Recommending and Localizing Code Changes for
Mobile Apps based on User Reviews

Fabio Palomba'?, Pasquale Salza®, Adelina Ciurumelea?, Sebastiano Panichella®,
Harald Gall®, Filomena Ferrucci', Andrea De Lucia!
University of Salerno, Italy — 2Delft University of Technology, The Netherlands — 3University of Zurich, Switzerland

Abstract—Researchers have proposed several approaches to
extract information from user reviews useful for maintaining
and evolving mobile apps. However, most of them just perform
automatic classification of user reviews according to specific
keywords (e.g., bugs, features). Moreover, they do not provide any
support for linking user feedback to the source code components
to be changed, thus requiring a manual, time-consuming, and
error-prone task. In this paper, we introduce CHANGEADVISOR,
a novel approach that analyzes the structure, semantics, and
sentiments of sentences contained in user reviews to extract useful
(user) feedback from maintenance perspectives and recommend
to developers changes to software artifacts. It relies on natural
language processing and clustering algorithms to group user
reviews around similar user needs and suggestions for change.
Then, it involves textual based heuristics to determine the
code artifacts that need to be maintained according to the
recommended software changes. The quantitative and qualitative
studies carried out on 44683 user reviews of 10 open source
mobile apps and their original developers showed a high accu-
racy of CHANGEADVISOR in (i) clustering similar user change
requests and (ii) identifying the code components impacted by
the suggested changes. Moreover, the obtained results show that
CHANGEADVISOR is more accurate than a baseline approach
for linking user feedback clusters to the source code in terms of
both precision (+47%) and recall (+38%).

Index Terms—Mobile Apps; Mining User Reviews; Natural
Language Processing; Impact Analysis

I. INTRODUCTION

Nowadays, the development and the release planning activ-
ities moved from a traditional paradigm, in which software
systems are released following a clearly defined road map,
towards a paradigm in which continuous releases become
available for an upgrade every week [1]-[4]. It is particularly
true in the case of mobile apps, where developers manage
updates (i.e., new features, enhancements, or bug fixes) through
online app stores, such as Google Play Store, Apple Store, and
Windows Phone App Store [3], [5].

This kind of distribution is accompanied by mechanisms
which allow end users to evaluate releases by using scores,
usually expressed as five stars values and user reviews. These
reviews are free text that may informally contain relevant
information for the development team [6] such as bugs or issues
that need to be fixed [S], summaries of the user experience
with certain features [7], requests for enhancements [8], ideas
for new features [5], [9], and comparison with other apps.

Thus, not only do user reviews represent the simplest
and fastest way end users have to express their opinions or
report their suggestions, but also a powerful crowd feedback

mechanisms that can be used by developers as a backlog for
the development process [10], [11], aiming to improve the
success/distribution of their apps [5], [12], [13].

The main problem for developers is that existing app distri-
bution platforms provide limited support to systematically filter,
classify, and aggregate user feedback to derive requirements
[14]. Moreover, manually reading each user review to gather
the useful ones is not feasible considering that popular apps
(e.g., Facebook) receive hundreds of reviews every day [5],
[15]. To address the problem and reducing the manual effort,
in the recent past the research community has proposed
approaches to select the useful feedback from user reviews
[8], [13], [16]-[18], essentially consisting of performing only
an automatic classification of the review content according
to specific keywords without considering sentence structures
and semantics. Moreover, the information that can be gathered
is restricted to user reviews [19], and there not exists any
systematic way for linking user feedback to the related source
code components to change, a task that requires an enormous
manual effort and is highly error-prone.

To better illustrate the problem statement, let us consider
the following scenario. John is a mobile developer of the
FrostWire app, an open source BitTorrent client for Android,
a quite popular app on Google Play Store. John frequently
checks the numerous user reviews the app receives on a daily
basis. Not only do they contain compliments, but also some
informative feedback such as bug reports or feature requests.
He needs to read reviews carefully and carry out a time-
consuming activity of analysis and synthesis in order to identify
and collect possible suggestions for improvement. Once John
detects an informative feedback, he has to locate the source
code components related to the requested changes. This is not
always easy, even if he is the main developer of the application.
Indeed, user reviews are usually informal text written by non-
technical users, therefore poorly understandable and/or not
containing enough information to match the corresponding
source code components correctly. For instance, John finds a
user review verbatim reporting: “I can’t download most off the
songs.”. Besides the spelling mistakes, John realizes that the
user is complaining about download problems, but he is not
sure that this is an actual bug or maybe the user is not able to
use his app correctly. Thus, he skips the review and continues
to read the other ones. Afterward, he finds other negative user
reviews mentioning and detailing the same problem as the
one above. As an example, a user claims that he is not able

(A Y

—

N\
- —_ | (
O iy (] (/_.__‘___,___J__ < LibraryUtils
- a
2 8 .7
- = v m Ive known frostwire to be a great app [} MagnetDownloader
— o | now its super slow at donwloading
- songs pls fix this problem I
i 44 J H L- ™~
[l ! can't download most off the |
O - songs TransfersFragment
= | |/'
‘Vz) | Pls someone fix the app it won't | H
3 download or show any results anymore | !
Qo - 2 \ worked amazing in the beginning v
- g
(v] SearchProgressView
o= O ~————— r——p———

A

Figure 1: CHANGEADVISOR — Motivating example.

to download songs through magnet links. At this point, John
understands that this is a real bug by reading the collection of
these user reviews and identifies a possible solution.

As an alternative, John might have used existing tools.
For instance, he might have exploited SURF [18] or CLAP
[20] to summarize single reviews or prioritize groups of
reviews, respectively. Nevertheless, he would not be able to
(i) extract only the useful information hidden behind different
user reviews, (ii) group together fine-grained information,
(iii) understand the actual impact of each change request.

To overcome these limitations, in this paper we introduce
CHANGEADVISOR, a novel approach that facilitates the analy-
sis of the enormous amount of user reviews developers receive
on a daily basis, by automatically (i) extracting user feedback
relevant from a maintenance perspective, (ii) clustering them
based on similar user needs, and (iii) identifying the set
of source code components that need to be changed to
accommodate the user requests.

By using our approach, the work done by John in the
previous scenario would have been drastically reduced. Indeed,
John can download the list of user reviews from the developer
console of Google Play Store and give them as input to
CHANGEADVISOR, together with the source code of his app.
Following the steps described in Section III, our approach ex-
tracts only user feedback useful from a maintenance perspective
and groups entries together into clusters representing similar
user needs. Then, CHANGEADVISOR locates the specific source
code components that would likely have to be changed. Figure
1 depicts the way CHANGEADVISOR supports the specific
task of John. In particular, the user feedback is extracted and
clustered in a group of sentences which describe a (i) slow
download performance and (ii) the inability in showing the
transfer results.

Then, CHANGEADVISOR links the grouped user
feedback into four classes, ie., TransfersFragment,
SearchProgressView, MagnetDownloader, and
LibraryUtils. The TransfersFragment class is
responsible for the visualization of the downloads that are
being transferred, and a progress bar (implemented by the
SearchProgressView class) shows the status of the
searches initialized by the user using a magnet link. John

discovers a connection delay bug in the LibraryUtils
class which is used by the MagnetDownloader class
responsible for the download of torrents related to magnet
links. Given the output of CHANGEADVISOR, John is now
able to solve the issue because he immediately identifies the
problem experienced by users, and receives suggestions about
which source code components need to be modified.

In this paper, we empirically evaluated the performances
of CHANGEADVISOR by using 44 683 user reviews and the
source code of 10 open source mobile apps. As a preliminary
analysis, we quantified the CHANGEADVISOR ability to cluster
user feedback toward similar change requests, finding that our
approach is able to identify cohesive user feedback clusters.
Then, we evaluated CHANGEADVISOR capabilities in identify-
ing the code components impacted by the suggested changes,
comparing our technique with a baseline implementation of
the tool proposed by Saha et al. [21] in the context of bug
localization. We observed that our approach is able to achieve
81 % of precision and 70 % of recall, being 47 % more precise
and 38 % more complete than the baseline technique. Finally,
we qualitatively evaluated CHANGEADVISOR by surveying
the 10 original developers of the apps in our dataset, who
confirmed the actual usefulness of the approach in practice.
The prototypical implementation of CHANGEADVISOR, as well
as the material and working data sets used in our study, are
publicly available [22].

Structure of the Paper. Section II discusses the related
literature, while Section III presents the proposed approach. In
Section IV, we describe the case study conducted to evaluate
the proposed approach. The qualitative case study involving the
original developers is reported in Section V, whereas Section
VI concludes the paper.

II. RELATED WORK

In the following, we summarize the main relevant research in
the context of mining user reviews of mobile apps and linking
informal textual information to the source code.

A. Mining User Reviews

Harman et al. [23] introduced the concept of app store
mining by identifying correlations between the customer ratings

and the download rank of a mobile app. Iacob and Harrison
[8] empirically assessed the extent to which users of mobile
apps rely on reviews to describe change requests discovering
that a noticeable percentage of user reviews (23 %) describe
feature requests. Moreover, Pagano and Malej [5] found that
33 % of the user reviews are related to requirements and user
experience, and that developers use the feedback provided by
the users to gather requirements. These papers motivated our
work since they clearly indicate that users actually exploit the
review mechanism in order to suggest improvements to apply
to the current version of an app.

Chen et al. [24] devised AR-MINER, an approach to filtering
and ranking informative reviews using a semi-supervised
learning based approach. They demonstrated that, on average,
35 % of reviews contain informative content. Khalid et al. [25]
reported a study with 6390 user reviews aimed at qualitatively
classifying them into 12 types of complaints. The results
suggest that more than 45 % of the complaints are related to
problems that developers can solve. Such results highlight the
importance to have tools supporting developers in evolutionary
tasks, in the same way as the one proposed in this paper.

Guzman et al. [7] proposed an automatic approach to
assigning a score to reviews indicating the user sentiment.
Di Sorbo et al. [18] devised SURF, a tool to summarize user
reviews to gather new requirements. Panichella et al. proposed
ARDOC [13], an approach that combines natural language
processing, sentiment analysis, and text analysis techniques,
through a Machine Learning (ML) algorithm to detect sentences
in user reviews. CHANGEADVISOR relies on ARDOC to classify
user reviews as change requests (e.g., fix a bug or add a new
feature). Villarroel et al. [20] devised CLAP, an approach to
classifying, clustering, and then prioritizing user reviews on
the basis of the information they contain (i.e., suggestions for
new features or bug reporting). Unlike our work, this approach
takes into account entire user reviews rather than the more
fine-grained information given by user feedback, and has as a
final goal of prioritizing user reviews rather than locate change
requests. Finally, Gu and Kim [19] defined an approach able to
summarize sentiments and opinions and classify them in aspect
evaluation, bug reports, feature requests, praise, and others.

The approaches mentioned above perform an automatic
classification of user reviews according to predefined topics
(e.g., bugs, features) [19]. Moreover, they do not provide
any support for linking user feedback to the source code
components to be changed.

B. Linking Informal Textual Documentation to the Source Code

Traceability between textual artifacts (e.g., requirements) and
the source code was widely studied in the past (see, e.g., [26],
[27]). Similarly, several approaches to locating features in the
source code [28], and tracing informal textual documentation,
such as e-mails [29], forum discussions [30], [31], and bug
reports [21] to the source code have been proposed.

In this context, three works are closer to the one we proposed
in this paper. Firstly, Saha et al. [21] proposed the use of
structured Information Retrieval based on code constructs, i.e.

class and method names, to improve bug localization. Their
approach, named BLUIR, exploits the Vector Space Model
[32] to link bug reports to the source code. In Section IV
we report the detailed comparison between BLUIR and our
approach.

Secondly, Asuncion ef al. [33] devised TRASE, an approach
that uses LDA-based topic modeling to enhance the information
provided by prospective traceability. Since there is no way to
know a priori the number of latent topics, the authors configured
the parameter a of the LDA algorithm (i.e., the number of
topics) using different settings, namely o = 10, 20, and 30.
However, as previously demonstrated by Panichella er al. [34],
the configuration used to set the clustering algorithm is an
important component of topic modeling techniques, and an
optimal choice of the parameters generally results in better
performance. This is especially true in cases where there are
no hints about the right number of clusters to create as for user
reviews [34]. Moreover, the technique exploited by TRASE
to retrieve links toward the source code requires additional
information by developers about the part of the project that
needs to be modified, which is not required by our approach.

Finally, Palomba et al. [12] proposed CRISTAL, a tool for
tracing informative crowdsourced reviews to the source code
commits and for monitoring the extent to which developers
accommodate user requests and follow-up user reactions as
reflected in their ratings. Unlike CRISTAL, the intent of
CHANGEADVISOR is to recommend the location of code
changes on the current version of an app, rather than monitor
the changes already applied during the history of a project.

III. THE CHANGEADVISOR APPROACH

The goal of the proposed approach is to extract from user
reviews feedback relevant from a maintenance perspective and
suggest the location of such changes in the source code. To
this aim, it applies the following steps:

1) user feedback identification and classification (i.e., bug
fixing tasks, features enhancement, and new features
requests);

2) source code and user feedback preprocessing;

3) user feedback clustering, representing similar user needs
(i.e., code change requests);

4) determining the code artifacts related to the suggested
software changes.

A. User Feedback Classification

During the first step CHANGEADVISOR extracts and classi-
fies the informative sentences (i.e., the feedback) contained in
the user reviews. To achieve this goal it employs ARDOC,
a review classifier previously defined by Panichella er al.
[13], which is able to automatically mine feedback in user
reviews. Specifically, ARDOC combines Natural Language
Processing (NLP), Sentiment Analysis (SA) and Text Analysis
(TA) techniques through a Machine Learning (ML) algorithm
to detect the user feedback that belongs to one of the following
categories: Information Giving, Information Seeking, Feature
Request and Problem Discovery. We relied on the original

implementation of the tool, publicly available as a Java Library
[35]. We used this tool to classify and filter feedback in user
reviews categorized as (i) request to fix bugs (sentences of
the ARDOC category Problem Discovery), and (ii) feature
enhancements or feature requests (Feature Request category).
Note that we filtered out feedback in user reviews categorized
as Information Giving and Information Seeking since they are
not strictly related to change requests in the source code of
an app. As an example, a review reporting “It’s an awesome
app!” is classified as Information Giving and does not provide
any useful information from a maintenance perspective.

B. Input Preprocessing

In this step CHANGEADVISOR preprocesses both the user
feedback extracted from the original reviews and the source
code components in order to remove noise contained in the data
that may hinder the accuracy of the NLP techniques exploited
in further steps.

1) Source Code Preprocessing: The source code is first
parsed to extract the code components it contains, such as
fields, classes, and methods. The extracted code components
are then normalized using a typical Information Retrieval (IR)
normalization process [32]. In particular, the terms contained
in the source code are transformed by applying the following
steps: (i) separating composed identifiers using the camel
case splitting which separates words on underscores, capital
letters, and numerical digits base; (ii) reducing letters of
extracted words to lower case; (iii) removing special characters,
programming keywords and common English stop words;
(iv) stemming words to their original roots via Porter’s stemmer
[36]. Finally, the normalized words are weighted using the
term frequency - inverse document frequency (tf-idf) schema
[32], which reduces the relevance of too generic words that are
contained in several source code components. This step outputs
a set of bag-of-words, one for each class of the analyzed app.

2) User Feedback Preprocessing: The challenge of this step
is finding a methodology that is able to “parse” correctly all
the words contained in a user feedback, because the language
used by the end users of an application is generally informal,
very noisy [37], and substantially different from the sectorial
language used in software artifacts [38]-[40]. For this reason,
we defined a specialized IR process to transform the end
user language into input suitable for textual analysis using
the Python libraries NLTK [41] and TEXTBLOB [42], two
collections of tools for Natural Language Processing (NLP)
and the spell check PYENCHANT library [43]. The involved
NLP steps are:

Spelling correction: the words of user feedback are replaced
if misspelled, according to the English vocabulary of PYEN-
CHANT library.

Contractions expansion: it substitutes any possible English
contractions with the related extended form (e.g., “don’t”
becomes “do not”).

Nouns and verbs filtering: the process is performed by first
applying a part of speech (POS) tagging classification, which
identifies the logic role of words in user feedback sentences.

Then, only the nouns and verbs are selected for the following
steps because they are the most representative parts of the
meaning of an artifact [40].

Tokenization: user feedback is transformed into lists of words
(i.e., tokens), which will be the atomic part of the next steps,
excluding numbers and punctuation that usually do not contain
information.

Singularization: the singularization function of the TEXT-
BLOB library is exploited to normalize every word to its related
singular form.

Stopword removal: the tokens are intersected with the Word-
Net English stopword list [44], which is a list of common
words that are frequent in written English (e.g., “the”, “a”, and
“an”) and only introduce noise to NLP activities.

Stemming: the inflected words are reduced to their stem form
(e.g., “pushing” is replaced with “push”). This step reduces the
number of tokens and thus the complexity of the NLP work.
Repetitions removal: for each document, only one occurrence
per word is preserved. We perform this step since, in this
context, it is unlikely to have more occurrences of a word.
Therefore, the contribution provided by having repetitions of
the same word is not useful for the NLP activities.

Short tokens removal: this step excludes tokens with less than
3 characters because tokens having a low number of characters
are usually conjunctions or generic terms used in informal
context [45] and irrelevant for our purposes.

Short documents removal: documents with less than 3 tokens
are also excluded from the output because short documents
(i.e., user feedback) do not have enough terms to explain a
change request clearly.

As the final result, the process outputs a bag-of-words for
each user feedback that will be the input of the subsequent
clustering phase.

C. User Feedback Clustering

The goal of this step is to group together automatically
user feedback expressing similar user needs, consisting of
similar code change requests (e.g., a problem in the GUI
and/or performance and energy consumption problems). It is
worth noting that this step is required since linking single
user reviews to source code components does not provide high
precision values, as highlighted by the preliminary analysis
reported in our online appendix [22]. Moreover, this phase
allows grouping together common user change requests, making
them more comprehensible for the developer. Many effective
clustering algorithms [46], [47] accept text objects as input. We
experimented three different clustering techniques, such as the
Latent Dirichlet Allocation (LDA) exploited by Asuncion et al.
[33], the application of Genetic Algorithms to LDA (LDA-GA)
devised by Panichella et al. [34] and the Hierarchical Dirichlet
Process (HDP) algorithm proposed by Teh et al. [48].

The first technique is the classical implementation of the
LDA algorithm [49], which requires the specification of the
parameter o beforehand, namely the number of clusters (topics)
to create starting from the set of sentences to group together (in
our case, the user feedback extracted from the user review). The

LDA-GA technique [34] is an evolution of the LDA algorithm
able to find an optimal configuration of the parameter o during
their execution by relying on Genetic Algorithms. Finally, HDP
[48] is an extension of the LDA algorithm where the number
of topics is not known a priori. In HDP and LDA models,
each document in the corpus collection is considered as a
mixture of latent topics, with each topic being a multinomial
distribution over a known vocabulary of words. To cluster
related feedback, HDP implements a nonparametric Bayesian
approach [50] which iteratively groups elements based on a
probability distribution, i.e., the Dirichlet process [48].

We benchmarked the three techniques concerning the quality
of solutions and execution time. We decided to integrate HDP
in CHANGEADVISOR because it provides a good trade-off
between quality and execution time. A detailed analysis of the
comparison between the techniques is reported in our online
appendix [22].

D. Recommending Source Code Changes

Once the user feedback clusters are formed, grouping
together similar change requests, they are subjected to a process
of linking to source code components to suggest what is the set
of classes to update in order to meet these requests. We linked
the user feedback clusters to source code classes by measuring
the asymmetric Dice similarity coefficient [32], defined as
follows:

|Wclusterj N Wclassi

min (| Wclusterj |) | Wclassi

sim (cluster;, class;) =

)

where Wepyster; is the set of words contained in the cluster
7, Weiass; 1s the set of words contained in class ¢ and the
min function normalizes the similarity score with respect to
the number of words contained in the shortest document (i.e.,
the one containing fewer words) between the cluster and the
class under analysis. The asymmetric Dice similarity ranges
between [0, 1]. We used the asymmetric Dice coefficient instead
of other similarity measures (e.g. the Jaccard coefficient [51])
because often the user feedback clusters are notably shorter than
the source code files and therefore considering the minimum
cardinality of the sets of words at the denominator of the
formula allows to weight the similarity between documents
better. The output is represented by a ranked list where the links
having the highest similarity values are reported at the top. Pairs
of (cluster, component) having a Dice similarity coefficient
higher than a threshold are considered by CHANGEADVISOR
to be a “link”. We experimented different values for this
threshold, and the best results were achieved when considering
the third quartile of the distribution of the Dice similarity
coefficients obtained for a given application (detailed results
of the calibration are in our online appendix [22]). However,
the developers may want to order the list based on other
criteria, such as the popularity of a change request expressed
by the cluster size. In future, we plan to integrate into
CHANGEADVISOR a prioritization approach that takes into
account both (change) requests popularity and the similarity
values with the source code.

Table I: Characteristics of the apps in the dataset.

App KLOC Classes Reviews Feedback
ACDisplay 47 267 4802 1722
Cool Reader 37 115 4484 1158
FB Reader 104 804 4495 830
Focal 19 81 2642 1285
FrostWire 291 1518 6702 1375
K-9 Mail 108 475 4542 1570
Shortyz Crosswords 22 165 3391 931
SMS Backup + 12 118 4488 1522
Solitaire 10 28 4480 1605
WordPress 110 567 4657 1512
Overall 760 4138 44683 13510

IV. STUDY I: THE ACCURACY OF CHANGEADVISOR

The goal of the study is to evaluate the effectiveness of
CHANGEADVISOR in retrieving links between user feedback
clusters and source code. Thus, the quality focus is on the
accuracy of the proposed approach in suggesting source code
changes based on user feedback. The context of the study
consists of 10 Android open source apps, whose source code
is hosted on the F-Droid [52] open source repository and also
published on the Google Play Store [53].

For each app considered in our dataset, Table I shows: (i) the
application name, (ii) the size of the app in terms of KLOC and
number of classes, (iii) the number of user reviews, and (iv) the
number of user feedback entries extracted for the considered
user reviews. The selected apps belong to different categories,
have different sizes and reviews written by users with different
requirements and expectations.

A. Empirical Study Definition and Design

The study aims at answering the following research ques-
tions:
e RQ;: Does CHANGEADVISOR identify cohesive user
feedback clusters representing related change requests?

e RQ,: Does CHANGEADVISOR correctly link change
requests represented by user feedback clusters to code
artifacts that need to be modified and how well it works
compared to a state-of-the-art technique relating informal
textual documentation to source code?

To address our research questions, we firstly ran CHANGE-
ADVISOR against the apps in our dataset. In a normal scenario
of using CHANGEADVISOR, the developer owns both the user
reviews (by downloading them as CSV file from the app
distribution platform) and the source code needed as input.
In our case, we first had to retrieve the reviews related to the
chosen apps. To this aim, we developed a web scraper that
extracts the user reviews directly from the Google Play Store,
where they are publicly available. For the source code, we
downloaded the last version of the considered apps from the
corresponding repositories (e.g., GitHub) and we used a Java
parser to extract single components (see Section III-B).

Before focusing on the performance of the proposed ap-
proach in suggesting source code changes (addressed by
RQ,), with RQ; we wanted to ensure that the clusters
created by CHANGEADVISOR using HDP are cohesive and

thus meaningful. To this aim, we involved as inspectors 2
external mobile developers having 5 years of experience. The
participants were asked to evaluate the cohesiveness of the
clusters generated by CHANGEADVISOR for each app in our
study. To avoid bias, the inspectors were not aware of the
experimental goals and of the specific algorithm used by the
approach to cluster user feedback. To express their opinion the
participants used a Likert scale intensity from very low to very
high values [54], i.e., giving a value between 1 and 5 (where
1 means very low, while 5 very-high). This process required
approximately 3 weeks of work.

In RQ, our goal was to evaluate CHANGEADVISOR accuracy
in linking user feedback clusters to the source code. However,
as pointed out in Section II, several approaches able to link
informal textual documentation to the source code have been
proposed in the literature to solve other software engineering
tasks (e.g., bug localization). Therefore, rather than simply
evaluating the performance of CHANGEADVISOR, we are
also interested in understanding whether the definition of our
approach is actually needed or similar performance can be
achieved by using existing state-of-the-art techniques when used
to link user feedback to the source code. To this aim, we used a
baseline approach inspired to BLUIR, the technique proposed
by Saha et al. [21] for linking bug reports to the source code
using an Information Retrieval infrastructure. Note that bug
reports may be affected by the same noise (e.g., errors, different
language compared to the source code programming language)
of user reviews. We chose this approach as the baseline because
it tries to solve a similar problem as CHANGEADVISOR. As
discussed in Section III-C, linking single user reviews to source
code components does not provide good results. Hence, to
conduct a fair comparison, BLUIR links each of the user
feedback cluster produced using HDP to the source code by
computing the cosine similarity between the vectors of terms
built through the application of the Vector Space Model [32].
The baseline reports a link if the similarity between a cluster
and a class is > 0.6.

To compare the two approaches, we needed a set reporting
the actual links between user feedback contained in the clusters
and the source code. Due to the absence of this data set,
we had to build our own oracle manually. We asked the 2
mobile developers previously involved in the evaluation of the
cohesiveness of user feedback clusters to analyze the change
requests contained in the clusters of reviews and determine the
software artifacts that need to be maintained for performing
such changes. In this case as well, the participants were not
aware of the details of the study. We provided the participants
with both the source code of the considered apps and the
clusters generated by HDP [48]. The task consisted of analyzing
each user feedback cluster in order to find the set of classes
that need to be modified according to the requests reported in
the cluster. Each inspector performed the task independently.
Once completed the task, the two different sets of links were
compared and the inspectors discussed the differences they
found (e.g., links marked as correct by one inspector, but not
by the other) in order to resolve the disagreement and reach

Table II: Evaluation provided by the inspectors about the
cohesiveness of the clusters generated by CHANGEADVISOR.

Min . Max
App Clusters Cohesiveness Median Cohesiveness
ACDisplay 6 3 5 S
Cool Reader 8 3 4.5 5
FB Reader 9 3 4 5
Focal 6 4 4 5
FrostWire 7 3 4 5
K-9 Mail 7 4 4.5 5
Shortyz Crosswords 6 3 4 4
SMS Backup + 12 2 3.5 5
Solitaire 8 3 4 5
‘WordPress 13 3 4 5
Overall 82 2 4 5

a common decision. Finally, we considered as golden set all
the links declared as correct by both the two inspectors after
the discussion. To measure the level of agreement between
the inspectors, we computed the Jaccard similarity coefficient
[51], i.e. the number of traceability links identified by both
the inspectors over the union of all the links identified by
them. The overall agreement between the inspectors was of
76 %. A spreadsheet reporting the data about the agreement
computation is available in our replication package [22]. This
process required approximately 5 weeks of work.

Once defined the oracle, we answered RQ, by reporting
precision and recall [32] achieved by CHANGEADVISOR and
by the baseline.

Replication Package. CHANGEADVISOR is publicly available
in the online appendix [22], together with the dataset used
in the study. The prototype is a runnable DOCKER container
which allows not only the replication of the experiment, but
also the application of the approach to any given app data (i.e.,
reviews and source code).

B. Analysis of the Results

In the following, we discuss the results of the study.

1) Evaluating the Cohesiveness of User Feedback Clusters:
Table II reports the minimum, median, and maximum of the
scores assigned by the inspector during the evaluation of the
clusters generated by CHANGEADVISOR.

As we can see, our approach identified a minimum of 5
and a maximum of 13 user feedback clusters, for a total of
82 clusters on the 10 apps. All the data related to clusters and
their validation are available in our online appendix [22]. From
a qualitative perspective, the cohesiveness of clusters produced
was generally evaluated by the inspectors as high or very high
(i.e., 4 and 5 values of the Likert scale, respectively). Indeed,
the median of the distribution is 4, while the values are mainly
placed between 4 and 5. This result highlights the ability of
CHANGEADVISOR to group together correctly similar changes.
Nevertheless, there is one specific case for the SMS Backup
+ app where the clustering phase did not provide the expected
results. This app offers the possibility to backup SMS, MMS,
and calls log entries by providing space in the cloud. Users
often complain of energy consumption problems or the lack of
compatibility with previous versions of the Android operating

Table III: Comparison between CHANGEADVISOR and the
baseline approach in linking change request feedback.

A CHANGEADVISOR Baseline
pp precision (%) recall (%) precision (%) recall (%)

ACDisplay 82 68 41 31
Cool Reader 79 68 48 68
FB Reader 83 73 43 17
Focal 83 63 27 50
FrostWire 81 71 29 20
K-9 Mail 84 66 38 69
Shortyz Crosswords 71 63 13 38
SMS Backup + 67 59 38 38
Solitaire 75 60 12 40
WordPress 79 74 38 40
Overall 81 70 34 32

system (i.e., “Android KitKat 4.4””). Manually analyzing the
clusters created by CHANGEADVISOR for this application, we
discovered that the cluster which obtained the lowest score
included user requests related to both these problems. Thus,
the presence of co-occurrence of terms in the two different
change requests generated some noise that did not allow the
correct clustering of the corresponding user feedback.

In Summary. CHANGEADVISOR correctly clusters user feed-
back expressing similar change requests. An exception occurred
because of the co-occurrence of terms expressing different
change requests reported in the same user feedback.

2) Evaluating the Linking Accuracy: Table III reports the
precision and the recall achieved by CHANGEADVISOR and
by the baseline approach for each of the considered apps when
retrieving links between user feedback clusters and source code
elements. The last row (i.e., overall) shows the results achieved
when considering all the links suggested by the two approaches
as a single dataset.

As we can see, the results achieved by CHANGEADVISOR
are quite positive, since it is able to discover correctly, overall,
81 % of the links between user feedback clusters and classes
(i.e., 308 traceability links out of the total 381). At the same
time, the suggestions provided by CHANGEADVISOR are quite
close to the actual classes that need to be modified to implement
a change request. Indeed, the recall ranges between 59 % and
74 % (overall is 70 %).

The lowest precision of CHANGEADVISOR is achieved
on the SMS Backup + app, where the proposed approach
outputs 5 false positive links. A possible cause behind
this result can be related to an incorrect cluster of user
requests for this app, as observed before. Besides the
mentioned clustering issue, by manually investigating the
links suggested by CHANGEADVISOR we discovered two
other reasons for this result: (i) poor cohesion of the classes
composing the application, and (ii) the poor vocabulary
of the identifiers. In particular, we found several cases
in which a single class of the project is responsible for
multiple functionalities, leading to the co-occurrence of
different topics in the same class. As an example, the class
com.zegoggles.smssync.service.state.State
is responsible for both the management of error messages and
additional services (e.g., user notifications and the information

about the state of the execution of the app). Moreover, the
same attributes are used in different methods of the class: for
instance, the variable resource that is used to update the
user interface layout and images contained in the project is
referenced in all the methods. As a consequence of these
observations, the similarity between user feedback clusters and
the source code is blurred by the presence of different topics.

Thus, the main limitation of CHANGEADVISOR is that it
is not always possible to generate reliable links from the user
feedback when the vocabulary of the source code is poor, or
the source code elements implement functionalities related to
multiple topics. This result is expected since our approach relies
on topic analysis techniques which are themselves affected by
the same problem.

On the other hand, it is interesting to observe that CHANGE-
ADVISOR results are highly accurate when the source code
is well modularized and has a good vocabulary. For in-
stance, let us consider one of the correct links found on
the Frostwire project. This app is an open source Bit-
Torrent client and the main problem experienced by users
is related to the storage of the downloaded contents. In
this example, one of the user feedback cluster identified
by CHANGEADVISOR contains two reviews, both of them
reporting the inability of users in finding songs they have
previously downloaded. CHANGEADVISOR suggests modifying
the class AlbumSongFragment contained in the pack-
age com.andrew.apollo.ui.fragments.profile
and the classes GUIUtils and GUIMediator of the
package com.limegroup.gnutella.gui in order to
deal with the problems reported in the user feed-
back. By analyzing the source code of the suggested
classes, we found that our approach correctly suggests
the set of classes to change to address the user feed-
back. Indeed, the class AlbumSongFragment implements
the methods onCreatelLoader and onLoadFinished
that are responsible for loading the multimedia con-
tent stored on the mobile phone, whereas the classes
GUIUtils and GUIMediator manage the user inter-
face related to the music library. In this case, the only
class missed by CHANGEADVISOR is MusicUtils of
com.andrew.apollo.utils, which contains utility meth-
ods used by the class AlbumSongFragment to perform the
loading of the multimedia contents. This example practically
shows the potential usefulness of CHANGEADVISOR from the
developers perspective.

As for the baseline approach, it always has low precision in
retrieving links (i.e., 34 % overall). The poor performances are
also highlighted by the value of recall which reaches only 32 %
overall. We manually investigated some of the links provided by
the baseline approach to understanding the reasons behind these
results. The major issue is related to the fact that a linking done
using the Vector Space Model [32] does not provide optimal
performances when relating user feedback clusters and source
code. User feedback clusters are almost shorter than the set
of words belonging to the source code, and most of the times
the words used in the two sets of terms are similar because

the users tend to explain problems using the same vocabulary
present in the user interface of the app [S]. For this reason, the
use of the asymmetric Dice coefficient instead of the cosine
similarity results in a winning choice for CHANGEADVISOR
because it is able to match directly the strings belonging to
the two sets of terms, rather than computing their similarity
using vectors.

We also perform an additional analysis aimed at verifying
the overlap between the approaches, i.e. the number of links
correctly retrieved by one approach and missed by the other,
as well as the number of links correctly found by both
the techniques. A complete report is available in our online
appendix [22]. This analysis confirmed the findings discussed
above since we observed that 72 % of correct links between
user feedback clusters and the source code are retrieved by
CHANGEADVISOR only, while both the approaches found
23 % of the correct links. Therefore, only a small percentage
of the links (5%) are retrieved by BLUIR and missed by
our approach, highlighting the small contribution given by
the alternative approach in finding links between clusters and
source code. This result is significant because it shows how
existing tools locating informal textual documentation to the
source code are not particularly suitable in the context of
reviews of mobile applications.

We repeated the experiment by distinguishing the different
types of user feedback considered by the approaches (i.e.,
Problem discovery and Feature request) and did not find any
meaningful differences. For the sake of space limitation, we
report these results in the online appendix [22].

In Summary. Despite few cases discussed above, CHANGE-
ADVISOR exhibits high precision (81 %) and recall (70 %)
in linking user feedback clusters to source code components.
When compared to the baseline, our approach results are 47 %
more precise and 38 % more complete.

C. Threats to Validity

Threats to construct validity concern the relationship between
the theory and the observation. For the evaluation of the
experimented approaches we relied on error-prone human
judgment, because of the subjectivity in deciding if a cluster of
user feedbacks is cohesive or not and whether a link suggested
by an approach is correct or not. To alleviate this issue we
built a golden set based on the judgment of more professional
inspectors. Moreover, the two inspectors firstly performed the
task separately and then all disagreements were discussed and
resolved.

The proposed approach itself could have been influenced
from intrinsic imprecision of other approaches on which it
relies, e.g., ARDOC [13], HDP [48]. In future, we plan to
investigate better the relationship between the outcome of
CHANGEADVISOR and the use of the techniques discussed
above with the goal of increasing the already high performance
of our approach.

On the one hand, if the clusters have been qualitatively
evaluated by two professional developers in terms of cohesive-
ness, we cannot speculate about their completeness. Indeed,

we cannot ensure that all the user feedback of the apps in our
dataset have been taken into account and correctly clustered.
However, as future work, we plan to build an oracle reporting
the actual clustering of user feedback of the apps in the dataset
and compare such an oracle with the results provided by
CHANGEADVISOR.

Finally, another threat in this category is related to our
implementation of the baseline approach, which was needed
to compare our approach with the state-of-the-art. However,
we applied the same algorithms and the same steps than the
BLUIR approach described by Saha et al. [21].

Threats to internal validity concern any confounding factors
that could influence our results. A first threat is related to
the choice of the versions of the apps we considered in our
study. Specifically, the analyzed source code refers to the latest
version of an app, while the reviews can be related to previous
versions. Even though in a normal context a developer is
always able to retrieve the reviews for specific versions of his
or her app through the Google Developer Console, we were
not able to distinguish them during the user reviews scraping
phase. Nevertheless, this is not an issue of this study since the
goal was to quantify the accuracy of the proposed approach
in linking user feedback to the source code, independently
from the version of the app to which the feedback refers.
At the same time, user feedback provided by users could
have already been implemented by developers. Although there
may be additional opportunities for increasing the practical
applicability of CHANGEADVISOR, by combining it with a
monitoring system such as CRISTAL [12], this is outside
the scope of this paper. Hence, we leave this exploration for
future work. Another threat that could affect the validity of the
results of RQ), is the presence of potential missing links. While
the inspectors followed a clearly defined evaluation procedure,
we cannot ensure that the set of correct links identified in
this phase actually reflect the total set of correct links present
in a given application. Finally, the threshold adopted for the
Dice similarity coefficients may have influenced our results.
However, we chose its value by performing a tuning process,
detailed in the online appendix [22].

Threats to external validity concern the generalizability of our
findings. In this study, we selected 10 different apps belonging
to different app categories, having different sizes and user
reviews written by different audiences. To confirm the generality
of our findings as future work we would have to replicate the
study exploiting the data from more apps belonging to different
app stores.

V. STUDY II: OPINIONS OF THE ORIGINAL DEVELOPERS

Even though our technique achieved good results in the
previous study, software engineering techniques have to address
the real needs of developers. For this reason, the goal of
this second study is to investigate the opinions of original
app developers about CHANGEADVISOR, with the purpose of
analyzing its usefulness from a developer’s perspective. The
context of the study consists of the 10 apps already used in
the first study.

ACDisplay

- ——

Cool Reader FB Reader Focal FrostWire

5

Variable B3 Cluster Cohesiveness

K-9 Mail
o

Link Precision

WordPress

g

Solitaire

.

Shortyz Crosswords

B

Link Completeness

SMS Backup +

=

Figure 2: Survey results.

A. Empirical Study Definition and Design

In this study, we address the following research question:

e RQj: Are the suggestions provided by CHANGEADVISOR
actually useful for developers?

To answer our research question, we sent a direct invitation
to the developers of the apps taken into account. To identify
them, we retrieved the e-mail addresses of the developers from
the source code repositories of the considered apps, filtering
the developers that have contributed with at least one commit
on the main branch. We chose to involve original developers
rather than relying on external developers because we wanted
to collect the opinions of the developers that actually worked
on the systems under analysis and, therefore, have a sound
knowledge about the structure of the app. We contacted 102
developers in total, receiving 10 responses, one for each app
involved in the study. Note that even though the number of
respondents appears to be low (9.8 % response rate), our results
are close to the suggested minimum response rate for the survey
studies, which is defined around 10 % [55].

The idea behind the study design was to show to each
developer a subset of the links found by CHANGEADVISOR
for the app he/she developed. For this reason, we selected the
top 10 links identified by our approach on each app of the
study, those with the higher Dice coefficient resulting from the
first study (see Section IV). This was done to avoid having
a long questionnaire that might have discouraged developers
to take part in our study. For each link composed of a user
feedback cluster and the related classes, the participants had
to answer the following questions:

1) Could you please summarize what the users wanted to
say in the shown user reviews?

2) How well the user reviews are grouped together according
to the number of source code components that need to be
modified? Please, rate your opinion from 1 = very poorly
to 5 = very well.

3) How well the proposed set of classes matches the actual
set of classes that need to be changed in order to satisfy
the user requests? Please, rate your opinion from 1 =
very poorly to 5 = very well.

4) Evaluate the completeness of the set of classes suggested
above compared to the actual set of classes that need to
be modified in order to satisfy the user requests. Please,
rate your opinion from 1 = unacceptable to 5 = excellent.

Besides the questions reported above, the developers also
filled in a pre-questionnaire that allowed us to assess their
background. They also answered a brief post-questionnaire
where we asked to estimate how much time they would save
using an approach like the one proposed in this paper instead
of manually analyzing user reviews to identify change requests.

The survey was designed to be completed within approxi-
mately 15 minutes. To automatically collect the answers, the
survey was hosted using a web-based survey software, i.e.,
Google Forms. Developers were given 20 days to respond to
the survey. At the end of the response period, we collected the
answers of the 10 complete questionnaires in a spreadsheet to
perform data analysis.

To answer RQj;, we computed:

1) the distribution of values assigned by developers when
evaluating the cohesiveness of user feedback clusters
(question #2 of the survey);

2) the distribution of values assigned by developers when
assessing the precision of CHANGEADVISOR (question
#3 of the survey);

3) the distribution of values assigned by developers when
evaluating the completeness of the suggestions provided
by CHANGEADVISOR (question #4 of the survey).

Moreover, when answering to question #1, we collected the
descriptions provided by the developers as free opinions about
the clusters produced by CHANGEADVISOR.

B. Analysis of the Results

The 10 respondents declared a mobile development experi-
ence ranging from 3 to 5 years with 2 to 3 applications each
and a Google Play Store score of 4 stars. The developers also
claimed they look at user reviews “most of the time” to gather
requirements for new releases of their apps, spending about 2
hours per week.

Figure 2 shows the boxplots of the distributions of the
responses, divided by app, provided by the developers involved
in the study. We reported the Likert scale values of the 3
aspects analyzed in RQjs, i.e., cluster cohesiveness, linking
precision, and linking completeness.

As we can see, the level of cohesiveness assigned by the
developers is always high (Likert value > 4) except for the case
of the WordPress app where, on average, the cohesiveness
on this pass is equal to 3.5. However, by further analyzing his
answers we observed that he was always able to summarize the
requests contained in the feedback clusters indicating specific

problems in the app, therefore explaining well-focused issues
(e.g., “Options in the Dashboard were deactivate for a while
and users are just reporting such issues”). This observation
makes us conclude that the lowest values assigned by the
developer do not indicate problems in the clustering phase of
CHANGEADVISOR, but rather the judgment of the developer
has been just more conservative than that of other developers.
The results obtained by this analysis confirmed again the ability
of CHANGEADVISOR in grouping together similar user needs.

The precision and completeness of the approach were
instead evaluated in general as “well” (4) and “very well”
(5), respectively. While the values assigned by developers to
assess the precision of CHANGEADVISOR somehow reflect
the quantitative analysis conducted in Section IV (precision =
81 %), the most interesting thing is related to the completeness.
Indeed, the developers perceived the links provided by our
approach closer to the actual set of code components to
modify with respect to what we estimated in our quantitative
evaluation (recall = 70 %). This highlights the potential of
the proposed approach as a tool useful for developers in a
real-world environment. The claim is also supported by some
of the answers provided by the developers when they filled in
the post-questionnaire. In particular, we asked to estimate how
much time they would save using CHANGEADVISOR instead of
only manually analyzing user reviews. In general, they claimed
that a tool like CHANGEADVISOR would be “very useful” and
that they would be able to save “almost all the necessary time
compared to the manual task”.

One of the developers pointed out that:

“Trivially, I will not need to read each single review

to know what requirements 1 should implement.”
This represents exactly the first goal of CHANGEADVISOR, i.e.
trying to reduce a huge number of user reviews to a smaller
set of useful contents through the clustering process.

On the other hand, CHANGEADVISOR links user feedback
directly to source code components. Even though a developer
usually is aware of the source code components responsibilities,
the linking process would reveal itself to be very useful, as
pointed out by two developers:

“I know what changes I have to make in my app
when implementing a change. However, a tool like
this may help in quantifying the number of classes
to be modified.”

“It would be useful for letting me immediately know
to what extent a change is complicated to apply.”

Therefore, the original developers of the apps in our dataset
highlighted that the actual usefulness of CHANGEADVISOR is
not only that of providing a toolkit able to support them during
the daily activities of user reviews reading and understanding,
but also that of providing a tool to estimate the possible cost
of some change.

In Summary. The developers confirm the usefulness of
CHANGEADVISOR in practice. In particular, not only do the
developers think that our approach would be useful in grouping

together reviews with the same meaning and linking to source
components, but also in quantifying the extent of changes.

C. Threats to Validity

Threats to construct validity are mainly related to how
we measured developers’ estimation of cluster cohesiveness,
linking precision, and completeness. We used a Likert scale [54]
that allows comparing responses from multiple respondents.
However, we are aware that questionnaires may only reflect a
subjective perception of the problem.

Threats to internal validity are related to the selection of
the top 10 links based on the higher Dice coefficient values
resulting from the first study. We made it to avoid having
a long questionnaire that might have discouraged developers
to take part in our study. Moreover, a factor that may have
affected the results of the survey study is the response rate of
9.8 % although it covers each app in the dataset.

As for the threats to external validity, they are related to
how we generalized the results. A replication of the study is
part of out future agenda.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced CHANGEADVISOR, a novel
approach developed with the goal of supporting developers
in accommodating user change requests of mobile apps and
planning a new release of an application.

We believe that CHANGEADVISOR represents a significant
step forward to the current state-of-art of app reviews mining
since, to the best of our knowledge, it is the first approach
able to (i) extract user feedback relevant from a maintenance
perspective, (ii) cluster it according to similar user needs, and
(ii1) determine the code artifacts that need to be maintained to
accommodate the change requests.

The first evaluation of CHANGEADVISOR demonstrated that
the approach is able to (i) identify cohesive user feedback
clusters representing similar change requests (RQy), (ii) identify
the source code components impacted by the suggested changes
with 81 % of precision and 70 % of recall (RQ,), and (iii) it
is more accurate than a state-of-the-art technique developed in
the context of bug localization [21]. The study conducted with
the original developers of the apps in our dataset confirmed
the usefulness of our approach in practice (RQj).

Our future research agenda includes (i) the extension of
the empirical study to include a larger number and variety
of apps from different app stores, (ii) the comparison of
CHANGEADVISOR with other baseline techniques in the
context of software traceability (e.g., the technique proposed
by Bachelli et al. [56]), and (iii) the integration of a mecha-
nism for prioritizing the suggested changes. Specifically, the
prioritization mechanism will take into account both user
requests popularity and the interdependencies between the
impacted code components to help developers focus on requests
important for users and avoid working on conflicting software
changes.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

D. A. da Costa, S. McIntosh, U. Kulesza, and A. E. Hassan, “The impact
of switching to a rapid release cycle on the integration delay of addressed
issues: An empirical study of the mozilla firefox project,” in Proceedings
of the 13th International Conference on Mining Software Repositories,
ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 374-385.
[Online]. Available: http://doi.acm.org/10.1145/2901739.2901764

F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases
improve software quality?: An empirical case study of mozilla firefox,”
in Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories, ser. MSR *12. IEEE Press, 2012, pp. 179-188. [Online].
Available: http://dl.acm.org/citation.cfm?id=2664446.2664475

M. Nayebi, B. Adams, and G. Ruhe, “Release practices for mobile
apps - what do users and developers think?” in [EEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016, 2016, pp. 552-562.

B. Adams and S. Mclntosh, “Modern release engineering in a nutshell
— why researchers should care,” in 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 5, 2016, pp. 78-90.

D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study.” in In Proceedings of the 21st IEEE International Requirements
Engineering Conference (RE 2013). 1EEE Computer Society, 2013, pp.
125-134. [Online]. Available: http://dblp.uni-trier.de/db/conf/re/re2013.
html#PaganoM13

V. N. Inukollu, D. D. Keshamoni, T. Kang, and M. Inukollu, “Factors
Influencing Quality of Mobile Apps:Role of Mobile App Development
Life Cycle,” ArXiv e-prints, Oct. 2014.

E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in Requirements Engineering
Conference (RE), 2014 IEEE 22nd International, Aug 2014, pp. 153-162.
C. Tacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in 10th Working Conference on Mining
Software Repositories (MSR’13), 2013, pp. 41-44.

L. V. Galvis Carrefio and K. Winbladh, “Analysis of user comments:
An approach for software requirements evolution,” in Proceedings of
the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 582-591. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486865

S. Krusche and B. Bruegge, “User feedback in mobile development,” in
Proceedings of the 2Nd International Workshop on Mobile Development
Lifecycle, ser. MobileDeLi "14. New York, NY, USA: ACM, 2014, pp.
25-26. [Online]. Available: http://doi.acm.org/10.1145/2688412.2688420
T. Vithani, “Modeling the mobile application development lifecycle,”
in Proceedings of the International MultiConference of Engineers and
Computer Scientists 2014, Vol. I, ser. IMECS 2014, 2014, pp. 596-600.
F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia, “User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps,” in
Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on, Sept 2015, pp. 291-300.

S. Panichella, A. Di Sorbo, E. Guzman, C. Visaggio, G. Canfora, and
H. Gall, “How can i improve my app? classifying user reviews for
software maintenance and evolution,” in Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference on, Sept 2015,
pp. 281-290.

U. Abelein, H. Sharp, and B. Paech, “Does involving users in software
development really influence system success?” IEEE Software, vol. 30,
no. 6, pp. 17-23, 2013.

S. A. Licorish, A. Tehir, M. F. Bosu, and S. G. MacDonell, “On satisfying
the android os community: User feedback still central to developers’
portfolios,” in 2015 24th Australasian Software Engineering Conference
(ASWEC, 2015, pp. 78-87.

E. Ha and D. Wagner, “Do android users write about electric sheep?
examining consumer reviews in google play,” in Consumer Communica-
tions and Networking Conference (CCNC), 2013 IEEE, Jan 2013, pp.
149-157.

J. Oh, D. Kim, U. Lee, J.-G. Lee, and J. Song, “Facilitating
developer-user interactions with mobile app review digests,” in CHI ’13
Extended Abstracts on Human Factors in Computing Systems, ser. CHI
EA ’13. New York, NY, USA: ACM, 2013, pp. 1809-1814. [Online].
Available: http://doi.acm.org/10.1145/2468356.2468681

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(32]

[33]

(34]

(35]

[36]

[37]

A. Di Sorbo, S. Panichella, C. Alexandru, J. Shimagaki, C. Visaggio,
G. Canfora, and H. Gall, “What would users change in my app?
summarizing app reviews for recommending software changes,” in
Foundations of Software Engineering (FSE), 2016 ACM SIGSOFT
International Symposium on the, 2016, p. to appear.

X. Gu and S. Kim, “What parts of your apps are loved by users?” in 30th
IEEE/ACM International Conference on Automated Software Engineering
(ASE 2015), 2015, p. to appear.

L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release
planning of mobile apps based on user reviews,” in Proceedings of the
International Conference on Software Engineering (ICSE). 1EEE, 2016.
R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
Nov 2013, pp. 345-355.

F. Palomba, P. Salza, S. Panichella, A. Ciurumelea, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing code changes for
mobile apps based on user reviews: Online appendix,” Tech. Rep., 2016,
https://sites.google.com/site/changeadvisormobile/.

M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: Msr
for app stores,” in Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, June 2012, pp. 108-111.

N. Chen, J. Lin, S. Hoi, X. Xiao, and B. Zhang, “AR-Miner: Mining
informative reviews for developers from mobile app marketplace,” in
36th International Conference on Software Engineering (ICSE’14), 2014,
pp. 767-778.

H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
App users complain about? a study on free iOS Apps,” IEEE Software,
no. 2-3, pp. 103-134, 2014.

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970-983,
2002.

A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk, Software and
Systems Traceability. London: Springer London, 2012, ch. Information
Retrieval Methods for Automated Traceability Recovery, pp. 71-98.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4471-2239-5_4

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53-95, 2013.

A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010, 2010, pp. 375-384.

C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and dynamics of API discussions on stack
overflow,” Georgia Tech, Tech. Rep. GIT-CS-12-05, 2012.

S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer communications,”
in IEEE 20th International Conference on Program Comprehension
(ICPC’12), 2012, pp. 63-72.

R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.
H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software
traceability with topic modeling,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 95-104. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806817

A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in
Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE "13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 522-531. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2486788.2486857

S. Panichella, A. Di Sorbo, E. Guzman, C. Visaggio, G. Canfora, G. Gall,
H.C., and H. Gall, “Ardoc: App reviews development oriented classifier,”
in Foundations of Software Engineering (FSE), 2016 ACM SIGSOFT
International Symposium on the, 2016, p. to appear.

M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130-137, 1980.

M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.

http://doi.acm.org/10.1145/2901739.2901764
http://dl.acm.org/citation.cfm?id=2664446.2664475
http://dblp.uni-trier.de/db/conf/re/re2013.html#PaganoM13
http://dblp.uni-trier.de/db/conf/re/re2013.html#PaganoM13
http://dl.acm.org/citation.cfm?id=2486788.2486865
http://doi.acm.org/10.1145/2688412.2688420
http://doi.acm.org/10.1145/2468356.2468681
https://sites.google.com/site/changeadvisormobile/
http://dx.doi.org/10.1007/978-1-4471-2239-5_4
http://doi.acm.org/10.1145/1806799.1806817
http://dl.acm.org/citation.cfm?id=2486788.2486857
http://dl.acm.org/citation.cfm?id=2486788.2486857

(38]

[39]

[40]

[41
[42]
[43]
[44]

[45]

[46]

316-344, Dec. 2005. [Online]. Available: http://doi.acm.org/10.1145/
1118890.1118892

S. Gupta, S. Malik, L. L. Pollock, and K. Vijay-Shanker, “Part-of-
speech tagging of program identifiers for improved text-based software
engineering tools,” in IEEE 21st International Conference on Program
Comprehension, ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013,
2013, pp. 3-12.

A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” Requir. Eng., vol. 20, no. 3, pp. 281-300, Sep.
2015. [Online]. Available: http://dx.doi.org/10.1007/s00766-013-0199-y
G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella,
“Improving ir-based traceability recovery via noun-based indexing of
software artifacts,” Journal of Software: Evolution and Process, vol. 25,
no. 7, pp. 743-762, 2013.

“NItk. http://www.nltk.org.”

“Textblob. https://textblob.readthedocs.org/en/dev/.”

“Pyenchant. http://pythonhosted.org/pyenchant/.”

“Wordnet english stopword list. http://www.d.umn.edu/~tpederse/
Group01/WordNet/wordnet- stoplist.html.”

P. M. Nadkarni, L. Ohno-machado, and W. W. Chapman, “Natural
language processing: an introduction,” J Am Med Inform Assoc, p. 2011.
J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in 5th Berkeley Symp. Mathematical Statistics
and Probability, 1967, pp. 281-297.

[47]

(48]

[49]

[50]
(51]
[52]
[53]
[54]

[55]
[56]

L. Kaufman and P. J. Rousseeuw, Introduction. John Wiley & Sons,
Inc., 2008, pp. 1-67. [Online]. Available: http://dx.doi.org/10.1002/
9780470316801.chl

Y. W. Teh, M. 1. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical
dirichlet processes,” Journal of the American Statistical Association,
2012.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993-1022, Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944937

A. Gelman, C. Robert, N. Chopin, and J. Rousseau, “Bayesian data
analysis,” 1995.

P. Jaccard, “Etude comparative de la distribution florale dans une portion
des alpes et des jura,” Bulletin de la Société Vaudoise des Sciences
Naturelles, no. 37, 1901.

“F-droid. https://f-droid.org.”

Google, “Google play store. https://play.google.com.”

R. Likert, “A technique for the measurement of attitudes,” Archives of
Psychology, vol. 22, no. 140, 1932.

R. M. Groves, Survey Methodology, 2nd edition. Wiley, 2009.

A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content
classification of development emails,” in Proceedings of 34th
International Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland, 2012, pp. 375-385. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2012.6227177

http://doi.acm.org/10.1145/1118890.1118892
http://doi.acm.org/10.1145/1118890.1118892
http://dx.doi.org/10.1007/s00766-013-0199-y
http://www.nltk.org
https://textblob.readthedocs.org/en/dev/
http://pythonhosted.org/pyenchant/
http://www.d.umn.edu/~tpederse/Group01/WordNet/wordnet-stoplist.html
http://www.d.umn.edu/~tpederse/Group01/WordNet/wordnet-stoplist.html
http://dx.doi.org/10.1002/9780470316801.ch1
http://dx.doi.org/10.1002/9780470316801.ch1
http://dl.acm.org/citation.cfm?id=944919.944937
https://f-droid.org
https://play.google.com
http://dx.doi.org/10.1109/ICSE.2012.6227177

	Introduction
	Related Work
	Mining User Reviews
	Linking Informal Textual Documentation to the Source Code

	The ChangeAdvisor Approach
	User Feedback Classification
	Input Preprocessing
	Source Code Preprocessing
	User Feedback Preprocessing

	User Feedback Clustering
	Recommending Source Code Changes

	Study I: The Accuracy of ChangeAdvisor
	Empirical Study Definition and Design
	Analysis of the Results
	Evaluating the Cohesiveness of User Feedback Clusters
	Evaluating the Linking Accuracy

	Threats to Validity

	Study II: Opinions of the Original Developers
	Empirical Study Definition and Design
	Analysis of the Results
	Threats to Validity

	Conclusions and Future Work
	References

