve the list of code smells
affecting each class C ∈ PCtc at time ci.time by:

• Retrieving, among all commits affecting (i.e., adding/-
modifying) C, the one (cj) having the greatest times-
tamp lower than ci.time (i.e., the commit affecting C
being the “closest” in terms of time to ci among those
preceding ci).

• Consider the smells affecting C at time cj .time as the
ones affecting it also at time ci.time, when the commit
modifying ftc was performed.

3.2.2 Identification of smells
In the context of our analysis we had to identify test and

production code smells at each commit. Given the high
number of commits analyzed (i.e., 472,116), a manual de-
tection is practically infeasible. For this reason, during the
analysis of each commit HistoryMiner used automated de-
tection approaches to identify both test and code smells.

Concerning the test smell detection, HistoryMiner relied
on the approach proposed by Bavota et al. [7] to detect the
five analyzed test smells. Such an approach applies a heuris-
tic metric-based technique that overestimates the presence
of test design flaws with the goal of identifying all the test
smell instances (i.e., it targets 100% recall). Table 4 reports
the set of rules used by the tool in order to detect instances of
test smells. For example, it marks JUnit classes as affected
by General Fixture those having at least one test method not
using the entire test fixture defined in the setUp() method.
This approach has been shown to have a precision higher
than 70% for all detected smells [7]. However, it is not able
to recommend refactoring operations to remove the identi-
fied smells, thus only providing a very limited support to
software developers interested in removing test smells from
their system.

As for the code smells detection, we run on each commit
an implementation of the DECOR smell detector based on
the original rules defined by Moha et al. [23]. DECOR iden-
tifies smells using detection rules rooted in internal quality
metrics4. The choice of using DECOR is driven by the fact
that (i) it is a state-of-the-art smell detector having a high
accuracy in detecting smells [23]; and (ii) it applies simple
detection rules that make it very efficient.

3.3 Data Analysis
In this section we describe the data analysis performed to

answer each of the three formulated research questions.

3.3.1 RQ1: When are Test Smells introduced?
We analyzed each lifetime log for a test file ftc to iden-

tify for each test smell TSk affecting it the following two
commits:

• ccreation: The first commit creating ftc (i.e., adding it
in the versioning system);

• csmellk : The first commit where TSk is detected in ftc
(i.e., the commit in which TSk has been introduced).

Then, we analyze the distance between ccreation and csmellk

in terms of number of commits, considering only the com-
mits which involved ftc. We show the distribution of such
distances for each type of test smell as well as for all test
smell instances aggregated.

3.3.2 RQ2: What is the longevity of Test Smells?
To address RQ2, we need to determine when a smell has

been introduced and when a smell disappears from the sys-
tem. To this aim, given a test smell TSk affecting a test
file ftc, we analyze logtc and formally define two types of
commits:

• Smell-introducing commit: the first chronological com-
mit ci where TSk has been detected.

• Smell-removing commit: the first chronological com-
mit cj following the smell-introducing commit ci in
which the test smell TSk no longer affects ftc.

Given a test smell TSk, the time interval between the
smell-introducing commit and the smell-removing commit
is defined as smelly interval, and determines the longevity
of TSk. Given a smelly interval for a test smell affecting the

4An example of detection rule exploited to identify Blob
classes can be found at http://tinyurl.com/paf9gp6.

5



file ftc and bounded by the last-smell-introducing commit ci
and the smell-removing commit cj , we compute as proxies
for the smell longevity:

• #commits: the total number of commits between ci
and cj ;

• #tcChanges: the number of commits between ci and
cj that modified the test case ftc (a subset of the pre-
viously defined set #commits);

• #days: the number of days between the introduction
of the smell (ci.time) and its fix (cj .time).

Note that since we are analyzing a finite change history
for a given repository, it could happen that for a specific
file and a smell affecting it we are able to detect the smell-
introducing commit but not the smell-removing commit, due
to the fact that the file is still affected by the test smell in
the last commit. In other words, we can discriminate two
different types of smelly intervals in our dataset:

• Closed smelly intervals: intervals delimited by a smell-
introducing commit as well as by a smell-removing
commit;

• Censored smelly intervals: intervals delimited by a
smell-introducing commit and by the end of the change
history (i.e., the date of the last commit we analyzed).

The collected data was used to answer the following sub-
questions.

RQ2.1 How long does it take to fix a test smell? We
analyze only the closed smelly intervals, which correspond to
the fixed test smell instances. For each type of test smell we
show the distribution of #commits, #tcChanges and #days
related to the closed smelly intervals.

RQ2.2 What is the percentage of test smell in-
stances fixed? We report, for each type of test smell, the
percentage of fixed instances (i.e., closed smelly intervals).
In doing this, we pay particular attention to the censored
intervals related to test smells introduced towards the end
of the observable change history of each project repository.
This is because for those instances developers might not have
had enough time to fix them. Indeed, we compute the per-
centage of fixed and not fixed instances by progressively re-
moving instances introduced x days before the date of the
last commit of the project repository we mined. To define
x, we use the results of the previous sub-research question
related to the number of days usually needed to fix a test
smell. Therefore, we compute the percentages of fixed and
not fixed test smell instances using: (i) all the smelly inter-
vals; (ii) excluding censored intervals using x=1st quartile
of the #days to fix a test smell; (iii) x=median value; (iv)
x=3rd quartile. It is worth noting that while in general any
test smell instance defining a censored interval could poten-
tially be fixed in the future, this is progressively less likely
to happen as the time goes by.

RQ2.3 What is the survivability of Test Smells? We
answer this subquestion by relying on survival analysis [32],
a statistical method that aims at analyzing and modeling
the time duration until one or more events happen. Such
time duration is modeled as a random variable and typically
it has been used to represent the time to the failure of a
physical component (mechanical or electrical) or the time
to the death of a biological unit (patient, animal, cell, etc.)
[32]. The survival function S(t) = Pr(T > t) indicates
the probability that a subject (in our case the code smell)

survives longer than some specified time t. The survival
function never increases as t increases; also, it is assumed
S(0) = 1 at the beginning of the observation period, and, for
time t→∞, S(∞)→ 0. The goal of the survival analysis is
to estimate such a survival function from data and assess the
relationship of explanatory variables (covariates) to survival
time. Time duration data can be of two types:

1. Complete data: the value of each sample unit is ob-
served or known. For example, the time to the failure
of a mechanical component has been observed and re-
ported. In our case, the code smell disappearance has
been observed.

2. Censored data: The event of interest in the analysis
has not been observed yet (so it is considered as un-
known). For example, a patient cured with a particular
treatment has been alive till the end of the observation
window. In our case, the smell remains in the system
until the end of the observed project history. For this
sample, the time-to-death observed is a censored value,
because the event (death) has not occurred during the
observation.

Both complete and censored data can be used, if prop-
erly marked, to generate a survival model. The model can
be visualized as a survival curve that shows the survival
probability as a function of the time. In the context of our
analysis, the population is represented by the test smell in-
stances while the event of interest is its fix. Therefore, the
“time-to-death” is represented by the observed time from the
introduction of the test smell instance, till its fix (if observed
in the available change history). We refer to such a time pe-
riod as “the lifetime” of a test smell instance. Complete data
is represented by those instances for which the event (fix)
has been observed, while censored data refers to those in-
stances which have not been fixed in the observable window.
We generate survival models using both the # of days and
the # of commits in the smelly intervals as time variables.
We analyzed the survivability of test smells by ecosystem.
That is, for each ecosystem, we generated a survival model
for each type of test smell by using R and the survival

package5. In particular, we used the Surv type to gener-
ate a survival object and the survfit function to compute
an estimate of a survival curve, which uses Kaplan-Meier
estimator [16] for censored data.

It is important to highlight that, while the survival anal-
ysis is designed to deal with censored data, we performed
a cleaning of our dataset aimed at reducing possible biases
caused by censored intervals before running the analysis. In
particular, test smell instances introduced too close to the
end of the observed change history can potentially influence
our results, since in these cases the period of time needed for
their removal is too small for being analyzed. Thus, as done
for the previous sub-question, we excluded from our sur-
vival analysis all censored intervals for which the last-smell-
introducing commit was “too close” to the last commit we
analyzed in the system’s change history (i.e., for which the
developers might not have had “enough time” to fix them).
In the paper we report the survival analysis considering all
the closed and censored intervals (no instances removed).
The results of the survival analysis with different thresholds
to clean the dataset are available on our online appendix [1].

5https://cran.r-project.org/package=survival

6



Table 5: RQ1: Number of commits between the creation of
the Test Case and the introduction of a Test Smell.

Ecosystem Smell Min. 1st Qu. Median Mean 3rd Qu. Max % Smelly1st

AR 0 0 0 0.13 0 58 96
ET 0 0 0 0.12 0 245 97

Apache GF 0 0 0 0.27 0 23 93
MG 0 0 0 0.49 0 245 93
SE 0 0 0 0.59 0 62 90
AR 0 0 0 0.37 0 99 96
ET 0 0 0 0.13 0 26 98

Eclipse GF 0 0 0 0.41 0 99 94
MG 0 0 0 1.13 0 56 91
SE 0 0 0 1.79 0 102 88

3.3.3 RQ3: Are Test Smells associated with particu-
lar Code Smells affecting the production code?

For each test file ftc, we collect the set of test smells (TStc)
affecting it at the time of its creation as well as the set of code
smells (CSPCtc) affecting the production classes exercised
by ftc (PCtc) at the same time. The goal is to identify
patterns of co-occurrence among items belonging to TStc

and items of CSPCtc . To do so, we generate a database
of transactions, which contains a transaction for each test
file ftc. Each transaction contains the test and code smells
in TStc and CSPCtc as items. Note that if TStc is empty,
we insert the item cleanTC to represent a test file created
without any test smell. Similarly, if CSPCtc is empty, we
insert the item cleanPC.

We analyze such database of transactions using Associa-
tion Rule Mining [3] to identify patterns of co-occurrence of
test and code smells. In particular, we use the statistical
software R and the package arules.

4. TEST SMELL LIFECYCLE: RESULTS
This section reports the results of our empirical study.

4.1 RQ1: Introduction of Test Smells
Table 5 reports, for each ecosystem, the statistics of the

distribution of the number of commits needed by each test
smell type to manifest itself. Also, the last column of Ta-
ble 5 reports the percentage of test smell instances that have
been introduced when the affected test class has been com-
mitted for the first time. The results shown in Table 5 clearly
highlight one finding: test smells mostly appear as the result
of bad design choices made during the creation of the test
classes, and not as the result of design quality degradation
during maintenance and evolution activities. Indeed, for all
the considered test smell types the 3rd quartile of the distri-
butions equals zero (i.e., the commit which introduces the
smell is the same which introduces the test class). Also,
for all test smells and in both ecosystems, at least 88% of
the smell instances are introduced when the artifact is cre-
ated and committed for the first time in the repository (see
last column in Table 5). This result is in line with previous
findings on code smells in production code [37], and it con-
tradicts the common wisdom for which test smell instances
are the result of test code evolution [38]. For this reason, fu-
ture automatic identification tools should take into account
the fact that the lifespan of test smells starts, in most of
the cases, with the creation of a test case. IDEs and au-
tomatic refactoring tools should pay particular attention to
when test classes are firstly created and committed to the
repository, since their quality can be compromised by the
presence of a design flaw. Promptly suggesting an alterna-
tive design (or refactorings) for a newly created test class

Table 6: Percentage of fixed instances in the observed change
history using different thresholds to remove censored inter-
vals.

Smell History Apache Eclipse Overall
All 0.97 2.03 1.15
Excluding 1st Q. 0.98 2.03 1.16
Excluding Median 1.00 2.03 1.18

AR

Excluding 3rd Q. 1.06 2.05 1.25

ET

All 2.31 1.71 2.19
Excluding 1st Q. 2.39 1.71 2.24
Excluding Median 2.39 1.71 2.24
Excluding 3rd Q. 2.48 1.72 2.32
All 3.29 2.99 3.22
Excluding 1st Q. 3.32 2.99 3.24
Excluding Median 3.41 2.99 3.31

GF

Excluding 3rd Q. 3.70 3.13 3.55

MG

All 2.23 5.39 2.71
Excluding 1st Q. 2.25 5.39 2.73
Excluding Median 2.27 5.39 2.74
Excluding 3rd Q. 2.35 5.39 2.82
All 3.50 7.38 4.21
Excluding 1st Q. 3.51 7.41 4.22
Excluding Median 3.53 7.53 4.31

SE

Excluding 3rd Q. 3.82 7.56 4.52

All

All 2.09 2.57 2.18
Excluding 1st Q. 2.11 2.57 2.20
Excluding Median 2.15 2.57 2.24
Excluding 3rd Q. 2.27 2.62 2.34

could significantly increase the chances of having a clean
test class.

4.2 RQ2: Longevity of Test Smells
When evaluating the survivability of test smells, we take

into account several aspects related to this main research
question, as detailed in the following subsections.

4.2.1 How long does it take to fix a test smell?
Fig. 1 shows the distribution of the number of days be-

tween the introduction of a test smell and its removal. Re-
member that this data is only available for test smell in-
stances for which we observed both their introduction and
their removal over the analyzed change history. The box-
plots are organized by the ecosystem with the rightmost
one showing the overall results obtained by combining both
Apache and Eclipse projects. Overall, we can observe that
test smell instances are removed, on average, after 100 days
from their introduction6. We do not find any significant
difference among the different test smell types. We also
considered the distribution of the number of modifications
a developer performs before fixing a test smell (shown in
Fig. 2). As we can see, no more than five modifications in-
volving the affected test class are performed before the test
smell disappears. This finding shows on the one hand that
test classes are not often modified during the history of a
software project (on average, five changes in 100 days), and
on the other hand that a limited number of modifications is
generally required to remove a test smell.

4.2.2 What is the percentage of fixed smell instances?
Table 6 shows the percentage of test smell instances fixed

in Apache, Eclipse, and in the complete dataset. In a con-
servative fashion, we show the percentage of fixed instances
considering all the change history and progressively remov-
ing censored instances (i.e., not fixed yet) introduced too

6On median, 169 commits and, on average, 671 commits are
performed in this time period. We do not report these box-
plots due to space constraints. Complete data are available
in our online appendix [1].

7



●●

●●●

●

●

●

●●

●

●

●

●●

●

●
●●●
●●

●

●●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●● ●

●

●

●

AR ET GF MG SE

1
5

10
50

10
0

50
0

N
um

be
r 

of
 D

ay
s 

(lo
g 

sc
al

e)

(a) Apache

●

●

●●

●

●
●●

●

●

●

●

●

●

AR ET GF MG SE

1
5

10
50

10
0

50
0

N
um

be
r 

of
 D

ay
s 

(lo
g 

sc
al

e)
(b) Eclipse

●●

●●●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●●

●●

●

●

●

●
●
●

●

●

●
●●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

AR ET GF MG SE

1
5

10
50

10
0

50
0

N
um

be
r 

of
 D

ay
s 

(lo
g 

sc
al

e)

(c) Overall

Figure 1: Distribution of number of days a test smell remained in the system before being removed.

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●
●
●

AR ET GF MG SE

1
2

5
10

20

N
um

be
r 

of
 tc

C
ha

ng
es

 (
lo

g 
sc

al
e)

(a) Apache

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

AR ET GF MG SE

1
2

5
10

20

N
um

be
r 

of
 tc

C
ha

ng
es

 (
lo

g 
sc

al
e)

(b) Eclipse

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

AR ET GF MG SE
1

2
5

10
20

N
um

be
r 

of
 tc

C
ha

ng
es

 (
lo

g 
sc

al
e)

(c) Overall

Figure 2: Distribution of number of modifications a smell remained in the system before being removed.

close to the end of the mined change history. It is inter-
esting to notice that the percentage of fixed instances is
definitely small. Indeed, only 2.09% and 2.59% of all test
smell instances respectively in Apache and Eclipse are fixed
(2.18% overall). During this analysis, we noticed that in the
Eclipse ecosystem specific test smells appear to have higher
fixing percentage (7.38% and 5.39% for Sensitive Equality
and Mystery Guest, respectively) with respect to the Apache
ecosystem. Even when conservatively discarding instances
too close to the end of the observable change history, the per-
centage of fixed instances remains very small (2.34% overall).
This result highlights the poor attention devoted by devel-
opers to the removal of test smells that, however, have been
shown to hinder code comprehensibility and maintainability
[7]. Automated tools, promptly recommending developers
on how to refactor test smells, could help in drastically in-
creasing the percentage of fixed instances.

4.2.3 What is the survivability of test smells?
Fig. 3 shows the survival curves, in terms of number of

days, for the different test smell types grouped by ecosys-
tems. Overall, test smells have a very high survivability.
Indeed, after 1,000 days the probability that a test smell

survives (i.e., has not been fixed yet) is 80%. After 2,000
days the survival probability is still around 60%. Fig. 4
reports instead the survivability of test smells when consid-
ering the number of commits. Again, the survivability is
very high, with 50% of probability that a test class is still
affected by a test smell after 2,000 commits from its intro-
duction. Having test smells lasting that long in the systems:
(i) further stresses the need for automatic detection tools,
and (ii) poses questions on the high maintenance costs the
affected test classes could have. We plan to empirically in-
vestigate the latter point in our future work.

4.3 RQ3: Test and Code Smells
Table 7 reports the results achieved when applying as-

sociation rules mining to identify patterns of co-occurrence
between test and code smells. We observed several interest-
ing associations relating design flaws occurring in test and
production code. A clear case is the first rule shown in Ta-
ble 7, associating clean test cases to clean production class.
This indicates that test classes do not affected by test smells
(i.e., clean test classes) usually tests production classes do
not affected by code smells (i.e., clean production classes).

Eager Test (ET) in test classes is often associated with

8



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Days

S
ur

vi
va

l P
ro

ba
bi

lit
y

AR
ET
GF
MG
SE

(a) Apache

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Days

S
ur

vi
va

l P
ro

ba
bi

lit
y

AR
ET
GF
MG
SE

(b) Eclipse

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Days

S
ur

vi
va

l P
ro

ba
bi

lit
y

AR
ET
GF
MG
SE

(c) Overall

Figure 3: Survival probability of test smells (with respect to the number of days).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

S
ur

vi
va

l P
ro

ba
bi

lit
y

AR
ET
GF
MG
SE

(a) Apache

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

S
ur

vi
va

l P
ro

ba
bi

lit
y

AR
ET
GF
MG
SE

(b) Eclipse

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits
S

ur
vi

va
l P

ro
ba

bi
lit

y

AR
ET
GF
MG
SE

(c) Overall

Figure 4: Survival probability of test smells (with respec to the number of commits).

Table 7: RQ3: Relationships between Test and Code Smells.
id lhs rhs support confidence lift
1 cleanTC cleanPC 0.05 0.96 1.24
2 AR, SC BC 0.05 0.99 4.74
3 CDSBP ET 0.06 0.93 1.17
4 SC ET 0.09 0.97 1.22
5 BC ET 0.20 0.95 1.18
6 CDSBP, SC ET 0.02 0.98 1.22
7 AR, CDSBP ET 0.07 0.94 1.17
8 CDSBP, GF BC 0.02 0.77 3.66
9 CDSBP, MG AR 0.01 0.72 1.14
10 AR, CDSBP ET 0.04 0.94 1.17
11 AR, SC CC 0.04 0.85 7.93
12 GF, SE AR 0.02 0.76 1.22
13 AR, CC, ET, GF, SC BC 0.02 1.00 4.75
14 GF, SE ET 0.02 0.87 1.08
15 MG, SE AR 0.01 0.72 1.15
16 BC, SE AR 0.02 0.79 1.25
17 BC, SE ET 0.02 0.97 1.21

code smells in production code (see rules #3, #4, and #5).
Specifically, in our dataset we found several cases in which
three code smells, namely Class Data Should Be Private
(CDSBP), Spaghetti Code (SC), and Blob Class (BC) co-
occur with the Eager Test smell. This result is quite rea-
sonable if we consider the definitions of these smells. Indeed,
a CDSBP instance appears when a production class violates
the information hiding principle by exposing its attributes

[12], and often co-occur with code smells related to long or
complex code, such as SC and BC [41]. On the other hand,
an Eager Test appears when a test method checks more than
a single method of the class to be tested [38]. Thus, it is rea-
sonable to think that when testing large and complex classes,
developers tend to create more complex test methods, ex-
ercising multiple methods of the tested class. Similar ob-
servations can explain the results achieved for the Assertion
Roulette (AR) test smell (rules #9 and #12). Indeed, this
smell appears when a test case has several assertions with
no explanation [38]. When testing complex code, such as
the one represented by a Blob Class, more assertions which
test the behavior of the production class might be needed.

The results of this analysis highlight some interesting find-
ings that should be taken into account for building effective
tools for detecting code and test smells. Indeed, on one side
the presence of an Eager Test could indicate complex and
long production code to test. On the other side, complex
code to test is likely to trigger design issues in the related
test code.

5. THREATS TO VALIDITY
Threats to construct validity concern the relationship be-

tween theory and observation and are mainly related to the
measurements we performed. In particular, such threats are
related to the way we detect test smells and, for RQ3, code

9



smells. As explained in Section 3.2, we rely on the imple-
mentation of previously proposed approaches to identify test
smells [7] and code smells [23], both exhibiting a reasonable
precision in smell detection. Clearly, we cannot ignore the
fact that some smells have not been detected by the tools
and, while for the survey study we have manually validated
the considered smells, we are aware that for the second study
the reported results could be affected by tools’ imprecision.
Another threat is related to the observation of the smells’
lifetime. We consider a period of time since the first observ-
able commit, which, however, might not correspond to when
a file has been created (and this threat can affect the results
of RQ1) until the last observed snapshot (the latter can in-
troduce a threat in RQ2 because smells could be removed
in the future, however survival analysis properly deals with
censored data).

Threats to internal validity concern factors internal to our
study that we cannot control and that could have influenced
the results. Above all, the results observed in RQ2 about
smell survival might not only be due to the lack of aware-
ness (observed in the survey study), but also to the lack of
necessity to perform (risky) improvements to working test
suites.

Threats to external validity concern the generalization of
our findings. On one hand, the results of the survey are
clearly confined to the specificity of our 19 respondents. Al-
though the results are quite consistent, it is possible that
other developers might exhibit different levels of awareness
about test smells. While large, the mining study surely
needs to be extended to other projects beyond the open
source ones that we considered (which belong to two ecosys-
tems). Also, it is desirable to extend the study to other test
smells beyond the five considered; however, the considered
test smells are the most diffused ones [7].

6. RELATED WORK
As well as production code, test code should be designed

following good programming practices [33]. During the last
decade, the research community spent a lot of effort to de-
fine the methods and tools for detecting design flaws in pro-
duction code [18, 19, 21, 23, 24, 26, 28, 29, 36], as well as
empirical studies aimed at assessing their impact on main-
tainability [2, 4, 11, 17, 20, 27, 30, 31, 34, 41, 40]. How-
ever, design problems affecting test code have been only
partially explored. The importance to have well designed
test code has been originally highlighted by Beck [9], while
van Deursen et al. [38] defined a catalogue of 11 test smells,
i.e., a set of a poor design solutions to write tests, together
with refactoring operations aimed at removing them. This
catalogue takes into account different types of bad design
choices made by developers during the implementation of
test fixtures (e.g., setUp() method too generic where test
methods only access a part of it), or of single test cases
(e.g., test methods checking several objects of the class to be
tested). Besides the test smells defined by van Deursen et al.
[38], Meszaros defined other smells affecting test code [22].
Starting from these catalogues, Greiler et al. [13, 14] showed
that test smells related to fixture set-up frequently occur in
industrial projects and, therefore, presented a static analy-
sis tool, namely TestHound, to identify fixture related test
smells. van Rompaey et al. [39] proposed a heuristic struc-
tural metric-based approach to identify General Fixture and
Eager Test instances. However, the results of an empirical

study demonstrated that structural metrics have lower ac-
curacy while detecting these test smells. Bavota et al. [8]
conducted an empirical investigation in order to study (i) the
diffusion of test smells in 18 software projects, and (ii) their
effects on software maintenance. The results of the study
demonstrated that 82% of JUnit classes in their dataset are
affected by at least one test smell, and that the presence of
design flaws has a strong negative impact on the maintain-
ability of the affected classes.

7. CONCLUSION
This paper presented (i) a survey with 19 developers aimed

at investigating their perception of test smells as design is-
sues, and (ii) a large-scale empirical study conducted over
the commit history of 152 open source projects and aimed at
understanding when test smells are introduced, what their
longevity is, and whether they have relationships with code
smells affecting the tested production code classes. The
achieved results provide several valuable findings for the re-
search community:

Lesson 1. Test smells are not perceived by developers as
actual design problems. Our survey with 19 original devel-
opers of five systems showed that developers are not able to
identify the presence of test smells in their code. However,
recent studies empirically highlighted the negative effect of
test smells on code comprehensibility and maintainability
[7]. This highlights the importance of investing effort in the
development of tools to identify and refactor test smells.
Lesson 2. In most cases test artifacts are affected by bad
smells since their creation. This result contradicts the com-
mon wisdom that test smells are generally due to a negative
effect of software evolution and it is inline with what ob-
served for code smells [37]. Also, this finding highlights that
the introduction of most smells can simply be avoided by
performing quality checks at commit time, or even while the
code is written in the IDE by recommending the developer
how to “stay away” from bad design practices (i.e., just-
in-time refactoring). Tools supporting these quality checks
could avoid or at least limit the introduction of test smells.
Lesson 3. Test smells have a very high survivability. This
result further stresses the fact that developers are not catch-
ing such problems in the design of their test code. This
might be due to (i) the limited time dedicated to refactor-
ing activities, (ii) the unavailability of test smells refactoring
tools, or, as shown in our survey, (iii) the fact that devel-
opers are not perceiving test smells as bad design practices.
The reason behind this result must be further investigated
in the future work.
Lesson 4. There exist relationships between smells in test
code and the ones in the tested production code. Given the
different nature of test and code smells, we found this result
to be quite surprising. Still, knowing the existence of these
relationships could definitively help in better managing both
types of smells, by using the presence of test smells as an
alarm bell for the possible presence of code smells in the
tested classes and vice versa.

These lessons learned represent the main input for our
future research agenda on the topic, mainly focused on de-
signing and developing a new generation of code quality-
checkers, such as those described in Lesson 2.

10



8. REFERENCES
[1] Online appendix.

https://sites.google.com/site/testsmells/, 2016.

[2] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and
G. Antoniol. An empirical study of the impact of two
antipatterns, Blob and Spaghetti Code, on program
comprehension. In European Conf. on Software
Maintenance and Reengineering (CSMR), pages
181–190. IEEE, 2011.

[3] R. Agrawal, T. Imieliński, and A. Swami. Mining
association rules between sets of items in large
databases. SIGMOD Rec., 22(2):207–216, June 1993.

[4] R. Arcoverde, A. Garcia, and E. Figueiredo.
Understanding the longevity of code smells:
preliminary results of an explanatory survey. In
Proceedings of the International Workshop on
Refactoring Tools, pages 33–36. ACM, 2011.

[5] T. Bakota, P. Hegedüs, I. Siket, G. Ladányi, and
R. Ferenc. Qualitygate sourceaudit: A tool for
assessing the technical quality of software. In 2014
Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse
Engineering, CSMR-WCRE 2014, Antwerp, Belgium,
February 3-6, 2014, pages 440–445, 2014.

[6] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto.
Automating extract class refactoring: An improved
method and its evaluation. Empirical Softw. Engg.,
19(6):1617–1664, Dec. 2014.

[7] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and
D. Binkley. An empirical analysis of the distribution of
unit test smells and their impact on software
maintenance. In 28th IEEE International Conference
on Software Maintenance, ICSM 2012, Trento, Italy,
September 23-28, 2012, pages 56–65, 2012.

[8] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and
D. Binkley. Are test smells really harmful? an
empirical study. Empirical Software Engineering,
20(4):1052–1094, 2015.

[9] Beck. Test Driven Development: By Example.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[10] W. J. Brown, R. C. Malveau, W. H. Brown, H. W.
McCormick III, and T. J. Mowbray. Anti Patterns:
Refactoring Software, Architectures, and Projects in
Crisis. John Wiley and Sons, 1st edition, 1998.

[11] A. Chatzigeorgiou and A. Manakos. Investigating the
evolution of bad smells in object-oriented code. In Int’l
Conf. Quality of Information and Communications
Technology (QUATIC), pages 106–115. IEEE, 2010.

[12] M. Fowler. Refactoring: improving the design of
existing code. Addison-Wesley, 1999.

[13] M. Greiler, A. van Deursen, and M.-A. Storey.
Automated detection of test fixture strategies and
smells. In Proceedings of the International Conference
on Software Testing, Verification and Validation
(ICST), pages 322–331, March 2013.

[14] M. Greiler, A. Zaidman, A. van Deursen, and M.-A.
Storey. Strategies for avoiding text fixture smells
during software evolution. In Proceedings of the 10th
Working Conference on Mining Software Repositories
(MSR), pages 387–396. IEEE, 2013.

[15] R. M. Groves. Survey Methodology, 2nd edition. Wiley,

2009.

[16] E. L. Kaplan and P. Meier. Nonparametric estimation
from incomplete observations. Journal of the American
Statistical Association, 53(282):457–481, 1958.

[17] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and
G. Antoniol. An exploratory study of the impact of
antipatterns on class change- and fault-proneness.
Empirical Software Engineering, 17(3):243–275, 2012.

[18] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and
H. Sahraoui. A bayesian approach for the detection of
code and design smells. In Proc. Int’l Conf. on Quality
Software (QSIC), pages 305–314. IEEE, 2009.

[19] M. Lanza and R. Marinescu. Object-Oriented Metrics
in Practice: Using Software Metrics to Characterize,
Evaluate, and Improve the Design of Object-Oriented
Systems. Springer, 2006.

[20] A. Lozano, M. Wermelinger, and B. Nuseibeh.
Assessing the impact of bad smells using historical
information. In Proc. of the Int’l workshop on
Principles of Software Evolution (IWPSE), pages
31–34. ACM, 2007.

[21] R. Marinescu. Detection strategies: Metrics-based
rules for detecting design flaws. In Proceedings of the
International Conference on Software Maintenance
(ICSM), pages 350–359, 2004.

[22] G. Meszaros. xUnit Test Patterns: Refactoring Test
Code. Addison Wesley, 2007.

[23] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L.
Meur. DECOR: A method for the specification and
detection of code and design smells. IEEE Trans. on
Software Engineering, 36(1):20–36, 2010.

[24] M. J. Munro. Product metrics for automatic
identification of “bad smell” design problems in java
source-code. In Proc. Int’l Software Metrics
Symposium (METRICS), page 15. IEEE, 2005.

[25] G. C. Murphy. Houston: We are in overload. In 23rd
IEEE International Conference on Software
Maintenance (ICSM 2007), October 2-5, 2007, Paris,
France, page 1, 2007.

[26] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G.
Guéhéneuc. Numerical signatures of antipatterns: An
approach based on B-splines. In Proceedings of the
European Conference on Software Maintenance and
Reengineering (CSMR), pages 248–251. IEEE, 2010.

[27] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and
A. De Lucia. Do they really smell bad? A study on
developers’ perception of bad code smells. In 30th
IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada,
September 29 - October 3, 2014, pages 101–110, 2014.

[28] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
D. Poshyvanyk, and A. De Lucia. Mining version
histories for detecting code smells. IEEE Trans. on
Software Engineering, 41(5):462–489, May 2015.

[29] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto,
and A. Zaidman. A textual-based technique for smell
detection. In Proceedings of the International
Conference on Program Comprehension (ICPC), page
to appear. IEEE, 2016.

[30] R. Peters and A. Zaidman. Evaluating the lifespan of
code smells using software repository mining. In Proc.
of the European Conf. on Software Maintenance and

11



ReEngineering (CSMR), pages 411–416. IEEE, 2012.

[31] D. Ratiu, S. Ducasse, T. Gı̂rba, and R. Marinescu.
Using history information to improve design flaws
detection. In European Conf. on Software
Maintenance and Reengineering (CSMR), pages
223–232. IEEE, 2004.

[32] J. Rupert G. Miller. Survival Analysis, 2nd Edition.
John Wiley and Sons, 2011.

[33] A. Schneider. Junit best practices. Java World, 2000.

[34] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda,
A. Mockus, and T. Dyb̊a. Quantifying the effect of
code smells on maintenance effort. IEEE Trans.
Software Eng., 39(8):1144–1156, 2013.

[35] G. Szoke, C. Nagy, L. J. Fülöp, R. Ferenc, and
T. Gyimóthy. FaultBuster: An automatic code smell
refactoring toolset. In 15th IEEE International
Working Conference on Source Code Analysis and
Manipulation, SCAM 2015, Bremen, Germany,
September 27-28, 2015, pages 253–258, 2015.

[36] N. Tsantalis and A. Chatzigeorgiou. Identification of
move method refactoring opportunities. IEEE
Transactions on Software Engineering, 35(3):347–367,
2009.

[37] M. Tufano, F. Palomba, G. Bavota, R. Oliveto,
M. Di Penta, A. De Lucia, and D. Poshyvanyk. When
and why your code starts to smell bad. In Int’l Conf.
on Softw. Engineering (ICSE), pages 403–414. IEEE,
2015.

[38] A. van Deursen, L. Moonen, A. Bergh, and G. Kok.
Refactoring test code. In Proceedings of the 2nd
International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP),
pages 92–95, 2001.

[39] B. Van Rompaey, B. Du Bois, S. Demeyer, and
M. Rieger. On the detection of test smells: A
metrics-based approach for general fixture and eager
test. IEEE Transactions on Software Engineering,
33(12):800–817, Dec 2007.

[40] A. F. Yamashita and L. Moonen. Do developers care
about code smells? an exploratory survey. In
Proceedings of the Working Conference on Reverse
Engineering (WCRE), pages 242–251. IEEE, 2013.

[41] A. F. Yamashita and L. Moonen. Exploring the
impact of inter-smell relations on software
maintainability: An empirical study. In 2013 35th
International Conference on Software Engineering
(ICSE), pages 682–691, May 2013.

12


