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Abstract—Refactoring aims at improving the internal structure
of a software system without changing its external behavior.
Previous studies empirically assessed, on the one hand, the
benefits of refactoring in terms of code quality and developers’
productivity, and on the other hand, the underlying reasons that
push programmers to apply refactoring. Results achieved in the
latter investigations indicate that besides personal motivation
such as the responsibility concerned with code authorship, refac-
toring is mainly performed as a consequence of changes in the
requirements rather than driven by software quality. However,
these findings have been derived by surveying developers, and
therefore no studies performed on the actual modifications made
on software repositories have been carried out to corroborate the
achieved findings. To bridge this gap, we provide a quantitative
investigation on the relationship between different types of code
changes (i.e., Fault Repairing Modification, Feature Introduction
Modification, and General Maintenance Modification) and 28
different refactoring types coming from 3 open source projects.
Results showed that developers tend to apply a higher number of
refactoring operations aimed at improving maintainability and
comprehensibility of the source code when fixing bugs. Instead,
when new features are implemented, more complex refactoring
operations are performed to improve code cohesion. Most of
the times, the underlying reasons behind the application of
such refactoring operations are represented by the presence of
duplicate code or previously introduced self-admitted technical
debts.

Index Terms—Refactoring; Code Changes; Empirical Studies

I. INTRODUCTION

Refactoring is “the process of changing a software system
in such a way that it does not alter the external behavior
of the code yet improves its internal structure” [1]. The
value of refactoring has been widely demonstrated in the
past, since it improves the internal structure of the source
code leading to several positive effects, such adaptability,
maintainability, understandability, reusability, and testability
[2], but also developers’ productivity [3]. Moreover, the higher
the number of refactoring operations performed by developers
the higher the benefits for software maintainability [4].

These empirical studies have motivated researchers in
spending effort for devising techniques able to discover areas
of source code needing refactoring [5], [6], [7], as well as
methods for the identification of refactoring opportunities [8],
[9], [10], [11]. Despite this effort, developers tend to not
refactor source code as they should, and they generally do
not use any automated tool to improve the quality of a system
[12]. With the aim of supporting developers in such an activity,
in the recent past some studies have further investigated

how programmers apply refactoring [13], and what are the
conditions pushing them to apply refactoring operations [15].

Such studies showed that in most cases refactoring is not
recognized as a behavior-preserving operation [13] and, thus,
developers perform refactoring (i) only when strictly needed to
implement new features (e.g., when the source code is poorly
readable [13]), (ii) because of the responsibility concerned
with code authorship [16], or (iii) to achieve recognitions from
others [16].

More recently, Bavota et al. [14] analyzed to what extent
refactoring operations are performed on classes having a low
metric profile or affected by code smells. They found that
refactoring operations do not target classes exhibiting low
cohesion and/or high coupling, and that only 40% of the times
refactoring operations have been performed on classes affected
by a design flaw. These results have also been confirmed by
Silva et al. [15], which surveyed the Github contributors of
124 software projects, finding that refactoring is mainly driven
by changes in the requirements rather than by the presence of
quality problems in source code (e.g., code smells).

While Silva et al. [15] explored the problem from a de-
velopers’ perspective, there are no studies that systematically
investigate software repositories to understand whether specific
types of changes drive refactoring operations. To bridge this
gap, in this paper we empirically verify the relationship
between the types of changes coming from the taxonomy
provided by Hassan [17] (i.e., Fault Repairing Modification,
Feature Introduction Modification, and General Maintenance
Modification), and the application of refactoring operations.
The study has been conducted on a dataset composed of
12,922 operations related to 28 different refactoring types
applied over the change history of three open source systems,
i.e., APACHE ANT, ARGOUML, and APACHE XERCES.

The results of the study firstly indicate that classes having
a higher rate of fault repairing modifications have higher
chance of being subject to refactoring operations aimed at
simplifying the source code (by improving its comprehensi-
bility) and improving its maintainability (e.g., through a move
field refactoring). A deeper investigation into the reasons why
developers apply such refactoring operations during bug fixing
activities revealed that in 74% of the cases the main reason for
developers to re-organize the code is the presence of duplicated
code [1]. At the same time, we observed that in 96% of the
cases the overall readability of refactored classes is improved
by 48% (as indicated by the Buse and Weimer readability



metric [18]). Furthermore, feature introduction changes have
a higher likelihood of entailing refactoring opeartions aimed
at improving code cohesion or adherence to the Object-
Oriented programming principles (e.g., through an extract
method refactoring). In this case, we observed that 46% of
the refactored classes have been affected by a self-admitted
technical debt in their previous versions. Therefore, most of
the times refactoring can be seen as a form of compensation of
pre-existing debts. Finally, general maintenance modifications
lead to improve the readability of the code (e.g., by applying a
rename method refactoring). As a result, the overall readability
of the refactored classes increase of 30%.

Structure of the Paper. Section II describes the design of our
empirical study, while Section III reports and discusses the
obtained results. Section IV analyzes and discusses the threats
that could affect the validity of our study. After a discussion
of the related literature (Section V), Section VI concludes the
paper.

II. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the empirical study is to analyze refactoring
operations applied by developers during the evolution history
of a software system. The purpose is understanding whether
different types of changes provide indications on which code
components are more/less likely of being refactored.

The context of the study consists of 63 releases of three
software projects with different size and scope, i.e., APACHE
ANT1, ARGOUML2 and APACHE XERCES-J3. The character-
istics of the object systems are reported in Table I.

It is worth noting that we focus our attention on a relative
small number of software systems because, as detailed in
Section II-A, we relied on a publicly available dataset com-
posed of 12,922 operations (manually validated) related to 28
different refactoring types identified in each of the considered
releases [14]. Note that while other datasets are available [19],
to the best of our knowledge the one built by Bavota et al. is
the largest one in terms of refactoring operations (12,922 vs
7,872 reported by Kadar et al.).

A. Research Questions and Data Extraction

In the context of the study, we formulated the following
research question:

To what extent are refactoring operations performed on
classes subject to a fault repairing, feature introduction,

and general maintenance modification?

To answer our research question, we firstly needed to
identify which types of refactoring operations occur over the
history of the considered software systems. The dataset of
refactoring operations we relied on [14] reports a set of 12,922
refactoring operations applied over 63 releases of the three

1http://ant.apache.org/
2http://argouml.tigris.org
3http://xerces.apache.org/xerces-j/

TABLE I: Characteristics of the object systems.
Project Period Releases Analyzed #Releases Classes KLOC
Ant Jan 2000-Dec 2010 1.2-1.8.2 17 87-1,191 8-255
ArgoUML Oct 2002-Dec 2011 0.12-0.34 13 777-1,519 362-918
Xerces-J Nov 1999-Nov 2010 1.0.4-2.9.1 33 181-776 56-179
Overall - - 63 - -

object systems. Specifically, the dataset is composed of a set
of triples (relj , refk, C), where relj indicates the release ID,
refk the type of refactoring that occurred, and C is the set
of refactored classes. Therefore, the dataset reports all the
information needed to apply our analyses. Table II shows the
number of refactoring operations (together with the number
of different types of refactoring operations) identified on the
three systems after the manual validation process.

To extract the different types of changes involving classes
affected by refactoring operations across two consecutive
releases of the analyzed software systems, we mined the logs
of their versioning systems. Specifically, we discriminate three
different types of changes, following the taxonomy proposed
by Hassan [17]:

• Fault Repairing Modification (FR), which represents
the set of changes applied to fix a fault. Such changes are
usually specified by developers in the commit message
through the indication of the ID of the fault the commit
repairs (e.g., “Issue #42 fixed”).

• Feature Introduction Modification (FI), representing
the set of changes adding or enhancing a given feature. It
is possible to discriminate such changes looking for key-
words as “added” or “updated” in the commit message.

• General Maintenance Modification (GM), namely the
set of changes not related to the update of a specific
feature. For example, the modification of the indentation
of the source code can be considered as a GM.

We automatically classified each commit by applying the
lexical technique proposed by Mockus et al. [20], that is able
to assign a category of change based on the analysis of the
commit message.

B. Study Variables and Analysis Method

The dependent variables of our study are the different types
of refactoring operations performed over all the releases of the
software projects we considered. The independent variables
are instead the different types of changes we related to the
observed refactoring operations. For each system in our dataset
and for each type of refactoring applied to it, we built logistic
regression models4 that relate a dichotomous dependent vari-
able with independent variables characterized by the change
factors. In other words, given the set of independent variables,
we are interested in the prediction of the probability p that the
dependent variable is 1 (i.e., the refactoring occurs) rather than
0 (i.e., the refactoring does not occurs).

Logistic regression models [21] relate dichotomous depen-
dent variables with one or more independent variables as
follows:

4Using the R statistical software: http://www.r-project.org/



TABLE II: Summary of the refactoring operations analyzed.

Project #Refactorings Distinct types of refactorings
Apache Ant 1,469 31
ArgoUML 3,532 43
Xerces-J 7,921 43
Overall 12,922 52

π(X1, X2, . . . , Xn) =
eC0+C1·X1+...+Cn·Xn

1 + eC0+C1·X1+...+Cn·Xn
(1)

where Xi are the independent variables characterizing an
event, and Ci the coefficients (estimates) of the logistic re-
gression model. It is worth noting that, to avoid the definition
of unreliable logistic regression models, we choose to apply
the logistic regression model only if a particular type of
refactoring (e.g., Move Field refactoring) has been performed
on a system at least ten times. In particular, we built three
different logistic models:

1) FR Model: This model considers fault repairing modifi-
cations as independent variables, while the application of
a specific refactoring (e.g., add parameter) as dependent
variable.

2) FI Model: The second model considers feature introduc-
tion modifications as independent variables, while the
application of a specific refactoring (e.g., add parameter)
as dependent variable.

3) GM Model: The last model considers general mainte-
nance modifications as independent variables, while the
application of a specific refactoring (e.g., add parameter)
as dependent variable.

For each considered model we then analyze if each inde-
pendent variable is significantly correlated with the dependent
variable (we set the significance level α = 5%), and we quan-
tify the correlation between the variables using the Odds Ratio
(OR) [22] which, for a logistic regression model, is given by
eCi . In our case, Odd Ratios indicate the increase in likelihood
of a refactoring increase/decrease as a consequence of a one-
unit increase of the independent variable. For example, if we
found that Feature Introduction Modification has an OR of
1.10 with extract method refactoring, this means that each one-
unit increase of the feature introduction modification made on
a class lead to a 10% higher chance for the class of being
involved in an extract method refactoring.

Besides the analysis made to understand the relationship
between changes and refactoring from a quantitative perspec-
tive, we performed a complementary qualitative investigation
into the source code of the classes refactored by developers,
with the aim to understand the underlying reasons behind the
application of a given refactoring. In particular, we manually
analyzed the commit messages and the source code involving
the artifacts refactored during the history of the considered
systems with the purpose of analyzing whether classes subject
to refactoring have particular characteristics making them
more prone to be re-organized by developers. More details
are reported along with the discussion of the results.

III. ANALYSIS OF THE RESULTS

Table III reports the ORs of the fault repairing modifica-
tions, feature introduction modifications, and general mainte-
nance modifications, respectively, for the 28 different types
of refactoring operations considered in the study. Statistically
significant ORs are highlighted in bold face. In the following,
we discuss the results of the study by considering each model
independently.

FR Model. As it is possible to observe from Table III, 80%
of the statistically significant ORs are higher than one. From a
practical point of view, this means that classes having a higher
rate of fault repairing modifications have a higher chance
of being refactored than classes not involved in bug fixing
activities. Likely, this is due to the fact that developers want
to simplify the structure of a class in order to make it more un-
derstandable before applying delicate corrective maintenance
operations. This claim is supported by the fact that most of the
refactoring types exhibiting high ORs deal with simplifying
the source code and improving its comprehensibility. It is
the case for add parameter, consolidate duplicate conditional
fragments, move field, remove assignment to parameters, re-
place magic number with constant, and replace nested cond
guard clauses. Note that we additionally verified whether the
number of refactoring operations having higher ORs (i.e., in
the case of fault repairing modifications, the ones mentioned
above) was statistically higher than the number of the other
refactoring operations. To this aim, we exploited the Mann-
Whitney U test [23] comparing the distributions of refactoring
operations among the three subject systems. As a result, we
observed that the refactoring types having higher ORs have
been actually applied a statistically higher number of times
with respect to the other refactoring types (α < 0.01 in all the
cases).

Particularly interesting is the case of the add parameter
refactoring which has OR=13.18 for APACHE ANT, OR=23.10
for ARGOUML, and OR=10.95 for XERCES. By analyzing
more in depth these cases, we found that often refactoring
is an absolute need for developers to effectively perform bug
fixing activities: for instance, a developer of ARGOUML, after
having refactored the source code and applied the bug fix,
committed the new version of the class reporting this commit
message:

“Fixed bug #221148. I needed to add parameters
and comments in the class, because it was totally
horrible and impossible to fix!”

This result is even more interesting when we consider the
more general relation between refactoring and bugs. Indeed,
as Bavota et al. have shown [24], refactoring operations
that are applied manually by developers could induce bug
fixing activities in the source code. In contrast, we show
that bug fixing activities make developers more prone in their
application of specific refactoring operations. So, the relation
seems to be bidirectional and our findings highlight the need



TABLE III: ORs achieved by logistic regression models built using fault repairing, feature introduction, and general maintenance
modifications (statistically significant ORs are in bold face).

Refactoring System FR Modifications FI Modifications GM Modifications
add parameter Apache Ant 13.18 8.17 4.81
add parameter Argo UML 23.10 3.15 2.91
add parameter Xerces 10.95 22.87 1.11
consolidate cond expression Apache Ant 0.53 1.11 1.74
consolidate cond expression Argo UML 0.59 1.55 1.55
consolidate cond expression Xerces 0.78 1.13 2.14
consolidate duplicate cond fragments Apache Ant 0.61 0.98 1.31
consolidate duplicate cond fragments Argo UML 0.74 0.70 0.44
consolidate duplicate cond fragments Xerces 0.63 0.79 1.57
extract method Apache Ant 1.02 5.18 0.71
extract method Argo UML 0.89 9.25 0.78
extract method Xerces 1.07 3.11 0.80
extract superclass Argo UML 5.81 0.83 0.68
form template method Argo UML 0.83 2.46 3.49
inline method Apache Ant 0.75 1.89 0.66
inline method Argo UML 0.69 1.98 0.70
inline method Xerces 1.71 1.65 0.81
inline temp Apache Ant 1.52 0.81 0.86
inline temp Argo UML 1.01 0.87 0.69
inline temp Xerces 0.79 1.76 0.82
introduce assertion Argo UML 1.01 1.12 0.99
introduce explaining variable Apache Ant 0.88 4.18 5.00
introduce explaining variable Argo UML 1.06 0.85 18.23
introduce explaining variable Xerces 1.02 1.01 2.68
introduce null object Argo UML 0.99 0.74 0.89
introduce parameter object Xerces 2.76 1.16 0.86
move field Apache Ant 7.98 1.08 3.41
move field Argo UML 5.14 1.19 2.87
move field Xerces 8.34 1.76 2.04
move method Apache Ant 5.86 1.17 1.02
move method Argo UML 3.91 1.12 4.41
move method Xerces 2.76 0.99 2.15
pull up field Xerces 0.91 0.88 0.52
pull up method Xerces 1.07 0.90 0.78
push down field Xerces 1.86 1.24 0.92
push down method Xerces 0.80 2.98 0.55
remove assignment to parameters Apache Ant 2.12 0.69 1.11
remove assignment to parameters Argo UML 1.23 0.96 2.71
remove assignment to parameters Xerces 0.88 0.78 0.70
remove control flag Apache Ant 2.13 0.98 0.61
remove control flag Argo UML 4.13 0.91 0.82
remove control flag Xerces 1.19 0.71 0.33
remove parameter Apache Ant 1.02 0.86 1.22
remove parameter Argo UML 0.66 0.88 2.88
remove parameter Xerces 0.87 0.91 3.61
rename method Apache Ant 1.21 0.93 14.11
rename method Argo UML 1.12 4.87 1.58
rename method Xerces 1.75 1.07 3.73
replace data with object Argo UML 1.39 2.98 3.81
replace data with object Xerces 0.91 8.16 2.04
replace exception with test Xerces 0.80 0.92 1.09
replace magic number with constant Apache Ant 1.18 0.78 1.02
replace magic number with constant Argo UML 13.72 0.97 0.59
replace magic number with constant Xerces 0.66 1.01 2.75
replace method with method object Apache Ant 0.94 4.09 5.79
replace method with method object Argo UML 1.32 1.98 1.35
replace method with method object Xerces 1.53 2.71 12.81
replace nested cond guard clauses Apache Ant 0.71 0.88 0.16
replace nested cond guard clauses Argo UML 1.09 1.56 0.45
replace nested cond guard clauses Xerces 0.76 0.99 0.22
separate query from modifier Xerces 0.83 0.80 1.55

to further investigate the interaction between refactoring and
bugs.

For this reason, we have performed a deep analysis of
the change history of the subject systems by manually in-
specting the commit messages and the source code related
to commits having as goal the fixing of bugs (as indicated
by the commits’ classification automatically done using the
approach by Mockus [20]). From this additional analysis, we
learned that in 74% of the cases the commits involved in

refactoring operations contain source code affected by dupli-
cated code [1]. Developers refactored these affected parts by
applying operations aimed at improving the comprehensibility
and/or the maintainability of the source code before fixing a
bug. This finding is quite unexpected if we consider that all the
refactoring operations having higher ORs are not specifically
targeted at removing code clones [1]. However, most of the
operations performed by developers (e.g., consolidate dupli-
cate conditional fragments) tend to re-unify the source code



Fig. 1: Method maybeConfigure of the APACHE ANT
project before and after the refactoring operations applied to
fix a bug.

Before

After

by removing redundant code. A clear example is represented
by the class RuntimeConfigurable of the APACHE ANT
system, where the maybeConfigure method is in charge of
configuring the proper build properties for a new Java project.
The upper part of Fig. 1 depicts a snippet of code (from line
#385 to line #413 of the class) referring to the investigated
method. The code snippet shows that the method can call itself
(red lines in Figure 1) in two different if statements (lines
#394 and #413). In version 1.6.1 of the system, the method
was affected by a known bug causing a double configuration of
the project if the input file contains sub-tasks.5 When solving
this bug, the developers first applied a consolidate duplicate
conditional fragments refactoring aimed at condensing the two
conditional statements leading to two different calls of the
maybeConfigure method into a single one (see the lower
part of Fig. 1). At the same time, the bug was fixed by applying
an add parameter refactoring in order to pass the method
a boolean variable named configureChildren able to
control whether the input project needs or does not need the
configuration of its sub-projects.

When refactoring is not applied to remove redundant code,
developers perform modifications on fields and local variables
aimed at improving their location or their names. So, all
in all, we observed that developers performing bug fixing
activities apply refactoring operations for two possible reasons:
(i) improving the general maintainability of the system, or
(ii) improving the comprehensibility of source code before
fixing a fault. This result is in line with previous findings by

5https://bz.apache.org/bugzilla/show bug.cgi?id=9900

Du Bois et al., who have originally shown that “refactoring
to understand” is one of the main activities performed by
developers when conducting maintenance operations [25].
To further corroborate the latter statement, we also verified
whether the source code refactored during bug fixing showed
an improvement in its overall readability. To this aim, we
exploited the metric proposed by Buse and Weimer [18].
This metric combines a set of low-level code features (e.g.,
identifier length, number of loops, etc.) and has been shown
to be 80% effective in predicting developers’ readability
judgments. We used the original implementation provided
by the authors of the metric.6 In particular, given a code
file, the readability metric takes values between 0 (lowest
readability) and 1 (maximum readability). From this analysis,
we obtained that in 96% of the cases the refactored classes
obtained an average improvement of 48% of the readability
score. Thus, we can confirm that the refactoring operations
made during bug fixing activities have a beneficial effect
on program comprehensibility, other than the maintainability
of a software system. Moreover, it is worth noting that our
qualitative findings seem to partially contradict the results
reported by Silva et al. [15], where the authors found that
refactoring is generally not applied to remove code smells.
On the other hand, we observed that code clones (i.e., one of
the most popular code smells [1]) represent the main reason
why refactoring is applied during bug fixing activities.

Observation 1. During bug fixing activities, developers im-
proves comprehensibility and maintainability of the source
code. The main reason pushing developers to refactor
source code is the presence of duplicated code. At the same
time, we also found that in 96% of the cases the readability
of the source code refactored during bug fixing operations
showed an improvement of 48%.

FI Model. The results for the model involving the feature
introduction modifications are reported in Table III. Also in
this case, a large part of statistically significant ORs are higher
than one (i.e., 78% of the cases). Moreover, for add param-
eter, extract method, replace data with object, and replace
method with method object refactoring operations, such ORs
are consistently higher than one, indicating that all of them
are closely related to the introduction of new features in a
software system. Indeed, the number of times these refactoring
operations have been applied is statistically higher than the one
of all the other refactoring operations. The result is somehow
expected, since developers implementing new features need to
re-organize specific parts of the system in order to place the
new requirements in the right classes. Therefore, refactoring
operations as extract method or replace data with object are
perfectly inline with our conjecture. A clear example occurred
in the APACHE ANT project, where a developer implementing
the option -noclasspath7 had to modify the source code

6Available at http://tinyurl.com/kzw43n6
7The option used to run ant without using the classpath of a project.



of the class org.apache.tools.ant.Task. To this aim,
she applied an extract method refactoring in order to extract
from the method handleInput (i.e., the method in charge
of analyzing the input of the project) the part related to
the management of the default input provided by the user.
The extracted part has then been placed in a new method
named defaultInput. As a direct consequence, the overall
cohesion of the class was improved (i.e., the LCOM—Lack of
Cohesion of Methods [26]—decreases from 6 to 2). Interest-
ingly, before the refactoring, the method handleInput was
associated with the following comment:

/* It can produce errors in
older versions. Need fix (sooner
or later). */

It seems that in an older version of the system the developers
consciously left a possible issue into the system with the aim
of speeding up the release process. Thus, they introduced a
self-admitted technical debt [27], that was subsequently payed
off during the implementation of a new feature involving the
method handleInput, during which the possible bug was
fixed (indeed, the comment was removed after the refactor-
ing). On the basis of the case discussed above, we further
investigated to what extent the classes refactored during the
implementation of new features contain a self-admitted tech-
nical debt. To this aim, we adopted the following procedure:

• Given a class Ci refactored in a release relj , we mined
all the commits c1, c2, ..., cn between relj−1 and relj and
we extracted the source code of Ci in each commit ci;

• For each version of Ci, we exploited srcML [28] to
extract the comments from the Java code file.

• The set of retrieved comments was then analyzed to
identify those reporting a self-admitted technical debt.
To identify them, we exploited regular expressions to
match inside comments the 62 self-admitted technical
debt patterns defined by Potdar and Shihab [29].

From our analysis, we observed that 46% of the refactored
classes contained a self-admitted technical debt in its previ-
ous versions. Interestingly, in 67% of the commits where a
refactoring was performed the mention to the technical debt
disappeared. Thus, we can affirm that in a good percentage
of the cases developers apply refactoring during the imple-
mentation of new features in order to remove a technical
debt previously left in the code. However, such refactoring
operations do not tend to improve the overall readability of
the source code. Indeed, we have observed that just 13% of
classes refactored when implementing new features show an
overall 30% improvement in terms of readability (as measured
using the Buse and Weimer tool [18]).

A second relevant example is represented by the class
DiagramMemberFilePersister, belonging to the pack-
age org.argouml.persistence of the ARGOUML
project. Here, in version 0.32 the comment associated to the
method save highlighted a requirement debt [27], [29]:

// TODO: We need the project
specific diagram settings here

In the subsequent version of the system (i.e., version 0.34),
during the implementation of a new methodology to save
the UML diagrams, developers re-organized the source code
by applying an extract method refactoring, paying off the
debt by solving the settings issue previously raised during
the implementation of the new feature. Also in this case,
the cohesion of the class increases after the refactoring (i.e.,
the LCOM decreases from 7 to 4). Even more evident is
the case of the class xerces.dom.AttributeMap of the
APACHE XERCES system, where in version 1.4.1 the method
reconcileDefaults was commented as follow:

/** COMMENTED OUT!!!!!!!

******** Doing this dynamically
is a killer, since editing the
DTD isn’t even supported this is
commented out at least for now.
In the long run it seems better
to update the document on user’s
demand after the DTD has been
changed rather than doing this
anyway.*/

In the subsequent version (i.e., version 1.4.2), the method
was fixed when an update of the class needed to implement a
new way to map the attributes of an XML file given as input
to the system. Specifically, the developers applied a replace
method with method object refactoring, giving to the method
a specific responsibility and, thus, improving the adherence to
the object-oriented programming principles.

In conclusion, we have strong indications that refactoring is
related to feature introduction modification because developers
adapt the source code before implementing new features, by
applying refactoring types mainly concerned with the improve-
ment of code cohesion and the adherence to the object-oriented
programming principles. Moreover, several times refactoring
is applied to remove previous technical debt introduced by
developers to speed up the release process. Also in this case,
our findings revealed that technical debt actually represents a
strong motivation for refactoring the source code.

Observation 2. During the implementation of new fea-
tures, developers tend to re-organize the source code
through refactoring operations aimed at improving code
cohesion and the adherence to the object-oriented program-
ming principles. A deeper analysis revealed that one of the
main reasons pushing developers to refactor source code
is given by the presence of technical debt, which is payed
off before introducing new code.

GM Model. The results for this model are shown in Table III.
Although 75% of the statistically significant ORs are higher
than one, it is worth noting that (i) often such values are just
slightly higher than one (e.g., the OR for the move method
refactoring is 1.02 on APACHE ANT), and (ii) the trends are not
always consistent among the three projects considered. Thus,
in general we can observe that refactoring operations involving



TABLE IV: Summary of the results achieved.
Change Type Top Refactoring Operations Underlying Reasons

Fault Repairing Modifications

add parameter

Improving comprehensibility and maintainability of source code before fixing a bug.

consolidate duplicate conditional fragments
move field

remove assignment to parameters
replace magic number with constant

and replace nested cond guard clauses

Feature Introduction Modifications

add parameter

Removing technical debts previously left in the source code.extract method
replace data with object

replace method with method object

General Maintenance Operations introduce explaining variable Improving source code readability and documentation.rename method

Fig. 2: Method synchronizeData of the APACHE XERCES
project before and after the refactoring operation applied.

Before

After

the modification of the system structure (e.g., pull up/down
field refactoring) are not performed by developers when ap-
plying general maintenance modifications to the source code.
On the other hand, there are two interesting cases regarding the
introduce explaining variable and rename method refactoring
operations that are worth discussing. In these cases, the ORs
are high over all the systems indicating that classes involved in
a large number of general modifications have a higher chance
of being subject of refactoring operations aimed at improving
their documentation as well as the quality of identifiers.
The Mann-Whitney U test also revealed that the number of
refactoring operations of these types applied during general
modifications is statistically higher than other types of refac-
toring operations. For instance, between versions 1.4.1 and
1.4.2, the class xerces.dom.DeferredAttrNSImpl of
the APACHE XERCES project was constantly refactored with
the aim of improving its understandability. Indeed, developers
applied a number of introduce explaining variable refactoring
operations to make the roles of internal variables explicit. It is
worth remarking that this refactoring is concerned with putting
a result of an expression in a temporary variable with a name
that explains the purpose [1].

An example is reported in Fig. 2, where a snippet of the code
belonging to the method synchronizeData is depicted.

In version 1.4.1 (upper side of Fig. 2), the if statements in
lines #159 and #160 call the method name.substring(0,
index) to extract the prefix of the qualified name of an
XML file. In the subsequent version (lower side of figure 2),
the developers introduced the variable prefix to capture the
prefix of the qualified name before using it in the subsequent
statements.

To further verify our conjecture about the goals of refactor-
ing operations made by developers during general maintenance
activities (i.e., improvement of source code documentation),
also in this case we conducted an additional analysis to
understand whether such refactoring operations actually im-
proved the readability of the source code. As previously done,
we exploited the Buse and Weimer readability tool [18],
observing that in 87% of the cases the classes refactored
experienced an improvement in terms of readability, with an
average improvement of 30%. These findings strengthen our
hypotheses and allow use to conclude that the main reason
pushing developers to refactor the source code while applying
general modifications is improving the comprehensibility of
classes.

Observation 3. When involved in general maintenance
modifications, developers try to improve the comprehensi-
bility of the source code by applying refactoring operations
such as the introduce explaining variable and rename
method. Furthermore, we observed the beneficial effects
of refactoring on the overall readability of the refactored
classes.

To summarize the results of our study, Table IV reports the
achieved findings, indicating for each change type taken into
account in our study (i) the top refactoring operations found
through the quantitative analysis, and (ii) the main reasons
why developers applied that refactoring operations, as pointed
out by our qualitative investigation.

IV. THREATS TO VALIDITY

This section discusses the threats that could affect the
validity of our study.
Construct Validity. One threat in this category regards the
accuracy of the technique used to classify the types of changes
analyzed. Indeed, we relied on the lexical approach proposed
by Mockus et al. [20] which shows good performance. How-
ever, we cannot exclude errors in the classification. A similar



issue regards the quality of the dataset exploited. As reported
by Bavota et al. [14], the refactoring operations have been
manually validated after a first detection performed using a
refactoring detector named REFFINDER [30]. Despite this,
it is known that REFFINDER (i) cannot deal with multiple
refactoring operations performed within one commit [31], and
(ii) is not able to identify some refactoring types (e.g., Extract
Class refactoring) [30]. Thus, our study is limited to the refac-
toring operations actually detectable by using REFFINDER
and for which a manual validation aimed at reducing possible
imprecisions was previously conducted by Bavota et al. [14].
As a consequence, we believe that our study is conducted
upon a dataset having a good degree of data quality. Finally,
the refactoring operations in the exploited dataset have been
detected at release-level, while the different change types have
been identified at commit-level. While the different granularity
could have influenced our observations, it is important to note
that all the systems analyzed tend to frequently issue releases
(as the reader can see from the number of considered releases):
thus, the analysis at release level is not necessarily coarse-
grained. Moreover, we mitigated this threat by conducting
qualitative analyses aimed at illustrating the reasons why
specific refactoring operations helped during the development
of a given change type.

Conclusion Validity. To assess the relationships between
different types of changes and refactoring operations, we
exploited logistic regression models, being sure to avoid
unreliable results by just considering the refactoring operations
applied more than ten times over the change history of the
systems considered. Moreover, other than highlighting cases of
significant correlations, we reported and discussed OR values.

Internal Validity. There are factors that might have influenced
our observations. Indeed, we evaluated different types of
changes without considering the development type adopted
by the projects in our study, as well as their life cycle or
their development activity. However, this is an exploratory
study on the relationships between changes and refactoring.
Future effort will be devoted to the analysis of the co-factors
mentioned above.

External Validity. While the study is limited when con-
sidering the number of projects (3), it is worth noting that
we evaluated 12,922 refactoring operations spread across 63
releases (for a total of 30 years of development). Moreover,
we considered open source systems for our analysis, since the
source code of commercial ones is not available. Future inves-
tigations aimed at corroborating our findings are desirable.

V. RELATED WORK

In the recent past, the research community spent a lot of
effort in devising tools for suggesting refactoring operations
as well as to understand under which circumstances developers
refactor and which are the relationships between quality and
refactoring. Due to the empirical nature of this paper, in
the following we summarize the previous work aimed at
empirically characterizing the refactoring activities performed

by developers. A complete report of the automatic techniques
able to suggest refactoring operations is available in [32].

Wang et al. [16] conducted a survey with ten industrial
developers in order to understand which are the major factors
that motivate their refactoring activities. The authors report
twelve different factors pushing developers to adopt refac-
toring practices and classified them in intrinsic motivators
and external motivators. In particular, Intrinsic motivators are
those for which developers do not obtain external rewards (for
example, an intrinsic motivator is the Responsibility with Code
Authorship, namely developers want to ensure high quality for
their code). Regarding the external motivators, an example is
the Recognitions from Others, i.e., high technical ability can
help software developers to gain recognitions. Our study is
complementary to the one by Wang et al., since it shows which
are the typical refactoring operations applied during different
types of changes.

Murphy-Hill et al. [12] analyzed eight different datasets
trying to understand how developers perform refactoring.
Examples of the exploited datasets are usage data from 41 de-
velopers using the Eclipse environment, data from the Eclipse
Usage Collector aggregating activities of 13,000 developers
for almost one year, and information extracted from versioning
systems. Some of the several interesting findings they found
were (i) almost 41% of development activities contain at least
one refactoring session, (ii) programmers rarely (almost 10%
of times) configure refactoring tools, (iii) commit messages
do not help in predicting refactoring, since rarely developers
explicitly report their refactoring activities in them, (iv) devel-
opers often perform floss refactoring, namely they interleave
refactoring with other programming activities, and (v) most
of the refactoring operations (close to 90%) are manually
performed by developers without the help of any tool.

Kim et al. [33] presented a survey performed with 328 Mi-
crosoft engineers (of which 83% developers) to investigate (i)
when and how they refactor code, (ii) if automated refactoring
tools are used by them and (iii) developers perception toward
the benefits, risks, and challenges of refactoring [33]. The main
findings of the study reported that:

• While developers recognize refactoring as a way to im-
prove the quality of a software, in almost 50% of cases
they do not define refactoring as a behavior-preserving
operation.

• The most important symptom that pushes developers to
perform refactoring is low readability of source code.

• 51% of developers manually perform refactoring.
• The main benefits the developers observed from the refac-

toring were improved readability (43%) and improved
maintainability (30%).

• The main risk developers fear when performing refactor-
ing operations is bug introduction (77%).

Kim et al. [33] also reported the results of a quantitative
analysis performed on the Windows 7 change history showing
that code components refactored over time experienced a
higher reduction in the number of inter-module dependencies
and post-release defects than other modules. Similar results



have been obtained by Kataoka et al. [34] and Gatrell and
Counsell [35]. In the first study, the authors analyzed the
history of an industrial software system comparing the classes
subject to the application of refactoring operations with the
classes never refactored. They observed a decrease of coupling
metrics. Regarding the work by Gatrell and Counsell, they
conducted an empirical study aimed at quantifying the effect
of refactoring on change- and fault-proneness of classes. The
authors monitored a commercial C# system for twelve months
identifying the refactoring operations applied during the first
four months. They examined the same classes for the second
four months in order to determine whether the refactoring
results in a decrease of change- and fault-proneness. They
also compared such classes with the classes of the system
that, during the same time period, have not been refactored.
Results revealed that classes subject to refactoring have a lower
change- and fault-proneness, both considering the time period
in which the same classes were not refactored and classes in
which no refactoring operations were applied.

Finally, a number of works have studied the relationship
between refactoring and software quality. Bavota et al. [24]
conducted a study aimed at investigating to what extent
refactoring activities induce faults. They show that refactor-
ing operations involving hierarchies (e.g., pull down method)
induce faults very frequently. Conversely, other kinds of refac-
toring operations are likely to be harmless in practice. Bavota
et al. [14] also conducted a study aimed at understanding
the relationships between code quality and refactoring. In
particular, they studied the evolution of 63 releases of 3 open
source systems in order to investigate the characteristics of
code components increasing/decreasing their chances of being
object of refactoring operations. Results indicate that often
refactoring is not performed on classes having a low metric
profile, while almost 40% of the times refactoring operations
have been performed on classes affected by smells. However,
just 7% of them actually removed the smell. While we share
with this work the dataset of refactoring operations used to run
our study, we also demonstrated that different types of changes
better explain refactoring operations performed by developers.

Silva et al. [15] monitored a large set of Java projects
in order to identify the refactoring operations applied by
developers, and then they asked the developers to explain
the reasons behind their decision to refactor the code. They
found that refactoring is mainly driven by changes in the
requirements rather than the presence of code smells. On the
one hand, our findings qualitatively confirm the results by Silva
et al., however they also show that in a good percentage of
the cases technical debts and duplicate code can be the causes
of the activities performed by developers to re-organize the
source code.

Stroggylos and Spinellis [36] studied the impact of refac-
toring operations on the values of eight object-oriented quality
metrics. Their results show the possible negative effects that
refactoring can have on some quality metrics (e.g., increased
value of the LCOM metric). On the same line, Stroullia and
Kapoor [37], analyzed the evolution of one system observing

a decrease of LOC and NOM (Number of Method) metrics
on the classes in which a refactoring has been applied.
Szoke et al. [4] performed a study on five software systems
to investigate the relationship between refactoring and code
quality. They show that small refactoring operations performed
in isolation rarely impact software quality. On the other side,
a high number of refactoring operations performed in block
helps in substantially improving code quality. Alshayeb [2]
investigated the impact of refactoring operations on five quality
attributes, namely adaptability, maintainability, understand-
ability, reusability, and testability. Their findings highlight
that benefits brought by refactoring operations on some code
classes are often counterbalanced by a decrease of quality in
some other classes. Moser et al. [3] conducted a case study
in an industrial environment aimed at investigating the impact
of refactoring on the productivity of an agile team and on the
quality of the code they produce. The achieved results show
that refactoring not only increases software quality but it also
increases developers’ productivity. In the context of this study,
we somehow confirmed the ability of refactoring in improving
non-functional attributes of the source code (e.g., by increasing
the readability of refactored classes).

VI. CONCLUSION

Refactoring is widely recognized as an activity able to
improve software quality [16] and providing other beneficial
effects, such as developers’ productivity [3]. Previous em-
pirical studies that have assessed the motivations behind the
application of refactoring based on developers’ opinion [13],
[15], found that refactoring is mainly driven by changes in
the requirements rather than by software quality. While such
studies are based on the developers’ opinions, no investigations
based on the analysis of software repositories have confirmed
such findings. To this aim, we verified whether and to what
extent refactoring is driven by different types of changes, i.e.,
Fault Repairing Modification, General Maintenance Modifica-
tion, and Feature Introduction Modification, applied over the
change history of three software systems.

The results of the study indicate that classes experiencing
a higher number of bug fixing activities are more subject
to operations that improve their maintainability and compre-
hensibility, while classes where the number of new features
implemented is higher are more prone to be refactored with
regard to code cohesion and adherence to the object-oriented
programming principles. The underlying reasons behind the
application of such refactoring operations fall into the presence
of duplicate code or of previously self-admitted technical
debts. Thus, in most cases changes are associated with the
payment of an existing accumulated debt. Finally, general
maintenance modifications lead to refactoring aimed at im-
proving comprehensibility and identifier quality, leading to an
overall improvement of the readability of the source code.

Other than corroborating our results on a larger number
of systems, our future research agenda includes (i) a deeper
investigation into the benefits provided by refactoring oper-
ations applied by developers in different situations, and (ii)



the definition of predictive models able to suggest developers
about which type of refactoring should be applied in a given
situation.
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