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Abstract—Code smells represent symptoms of poor implemen-
tation choices. Previous studies found that these smells make
source code more difficult to maintain, possibly also increasing
its fault-proneness. There are several approaches that identify
smells based on code analysis techniques. However, we observe
that many code smells are intrinsically characterized by how code
elements change over time. Thus, relying solely on structural
information may not be sufficient to detect all the smells
accurately.

We propose an approach to detect five different code smells,
namely Divergent Change, Shotgun Surgery, Parallel Inheritance,
Blob, and Feature Envy, by exploiting change history information
mined from versioning systems. We applied approach, coined as
HIST (Historical Information for Smell deTection), to eight soft-
ware projects written in Java, and wherever possible compared
with existing state-of-the-art smell detectors based on source
code analysis. The results indicate that HIST’s precision ranges
between 61% and 80%, and its recall ranges between 61% and
100%. More importantly, the results confirm that HIST is able to
identify code smells that cannot be identified through approaches
solely based on code analysis.

Index Terms—Code Smells; Change History Information.

I. INTRODUCTION

Code smells have been defined by Fowler [1] as symptoms
of poor design and implementation choices. In some cases,
such symptoms may originate by activities performed by
developers while in a hurry, e.g., implementing urgent patches
or simply making suboptimal choices. In other cases, smells
come from some recurring, poor design solutions, also known
as anti-patterns. Previous studies have found that code smells
hinder comprehensibility [2], and possibly increase change-
and fault-proneness [3], [4]. In summary, these smells need to
be carefully detected and monitored and, whenever necessary,
refactoring actions should be planned and performed to deal
with them.

There exist a number of approaches that detect smells in
source code to alert developers of their presence [5], [6], [7].
These approaches rely on structural information extracted from
source code, for example, by means of constraints defined on
some source code metrics. For instance, according to some
existing approaches, such as DECOR [5], LongMethod or
LargeClass smells are based on the size of the source code
component in terms of LOC, whereas other smells like Com-
plexClass are based on the McCabe cyclomatic complexity [8].
Other smells, such as Blob, might use more complex rules.

Although existing approaches demonstrate good perfor-
mances in terms of precision and recall, they still might not
be adequate to detect many of the smells described by Fowler
[1]. In particular, there are some smells that, rather than being
characterized by source code metrics or other information
extracted from a source code snapshot, are intrinsically char-
acterized by how source code changes over time. For example,
a Parallel Inheritance means that two or more class hierarchies
evolve by adding code to both classes at the same time. Also,
there are smells that are traditionally detected using structural
information, where historical information can aid in capturing
complementary, additional useful properties. For example, a
Feature Envy may manifest itself when a method of a class
tends to change more frequently with methods of other classes
than with those of the same class.

Based on such considerations, we propose an approach,
named as HIST (Historical Information for Smell deTection),
to detect source code smells based on change history infor-
mation extracted from versioning systems, and, specifically, by
analyzing co-changes occurring between source code artifacts.
Specifically, HIST is able to detect five smells from Fowler [1]
and Brown [9] catalogues. Three of them—Divergent Change,
Shotgun Surgery, and Parallel Inheritance—are symptoms that
can be intrinsically observed from the project’s history. For
the remaining two—Blob and Feature Envy—there exist static
detection approaches [5], [6]. However, as explained for the
Feature Envy, those smells can also be characterized and
possibly detected using source code change history.

In the past, historical information has been used in the
context of smell analysis for the purpose of assessing to what
extent code smells remained in the system for a substantial
amount of time [10], [11]. However, to the best of our
knowledge, the use of historical information for the detection
of smells remains a premiere of this paper.

We have evaluated HIST on the change history of eight
Java projects, namely Apache Ant and Tomcat, jEdit, and five
different Android API projects. The study aims at evaluating
HIST performances in terms of precision and recall against
a manually-produced oracle. Furthermore, wherever possi-
ble, we compared HIST with results produced by structural
smell detectors, such as JDeodorant [6], [12] and our re-
implementation of the DECOR’s [5] detection rules. The
results of our study indicate that HIST’s precision is between
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Fig. 1. HIST: The proposed code smell detection process.

61% and 80%, and its recall is between 61% and 100%.
When comparing HIST to alternative approaches, we observe
that HIST tends to provide better performances, especially
in terms of recall, since it is able to identify smells that
other approaches omit, because they do not consider historical
information. Also, for some smells, we observe a strong
complementarity of the approaches based on code analysis
with respect to HIST, suggesting that even better performances
can be achieved by combining these two orthogonal sources
of information.

Paper organization. Section II presents the proposed ap-
proach HIST. Section III describes the design of the case
study aimed at evaluating HIST. The results are reported
and discussed in Section IV, while Section V discusses the
threats that could affect the validity of our study. Section VI
discusses the related literature, while Section VII summarizes
our observations and outlines directions for future work.

II. HIST: HISTORICAL INFORMATION FOR SMELL
DETECTION

The key idea behind HIST is to identify classes affected
by code smells via change history information derived from
version control systems. Fig. 1 overviews the main steps of the
proposed approach. First, HIST extracts information needed to
detect the smells from the versioning system through a com-
ponent called Change history extractor. This information—
together with a specific detection algorithm for a particular
code smell—is then provided as an input to the Code smell
detector for computing the list of code components (i.e.,
methods/classes) affected by the characterized code smells.

The Code smell detector uses different detection heuristics
for identifying target code smells. In this paper, we have
instantiated HIST for detecting five different smells:
• Divergent Change: this smell occurs when a class is

changed in different ways for different reasons. The
example reported by Fowler in his book on refactoring
[1] helps to understand this smell: If you look at a class
and say, “Well, I will have to change these three methods
every time I get a new database; I have to change
these four methods every time there is a new financial
instrument”, you likely have a situation in which two

classes are better than one [1]. Thus, this type of smell
clearly triggers Extract Class refactoring opportunities1.

• Shotgun Surgery: a class is affected by this smell when
a change to this class (i.e., to one of its fields/methods)
triggers many little changes to several other classes [1].
The presence of a Shotgun Surgery smell can be removed
through a Move Method/Field refactoring.

• Parallel Inheritance: this smell occurs when “every time
you make a subclass of one class, you also have to
make a subclass of another” [1]. This could be symp-
tom of something wrong in the class hierarchy that
can be corrected by redistributing responsibilities among
the classes through different refactoring operations, e.g.,
Extract Subclass.

• Blob: a class implementing several responsibilities, hav-
ing a large number of attributes, operations, and de-
pendencies with data classes [13]. The obvious way to
remove this smell is to use Extract Class refactoring.

• Feature Envy: as defined by Fowler [1], this smell occurs
when “a method is more interested in a class other than
the one it is actually in”. For instance, there can be
a method that frequently invokes accessor methods of
another class to use its data. This smell can be removed
via Move Method refactoring operations.

Our choice of instantiating the proposed approach on these
smells is not random but driven by the need to have a
benchmark including smells that can be naturally identified
using change history information and smells that do not
necessarily require this type of information. The first three
code smells, namely Divergent Change, Shotgun Surgery, and
Parallel Inheritance, are by definition historical smells, that is,
their definition inherently suggests that they can be detected
using revision history. Instead, the last two code smells (Blob
and Feature Envy) can be detected solely relying on structural
information, and several approaches based on static source
code analysis have been proposed to detect them [5], [6].
Thus, we can compare HIST directly to these code analysis
based approaches for detecting Blob and Feature Envy smells
to assess to what extent change history data might be of some
value in the detection also of these types of smells. In addition,
these two code smells are among the most studied smells
in the literature [2], [3], [4]. Thus, considering smells that
can be naturally identified through change history information
and smells that can also be identified without using this type
of information represent a good benchmark for providing a
practical indication on the performances of HIST.

The following subsections detail how HIST extracts change
history information from versioning systems and then uses it
for detecting the above smells.

A. Change History Extraction

The first operation performed by the Change history extrac-
tor is to mine the versioning system log, reporting the entire

1Further details about refactoring operations existing in literature can be
found in the refactoring catalog available at http://refactoring.com/catalog/



change history of the system under analysis. This can be done
for a range of versioning systems, such as SVN, CVS, or git.
However, the logs extracted through this operation report code
changes only at file level of granularity. Such a granularity
level is not sufficient to detect most of the code smells defined
in literature. In fact, many of them describe method-level be-
havior (see, for instance, Feature Envy or Divergent Change).
To extract fine-grained changes, the Change history extractor
includes a code analyzer component that is developed in
the context of the Markos European project2. We use this
component to capture changes at method level granularity. In
particular, for each pair of subsequent source code snapshots
extracted from the versioning system, the code analyzer (i)
checks out the two snapshots in two separate folders and (ii)
compares the source code of these two snapshots, producing
the set of changes performed between them. The set of
changes includes: (i) classes added/removed/moved/renamed,
(ii) class attributes added/removed/moved/renamed, (iii) meth-
ods added/removed/moved/renamed, (iv) changes applied to
all the method signatures (i.e., visibility change, return type
change, parameter added, parameter removed, parameter type
change, method rename), and (v) changes applied to all the
method bodies.

B. Code Smells Detection

The set of fine-grained changes computed by the Change
history extractor is provided as an input to the Code Smell
detector, that identifies the list of code components (if any)
affected by specific code smells. While the exploited under-
lying information is the same for all target code smells (i.e.,
the change history information), HIST uses custom detection
heuristics for each code smell. Note that, since HIST relies on
the analysis of change history information, it is possible that
a class/method that behaved as affected by a code smell in the
past does not exist in the current version of the system (e.g.,
it has been refactored by the developers). Thus, once HIST
identifies a component that is affected by a code smell, HIST
checks the presence of this component in the current version of
the system under analysis before presenting the results to the
user. If the component does not exist anymore, HIST removes
it from the list of components affected by code smells.

In the following we describe the heuristics we devised for
detecting the different kinds of smells described above, while
the process for calibrating the heuristic parameters is described
in Section III-B.

Divergent Change Detection. Given the definition of this
smell provided by Fowler [1], our conjecture is that classes
affected by Divergent Change present different sets of methods
each one containing methods changing together but indepen-
dently from methods in the other sets. The Code Smell detector
mines association rules [14] for detecting subsets of methods
in the same class that often change together. Association
rule discovery is an unsupervised learning technique used for

2http://markosproject.berlios.de

local pattern detection highlighting attribute value conditions
that occur together in a given dataset [14]. In our approach,
the dataset is composed of a sequence of change sets—
e.g., methods—that have been committed (changed) together
in a version control repository [15]. An association rule,
Mleft ⇒ Mright, between two disjoint method sets implies
that, if a change occurs in each mi ∈ Mleft, then another
change should happen in each mj ∈ Mright within the same
change set. The strength of an association rule is determined
by its support and confidence [14], defined as:

Support = |Mleft∪Mright|
T Confidence =

|Mleft∪Mright|
|Mleft|

where T is the total number of change sets extracted from
the repository. In this paper, we perform association rule
mining using a well-known algorithm, namely Apriori [14].
Note that, minimum Support and Confidence to consider an
association rule as valid can be set in the Apriori algorithm. We
empirically calibrated these two parameters in Section III-B.
Once HIST detects these change rules between methods of
the same class, our approach identifies classes affected by
Divergent Change as those containing at least two or more
sets of methods with the following characteristics:

1) the cardinality of the set is at least γ;
2) all methods in the set change together, as detected by the

association rules;
3) each method in the set does not change with methods in

other sets as detected by the association rules.

Shotgun Surgery Detection. To define the detection strategy
for this smell, we exploited the following conjecture: a class
affected by Shotgun Surgery contains at least one method
changing together with several other methods contained in
other classes. Also in this case, the Code Smell detector uses
association rules for detecting methods (in this case methods
from different classes) often changing together. Hence, a class
is identified as affected by a Shotgun Surgery smell if it
contains at least one method that changes with methods present
in more than δ different classes.

Parallel Inheritance Detection. Two classes are affected
by Parallel Inheritance smell if “every time you make a
subclass of one class, you also have to make a subclass of
the other” [1]. Thus, the Code Smell detector identifies the
pairs of classes for which the addition of a subclass for one
class implies the addition of a subclass for the other class
using generated association rules. These pairs of classes are
candidates to be affected by the Parallel Inheritance smell.

Blob Detection. A Blob is a class that centralizes most of the
system’s behavior and has dependencies towards data classes
[13]. Thus, our conjecture is that despite the kind of change
a developer has to perform in a software system, if a Blob
class is present, it is very likely that something will need to
be changed in it. Given this conjecture, Blobs are identified as
classes modified (in any way) in more than α% of commits



TABLE I
CHARACTERISTICS OF THE SOFTWARE SYSTEMS USED IN THE STUDY.
Project Period #Classes KLOC
Apache Ant Jan 2000-Jan 2013 44-1,224 8-220
Apache Tomcat Mar 2006-Jan 2013 828-1,548 254-350
jEdit Sep 2001-July 2010 279-544 85-175
Andr. API (framework-opt-telephony) Aug 2011-Jan 2013 218-225 73-78
Andr. API (frameworks-base) Oct 2008-Jan 2013 1,698-3,710 534-1,043
Andr. API (frameworks-support) Feb 2011-Nov 2012 199-256 58-61
Andr. API (sdk) Oct 2008-Jan 2013 132-315 14-82
Andr. API (tool-base) Nov 2012-Jan 2013 471-714 80-134

TABLE II
SNAPSHOTS CONSIDERED FOR THE SMELLS DETECTION.

Project git snapshot Date Classes KLOC
Apache Ant da641025 Jun 2006 846 173
Apache Tomcat 398ca7ee Jun 2010 1,284 336
jEdit feb608el Aug 2005 316 101
Andr. API (framework-opt-telephony) b3a03455 Feb 2012 223 75
Andr. API (frameworks-base) b4ff35df Nov 2011 2,766 770
Andr. API (frameworks-support) 0f6f72e1 Jun 2012 246 59
Andr. API (sdk) 6feca9ac Nov 2011 268 54
Andr. API (tool-base) cfebaa9b Dec 2012 532 119

involving at least another class. This last condition is used to
better reflect the nature of the Blob classes that are expected
to change despite the type of change being applied (i.e., the
set of modified classes).

Feature Envy Detection. Our goal here is to identify methods
placed in the wrong class or, in other words, methods having
an envied class which they should be moved in. Thus, our
conjecture is that a method affected by feature envy changes
more often with the envied class than with the class it is
actually in. Given this conjecture, our approach identifies
methods affected by this smell as those involved in commits
with methods of another class of the system β% more than in
commits with methods of their class.

III. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the study is to evaluate HIST, with the purpose
of analyzing its effectiveness in detecting code smells in soft-
ware systems. The quality focus is on the detection accuracy
and completeness as compared to the approaches based on
static code analysis, while the perspective is of researchers,
who want to evaluate the effectiveness of historical informa-
tion in identifying code smells to build better recommenders
for developers.

The context of the study consists of eight software projects,
namely Apache Ant3, Apache Tomcat4, jEdit5, and five
projects belonging to the Android APIs6. Apache Ant is a build
tool and library specifically conceived for Java applications
(though it can be used for other purposes). Apache Tomcat is
a Web container allowing the execution of Java Servlets and
Java Server Pages (JSP) web applications. jEdit is a text editor
for programmers that provides syntax highlighting and native
support for over 130 file formats. As for the remaining five
software projects, they are responsible of implementing parts
of the Android APIs. For example, framework-opt-telephony
provides APIs for developers of Android apps allowing them

3http://ant.apache.org/
4http://tomcat.apache.org/
5http://www.jedit.org/
6https://android.googlesource.com/

to access services such as texting. Table I reports the charac-
teristics of the analyzed systems, namely the software history
that we investigated, and the size range (in terms of KLOC
and # of classes).

A. Research Questions, Data Analysis and Metrics

Our study aims at addressing the following two research
questions:
• RQ1: How does HIST perform in detecting code smells?

This research question aims at quantifying the perfor-
mances of HIST in detecting instances of the five smells
described in Section II, namely Divergent Change, Shot-
gun Surgery, Parallel Inheritance, Blob, and Feature
Envy.

• RQ2: How does HIST compare to the techniques based
on static code analysis? This research question assesses
the performances of HIST in detecting the five above
mentioned smells by comparing it with the performances
achieved by applying a more conventional approach based
on static source code analysis. The results of this compar-
ison will provide insights on the usefulness of historical
information while detecting code smells.

To answer RQ1 we simulated the use of HIST in a real-
usage scenario. In particular, we split the history of eight
subject systems in two equal parts, and run our tool on
the corresponding snapshot. For instance, given the history
of Apache Ant going from January 2000 to January 2013,
we selected a system snapshot from June 2006. This was
done aiming at simulating a developer performing code smell
detection on an evolving software system. In fact, considering
some early snapshot in the project history, there was the
risk to perform code smell detection on a very unstable
snapshot, still presenting ongoing design decisions. On the
other side, by considering snapshots occurring later in the
project history (e.g., the last available release) there was the
risk of replicating some unrealistic scenario, i.e., developers
putting effort in improving the design of a software system
when its development is almost motionless. In fact, as shown
in Table I, for some of the considered software systems change
activities have been stopped some time ago (see for instance
jEdit). The list of selected snapshots is reported in Table II
together with their characteristics.

To evaluate the detection performances of HIST, we need
an oracle reporting the instances of code smells in the con-
sidered systems’ snapshots. Unfortunately, since there are no
annotated sets of such smells available in literature, we had to
manually build our own oracle. A Master’s student from the
University of Salerno manually identified instances of the five
considered smells in each of the systems’ snapshots. Starting
from the definition of the five smells reported in literature,
the student manually analyzed each snapshot’s source code
looking for instances of those smells. Clearly, for smells
having an intrinsic historical nature, he analyzed the changes
performed by developers on different code components. A
second Master’s student validated the produced oracle, to
verify that all affected code components identified by the



first student were correct7. Note that, while this does not
ensure that the defined oracle is complete (i.e., it includes
all affected components in the systems), it provides a certain
degree of confidence about the correctness of the identified
smell instances. To avoid any bias in the experiment, students
were not aware of the experimental goals and of the way that
HIST identifies code smells.

Once we defined the oracle and obtained the set of smells
detected by HIST on each of the systems’ snapshots, we
evaluated its performances by using two widely-adopted
Information Retrieval (IR) metrics, namely recall and
precision [16]:

recall = |cor∩det|
|cor| % precision = |cor∩det|

|det| %

where cor and det represent the set of true positive smells
(those manually identified) and the set of code smells detected
by HIST, respectively. As an aggregate indicator of precision
and recall, we report the F-measure, defined as the harmonic
mean of precision and recall:

F -measure = 2 ∗ precision ∗ recall
precision+ recall

%

To answer RQ2, we executed the smell detection techniques
based on static analysis of the source code on the same
systems’ snapshots previously used for HIST when addressing
RQ1. To the best of our knowledge, we are not aware of
any approaches detecting all the smells that we considered
in our study. For this reason, for different code smells we
considered different competitive techniques to compare our
approach with. As for the Blob, we compared HIST with
DECOR, the detection technique proposed by Moha et al.
[5]. Specifically, we implemented the detection rules used by
DECOR for the detection of Blob. Such rules are available
online8. For the Feature Envy we considered JDeodorant as a
competitive technique [6], which is an Eclipse plug-in publicly
available9. The approach implemented in JDeodorant analyzes
all methods of a given system, and forms a set of candidate
target classes where a method should be moved in. This
set is obtained by examining the entities (i.e., attributes and
methods) that a method accesses from the other classes.

Concerning the remaining three code smells, we are not
aware of publicly available tools in literature to detect them.
Thus, to have a meaningful baseline for HIST, we implemented
three detection algorithms based on static code analysis and/or
quality metrics. Note that such an analysis was not intended
to provide evidence that HIST is the best method for detecting
considered smells. Instead, the goal was to provide some
insight into the actual effectiveness of historical information
while detecting code smells as compared to information ex-
tracted by static analysis of source code.

7Only one of the smells identified by the first student was classified as
false positive by the second student, and classified as such after reaching a
consensus.

8http://www.ptidej.net/research/designsmells/grammar/Blob.htm/file_view
9http://www.jdeodorant.com/

To detect classes affected by Divergent Change, we imple-
mented an algorithm (from now on coined as DCCA) based on
the Connectivity metric [17]. Connectivity is a class cohesion
metric defined in the interval [0 . . . 1], and computed as the
number of method pairs in a class sharing an instance variable
or having a method call among them, divided by the total
number of method pairs in the class. Our conjecture is that
if a class has low values for the Connectivity measure, it
is likely to contain unrelated subsets of methods that most
likely change divergently during the software history. DCCA
retrieves those classes affected by Divergent Change, which
have Connectivity lower than a threshold λ. As well as for
HIST parameters, we also empirically calibrated λ, as reported
in Section III-B.

As for the Shotgun Surgery, we analyzed method calls
among classes. The algorithm (named as SSCA) detects all
such classes containing at least one method invoking methods
of at least η external classes. The conjecture is that if you are
changing this method, it is likely that you also have to change
methods in other classes.

Finally, we detect classes affected by Parallel Inheritance as
pairs of classes having (i) both a superclass and/or a subclass
(i.e., both belonging to a class hierarchy), and (ii) the same
prefix in the class name. This detection algorithm (named as
PICA) directly comes from the Fowler’s definition of Parallel
Inheritance: “You can recognize this smell because the prefixes
of the class names in one hierarchy are the same as the prefixes
in another hierarchy.” [1].

To compare the performances of HIST with those of the
above-mentioned code analysis detection techniques we used
recall, precision, and F-measures. Moreover, to provide a fur-
ther comparison of HIST with the experimented code analysis
techniques we computed the following overlap metrics:

correctmi∩mj
=
|correctmi ∩ correctmj |
|correctmi ∪ correctmj |

%

correctmi\mj
=
|correctmi

\ correctmj
|

|correctmi
∪ correctmj

|
%

where correctmi
represents the set of correct code smells

detected by method mi, correctmi∩mj measures the over-
lap between the set of true code smells detected by both
methods mi and mj , and correctmi\mj

measures the true
smells detected by mi only and missed by mj . The latter
metric provides an indication on how a code smell detection
strategy contributes to enriching the set of correct code smells
identified by another method. This information can be used
to analyze the complementarity of static code information and
historical information when performing code smell detection.

B. Parameters Calibration
While for JDeodorant and DECOR the parameter tuning has

already been empirically assessed by their respective authors,
to run HIST and the three code analysis detection algorithms
described above (DCCA, SSCA, and PICA) we needed to cali-
brate their parameters. We performed this calibration on a soft-
ware system which was not used in our experimentation, i.e.,
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Fig. 2. Parameters calibration for HIST (Blob) α (a), HIST (Feature Envy) β (b), HIST (Divergent Change) γ (c), and HIST (Shotgun Surgery) δ (d).
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Fig. 3. Parameters calibration for DCCA λ (a), and SSCA η (b).

TABLE III
PARAMETERS’ CALIBRATION

Technique Parameter Experimented Values Best Value
HIST (Assoc. Rules) Support From 0.004 to 0.04 by steps of 0.004 0.008
HIST (Assoc. Rules) Confidence From 0.60 to 0.90 by steps of 0.05 0.70
HIST (Blob) α From 1% to 25% by steps of 1% 8%
HIST (Feature Envy) β From 5% to 100% by steps of 5% 80%
HIST (Divergent Change) γ From 1 to 10 by steps of 1 3
HIST (Shotgun Surgery) δ From 1 to 10 by steps of 1 3
DCCA λ From 0 to 1 by steps of 0.1 0.3
SSCA η From 1 to 10 by steps of 1 4

Apache Xerces10. Also on this system, we manually identified
instances of five considered code smells and then evaluated
F-measure value achieved by the detection approaches using
different settings.

Table III reports the values for each parameter that we
experimented with and the values that achieved the best results
(that is the one that we used in answering the research
questions). Results of the calibration are reported in Fig. 2
for the HIST parameters α, β, γ, and δ, and in Fig. 3 for the
DCCA λ and the SSCA η parameters. As for the confidence
and support, the calibration was not different from what was
done in other work using association rule discovery [15], [18],
[19], [20].

C. Replication Package

All the data used in our study are publicly available11. In the
replication package we provide: (i) links to the git software
repositories from which we extracted historical information;
(ii) complete information on the change history in all the
subject systems; (iii) the oracle used on each system; and
(iv) the code smells identified by HIST as well as by the
competitive approaches.

10http://xerces.apache.org/
11http://www.rcost.unisannio.it/mdipenta/papers/ase2013/

IV. ANALYSIS OF THE RESULTS

This section reports the results of our study, with the aim of
addressing the research questions formulated in Section III-A.
Note that to avoid redundancies, we report the results for both
research questions together, discussing each smell separately.

Table IV reports the results—in terms of recall, precision,
and F-measure—achieved by HIST and by the approaches
based on static code analysis on the eight subject systems.
As explained in Section III-A for Divergent Change, Shotgun
Surgery, and Parallel Inheritance we used alternative code
analysis approaches that we developed (DCCA, SSCA, PICA),
whilst for Blob and Feature Envy we used DECOR rules [5]
and the JDeodorant tool [12], respectively. When no instances
of a particular code smell were present in the oracle (i.e., zero
in the column “Affected Components”), it was not possible
to compute the recall (that is, division by zero). In these
cases a “-” is indicated in the corresponding code smell row.
Similarly, when an approach did not retrieve any instances
of code components affected by a particular smell, it was
not possible to compute the precision (a “N/A”is included
in the code smell row). For each code smell, we also report
the results achieved by considering all systems as a single
dataset (rows “Overall”). In addition, Table V reports values
concerning overlap and differences between HIST and the
code analysis techniques: column “HIST ∩ CA Tech.” reports
the percentage of correct code smells identified by both HIST
and code analysis technique; column “HIST \ CA Tech.”
reports the percentage of correct code smells identified by
HIST but not by the code analysis technique; column “CA
Tech. \ HIST” reports the percentage of correct code smells
identified by the code analysis technique but not by HIST. In
the following, we discuss the results for each kind of smell.

Divergent Change. We identified 14 instances of Divergent
Change in the five systems. The results clearly indicate that
the use of historical information allows HIST to outperform
DCCA (i.e., the approach based on static code analysis).
Specifically, the F-measure on the overall dataset of HIST is
76% (79% of recall and 73% of precision) against 10% (7%
of recall and 20% of precision) achieved by DCCA. This is an
expected result, since the Divergent Change is by definition
(see Section II) a “historical smell”, and thus we expected
difficulties in capturing this kind of smell by just using source



TABLE IV
HIST PERFORMANCES AS COMPARED TO THE STATIC CODE ANALYSIS TECHNIQUES/TOOLS.

Code Smell Project Affected HIST Code analysis techniques
Components Precision Recall F-measure Precision Recall F-measure

Divergent Change

Apache Ant 0 - - - - - -
Apache Tomcat 5 50% 60% 55% 0% 0% 0%
jEdit 4 100% 75% 86% 100% 25% 40%
Android API (framework-opt-telephony) 0 - - - - - -
Android API (frameworks-base) 3 100% 100% 100% 0% 0% 0%
Android API (frameworks-support) 1 100% 100% 100% 0% 0% 0%
Android API (sdk) 1 100% 100% 100% 0% 0% 0%
Android API (tool-base) 0 - - - - - -
Overall 14 73% 79% 76% 20% 7% 10%

Shotgun Surgery

Apache Ant 0 - - - - - -
Apache Tomcat 1 100% 100% 100% 0% 0% 0%
jEdit 1 100% 100% 100% 0% 0% 0%
Android API (framework-opt-telephony) 0 - - - - - -
Android API (frameworks-base) 1 100% 100% 100% 0% 0% 0%
Android API (frameworks-support) 1 100% 100% 100% 0% 0% 0%
Android API (sdk) 0 - - - - - -
Android API (tool-base) 0 - - - - - -
Overall 4 100% 100% 100% 0% 0% 0%

Parallel Inheritance

Apache Ant 7 63% 71% 67% 8% 57% 14%
Apache Tomcat 9 60% 67% 63% 7% 44% 12%
jEdit 3 N/A N/A N/A 2% 100% 4%
Android API (framework-opt-telephony) 0 - - - - - -
Android API (frameworks-base) 3 N/A N/A N/A N/A N/A N/A
Android API (frameworks-support) 0 - - - - - -
Android API (sdk) 9 67% 89% 76% 5% 33% 12%
Android API (tool-base) 0 - - - - - -
Overall 31 61% 61% 61% 4% 45% 7%

Blob

Apache Ant 8 60% 75% 67% 30% 38% 34%
Apache Tomcat 5 100% 20% 33% 67% 80% 73%
jEdit 5 67% 40% 50% 60% 60% 60%
Android API (framework-opt-telephony) 13 100% 77% 87% 70% 54% 61%
Android API (frameworks-base) 18 70% 50% 58% 65% 50% 57%
Android API (frameworks-support) 5 71% 100% 83% 38% 60% 49%
Android API (sdk) 10 86% 60% 71% 29% 20% 24%
Android API (tool-base) 0 - - - - - -
Overall 64 76% 61% 68% 52% 49% 50%

Feature Envy

Apache Ant 9 78% 78% 78% 15% 25% 19%
Apache Tomcat 3 100% 33% 50% 67% 67% 67%
jEdit 10 100% 100% 100% 100% 27% 43%
Android API (framework-opt-telephony) 0 - - - - - -
Android API (frameworks-base) 17 63% 88% 73% 100% 94% 96%
Android API (frameworks-support) 0 - - - - - -
Android API (sdk) 3 100% 33% 50% 100% 67% 80%
Android API (tool-base) 0 - - - - - -
Overall 42 71% 81% 76% 68% 60% 63%

code analysis. As shown, DCCA was able to detect only one
occurrence of Divergent Change on jEdit, missing all other
instances. It is interesting to note how the only smell detected
by DCCA was not detected by HIST. This smell occurred
in the class RE of jEdit, having a low value of cohesion
as measured by the Connectivity metric used by the static
code analysis technique), but not enough historical information
about divergent changes to be captured by HIST. This clearly
highlights the main limitation of HIST, that requires sufficient
amount of historical information to infer useful association
rules. Given these observations, the overlap between the smells
detected by HIST and DCCA results reported in Table V is
quite expected: among the set of correct smells detected by the
two techniques, there is no overlap, as HIST retrieves 93% of
the smells, while DCCA detects the one described above.

Shotgun Surgery. Shotgun Surgery is the code smell with
the least number of instances in the subject systems, i.e., with
only four systems affected for a total of four instances (one per
system). HIST was able to detect all the instances of this smell
(100% of recall) with 100% of precision. HIST outperformed
SCCA (i.e., the detection approach based on code analysis).
Specifically, SCCA was not able to detect any of the three
instances of this smell present in the subject systems. Thus,
no meaningful observations can be made in terms of overlap
metrics. Objectively, this can be due to the limited capabilities
of the SCCA detection technique that we formulated. However,
we argue that it is quite difficult to identify characteristics
of such a smell solely based on code analysis, as the smell
is intrinsically defined in terms of a change triggering many



TABLE V
OVERLAP BETWEEN HIST AND CODE ANALYSIS (CA) TECHNIQUES. FOR
BLOB THE CA TECH. IS DECOR, FOR FEATURE ENVY IS JDEODORANT.

Code Smell HIST ∩ CA Tech. HIST \ CA Tech. CA Tech. \ HIST
Divergent Change 0% 93% 7%
Shotgun Surgery 0% 100% 0%
Parallel Inheritance 43% 40% 17%
Blob 17% 48% 35%
Feature Envy 39% 41% 20%

other changes [1]. It is worthwhile to discuss an example
of Shotgun Surgery we identified in Apache Tomcat and
represented by the method isAsync implemented in the
class AsyncStateMachine. HIST identified association
rules between this method and 48 methods in the system,
belonging to 31 different classes. This means that, whenever
the isAsync method is modified, also these 48 methods,
generally, undergo a change.

Parallel Inheritance. Among the 31 instances of the Parallel
Inheritance smell, HIST was able to correctly identify 19 of
them (recall 61%) with a price to pay of 12 false positives,
resulting in a precision of 61%. By using the detection rule
based on code analysis (i.e., PICA) we were able to retrieve
14 correct instances of the smell (recall of 45%) while also
retrieving 336 false positives (precision of 4%). It is interesting
to analyze the overlap metrics reported in Table V. Among the
set of correct smells identified by the two techniques, there
is an overlap of 43%, while 40% of the correct instances are
retrieved only by HIST and a remaining 17% is identified only
by PICA. This highlights a tangible potential of combining
structural and historical information for detecting this type of
smell. We plan to further investigate such a combination as
part of our future work.

Blob. As for the detection of Blobs, HIST is able to achieve a
precision of 76% and a recall of 61% (F-measure=68%), while
DECOR is able to achieve a precision of 52% and a recall
of 49% (F-measure=50%). In more details, HIST achieved
better precision values on all the systems (on average, +24%).
This clearly results in less effort for a developer looking for
instances of code smells in a software system due to the lower
number of false positives to discard. Also, HIST ensured a
better recall on four out of the seven systems containing at
least a Blob class, and a tie has been reached on Android
framework-base. On the contrary, HIST was outperformed by
DECOR on Apache Tomcat and jEdit (see Table IV). However,
on the overall dataset, HIST was able to correctly identify 39
of the 64 existing Blobs, against the 31 identified by DECOR.
Thus, as also indicated by the F-measure value computed over
the whole dataset, the overall performance of HIST is better
than that one of DECOR (68% against 50%). Noticeably, the
two approaches seem to be highly complementary. This is
highlighted by the overlap results in Table V. Among the set
of code smells correctly identified by the two techniques, there
is an overlap of just 17%. Specifically, HIST is able to detect
48% of smells ignored by DECOR, and the latter retrieves
35% of correct smells not identified by HIST. Similarly to the

results for the Parallel Inheritance smell, this finding high-
lights the possibility of building better detection techniques by
combining static code analysis and change history information.

An example of Blob correctly identified by HIST and
missed by DECOR is the class ELParser from Apache
Tomcat, that underwent changes in 178 out of the 1,976
commits occurred in the analyzed time period. ELParser
is not retrieved by DECOR because this class has a one-
to-one relationship with data classes, while a one-to-many
relationship is required by the DECOR detection rule. Instead,
a Blob retrieved by DECOR and missed by HIST is the class
StandardContext of Tomcat. While this class exhibits all
the structural characteristics of a Blob (thus allowing DECOR
to detect it), it was not involved in any of the commits (i.e.,
it was just added and never modified), hence making the
detection impossible for HIST.

Feature Envy. For the Feature Envy smell, we found instances
of this smell in five out of the eight systems, for a total of
42 affected methods. HIST was able to identify 34 of them
(recall of 81%) against the 25 identified by JDeodorant (recall
of 60%). Also, the precision ensured by HIST is slightly
higher than the one achieved by JDeodorant (71% against
68%). However, it is important to remark that JDeodorant is a
refactoring tool and, as such, it identifies Feature Envy smells
in software systems with the sole purpose of suggesting move
method refactoring opportunities. Thus, the tool reports the
presence of Feature Envy smells only if the move method
refactoring is possible, by checking some preconditions en-
suring that the program behavior does not change after the
application of the suggested refactoring [6]. An example of
the considered preconditions is that the envied class does not
contain a method having the same signature as the moved
method [6]. To perform a fair comparison (especially in terms
of recall), we filtered the Feature Envy instances retrieved by
our approach by using the same set of preconditions defined
by JDeodorant [6]. This resulted in the removal of three
correct instances, as well as of three false positives previously
retrieved by HIST, thus decreasing the recall from 81% to
74% and increasing the precision from 71% to 74%. Still,
HIST achieves better recall and precision values with respect
to JDeodorant.

It is interesting to observe that the overlap data reported in
Table V highlights, also in this case, some complementarity
between the historical and static analysis techniques, with
39% of correct smell instances identified by both techniques
(overlap), 41% identified only by HIST, and 20% only by
JDeodorant.

An example of correct smell instance identified by HIST
only is the method buildInputMethodListLocked im-
plemented in the class InputMethodManagerService
of the Android framework-base API. For this method,
HIST identified WindowManagerService as the envied
class, since there are just three commits in which the
method buildInputMethodListLocked is co-changed
with methods of its class, against the 16 commits in which it



is co-changed together with methods belonging to the envied
class. Instead, JDeodorant was the only technique able to
correctly identify the Feature Envy smell present in Apache
Ant and affecting the method isRebuildRequired of
class WebsphereDeploymentTool. In this case, the en-
vied class is Project and HIST was not able to identify it
due to the limited number of observed co-changes.

Summary for RQ1. HIST provided good performances in
detecting all code smells considered in our study (F-measure
between 61% to 89%). While this result was quite expected
on smells which intrinsically require the use of historical
information for their detection, it is promising to observe that
HIST provided good performances also when detecting Blob
and Feature Envy smells.

Summary for RQ2. HIST was able to outperform static
analysis techniques and tools in terms of recall, precision,
and F-measure. While such a result is somewhat expected for
“intrinsically historical” smells (Divergent Change, Shotgun
Surgery, and Parallel Inheritance), noticeably HIST is also
able to perform well on other smells (Blob and Feature Envy)
provided that historical information is available. Last, but not
least, for Parallel Inheritance, Blob, and Feature Envy, our
findings suggest that static code analysis techniques and HIST
could be nicely complemented to obtain better performances.

V. THREATS TO VALIDITY

Threats to construct validity concern relationships between
theory and observation. This threat is generally due to im-
precision in the measurements performed in the study. In the
context of our study, this is mainly due to how the oracle
was built (see Section III-A). It is important to remark that
in order to mitigate the bias in such a task, the people
who defined the oracle were not aware of how the HIST
approach actually worked. However, we cannot exclude that
such manual analysis could have missed some smells, or else
identified some false positives. Another threat is due to the
terms of comparison. While for Blob and Feature Envy we
compared HIST with existing techniques/tools (DECOR and
JDeodorant), this was not possible for the other smells, for
which we had to define alternative static detection techniques,
that may or may not be the most suitable ones among those
based solely on structural information. Last, but not least, note
that although we implemented the DECOR rules ourselves,
these are precisely defined by the author of such approach12.

Threats to internal validity concern factors that could have
influenced our results. In our study, this is mainly due to the
calibration of the HIST parameters, as well as of those of the
alternative static approaches. We performed the calibration of
such parameters on one project (Xerces) not used in our study,
by computing F-measure for different possible values of such
parameters (see Section III-B).

12http://www.ptidej.net/research/designsmells/

Threats to external validity concern the generalization of
the results. HIST only deals with five code smells, while there
might be many more left uncovered [1], [13]. However, as ex-
plained in Section II we focused on (i) three smells—Divergent
Change, Shotgun Surgery, and Parallel Inheritance—that are
clearly related to how source code elements evolve over time,
rather than to their structural characteristics, and (ii) two
smells—Blob and Feature Envy—whose characteristics can be
captured, at least partially, by observing source code changes.
However, we cannot exclude that there could be other smells
that can be modeled similarly.

We conducted the evaluation on eight Java projects, five
of which belong to different Android APIs, while others
belonging to different domains. It could be worthwhile to
replicate the evaluation on other projects having different
evolution histories or different architectures (e.g., plugin-based
architecture).

VI. RELATED WORK

All the techniques for detecting code smells in source code
have their roots in the definition of code design defects and
heuristics for identifying those that are outlined in well-known
books: [1], [9], [21], [22]. The first by Webster [21] describes
pitfalls in Object-Oriented (OO) development going from the
management of a project through the implementation choices,
up to the quality insurance policies. The second by Riel [22]
defines more than 60 guidelines to rate the integrity of a
software design. Fowler [1] defines 22 code smells together
with refactoring operations to remove them from the system.
Finally, Brown et al. [9] describe 40 anti-patterns together with
heuristics for detecting them in code.

Starting from the information reported in these books,
several techniques have been proposed to detect design defects
in source code. Travassos et al. [23] define manual inspection
rules (called “reading techniques”) aimed at identifying design
defects that may negatively impact the design of object-
oriented systems.

Simon et al. [24] provide a metric-based visualization
tool able to discover design defects representing refactoring
opportunities. For example, to identify Blobs, each class is
analyzed to verify the structural relationships (i.e., method
calls and attribute accesses) among its methods. If it is possible
to identify different sets of cohesive attributes and methods
in a class, then an Extract Class refactoring opportunity is
identified.

van Emden and Moonen [25] present jCOSMO, a code
smell browser that detects and visualizes smells in Java source
code. They focus their attention on two code smells related to
Java programming language, i.e., instanceof and typecast.

Marinescu [7] proposes a mechanism called “detection
strategies” for formulating metric-based rules that capture
deviations from good design principles and heuristics. Such
strategies are based on identifying symptoms characterizing
smells and metrics to measure such symptoms, and then by
defining rules based on thresholds on such metrics. Then,
Lanza and Marinescu [26] describe how to exploit quality



metrics to identify “disharmony patterns” in code by defining
a set of thresholds based on the measurement of the exploited
metrics in real software systems. Also, Munro [27] presents a
metric-based detection technique able of identifying instances
of two smells, namely Lazy Class and Temporary Field, in
source code. In particular, a set of thresholds is applied to
the measurement of some structural metrics to identify those
smells. For example, to retrieve Lazy Class, three metrics are
used: Number of Methods (NOM), LOC, Weight Methods per
Class (WMC), and Coupling Between Objects (CBO).

Khomh et al. [28] propose an approach based on Bayesian
belief networks to specify and detect smells in programs. The
main novelty of that approach is represented by the fact that
it provides a likelihood that a code component is affected by
a smell, instead of a boolean value like previous techniques.
This is also one of the main characteristics of the approach
based on quality metrics and B-splines proposed by Oliveto
et al. [29] for identifying instances of Blobs in source code.

Tsantalis et al. [6] presents JDeodorant, a tool for detecting
Feature Envy smells with the aim of suggesting move method
refactoring opportunities. In particular, for each method of the
system, their approach forms a set of candidate target classes
where a method should be moved. This set is obtained by
examining the entities (i.e., attributes and methods) that a
method accesses from the other classes.

Moha et al. [5] introduce DECOR, a method for speci-
fying and detecting code and design smells. DECOR uses
a Domain-Specific Language (DSL) for specifying smells
using high-level abstractions. Four design smells are identified
by DECOR, namely Blob, Swiss Army Knife, Functional
Decomposition, and Spaghetti Code.

Ratiu et al. [10] describe an approach for detecting smells
based on evolutionary information of problematic code com-
ponents (as detected by code analysis) over their life-time.
The aim is to measure persistence of the problem and related
maintenance effort spent on the suspected components. This
is the closest approach to the one defined in this paper,
since it discusses the role of historical information for smell
detection. However, Ratiu et al. do not explicitly use historical
information for detecting smells (as done by HIST), but they
only perform multiple code analysis measurements of design
problems during the history of code components. Historical
information have also been used by Lozano et al. [11] to assess
the impact of code smells on software maintenance.

All previously discussed approaches exploit information
extracted from source code—e.g., quality metrics—to detect
code smells. To the best of our knowledge, HIST, the approach
described in this paper, is the first approach explicitly using
change-history information extracted from versioning systems
for the identification of code smells in source code.

Finally, it is worthwhile to mention that co-change analysis
has been used in the past for other purposes, for example by
Ying et al. [19], Zimmermann et al. [15], Gall et al. [30], and
Kagdi [20] for identifying logical change couplings, and by
Adams et al. [31] and Canfora et al. [18] for the identification
of crosscutting concerns. Although the underlying technique

is similar—i.e., based on the identification of code elements
that co-change—for our purpose (smell detection) appropriate
rules are needed, and as explained in Section II, a fine-
grained analysis, identifying co-changes at method-level, is
often required.

VII. CONCLUSION AND FUTURE WORK

This paper described an approach, named HIST (Historical
Information for Smell deTection), for detecting five different
code smells by analyzing co-changes extracted from version-
ing systems. We identified five smells for which historical
analysis can be helpful in the detection process: Divergent
Change, Shotgun Surgery, Parallel Inheritance, Blob, and
Feature Envy. For each smell we defined a historical detector,
using association rule discovery [14] or analyzing the set of
classes/methods co-changed with the suspected smell.

We evaluated HIST over a manually-built oracle of smells
identified in eight Java open source projects, and compared
it with alternative smell detection approaches based solely
on static source code analysis, where possible (for Blob and
Feature Envy) available in literature, i.e., DECOR rules [5] and
JDeodorant [6], [12]. The results of our study indicate that the
approach exhibits a precision between 61% and 80%, and a
recall between 61% and 100%. For “intrinsically historical”
smells—such as Divergent Change, Shotgun Surgery, Parallel
Inheritance—HIST clearly outperforms static code analysis,
and generally performs as well as code analysis (if not better)
for Blob and Feature Envy smells. Besides the better perfor-
mance in terms of precision and recall, the HIST approach
has a further advantage: it highlight smells that are subject to
frequent changes and therefore be possibly more problematic
for the maintainer.

The main limitation of HIST is represented by the need
for having sufficient history of observable co-changes, without
which the approach falls short. Finally, it is important to
remark that in most cases the sets of smells detected by HIST
and by code analysis techniques are quite complementary,
suggesting that better techniques can be built by combining
them.

For the aforementioned reason, our future research agenda
includes the development of a hybrid smell detection approach,
combining static code analysis with analysis of co-changes.
Also, we are planning to investigate the applicability of HIST
to other types of smells. Last, but not the least, we will further
validate HIST technique on more software systems.
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