
Developer-Related Factors in Change Prediction:
An Empirical Assessment

Gemma Catolino1, Fabio Palomba2, Andrea De Lucia1, Filomena Ferrucci1, Andy Zaidman2
1University of Salerno — 2Delft University of Technology

gcatolino@unisa.it, f.palomba@tudelft.nl, adelucia@unisa.it, fferrucci@unisa.it, a.e.zaidman@tudelft.nl

Abstract—Predicting the areas of the source code having a
higher likelihood to change in the future is a crucial activity
to allow developers to plan preventive maintenance operations
such as refactoring or peer-code reviews. In the past the research
community was active in devising change prediction models based
on structural metrics extracted from the source code. More
recently, Elish et al. showed how evolution metrics can be more
efficient for predicting change-prone classes. In this paper, we
aim at making a further step ahead by investigating the role
of different developer-related factors, which are able to capture
the complexity of the development process under different per-
spectives, in the context of change prediction. We also compared
such models with existing change-prediction models based on
evolution and code metrics. Our findings reveal the capabilities
of developer-based metrics in identifying classes of a software
system more likely to be changed in the future. Moreover, we
observed interesting complementarities among the experimented
prediction models, that may possibly lead to the definition of new
combined models exploiting developer-related factors as well as
product and evolution metrics.

Keywords-Change prediction; Empirical Studies; Mining Soft-
ware Repositories;

I. INTRODUCTION

During software maintenance and evolution, change is the
rule rather than the exception [1]. Classes undergo frequent
modifications due to continuous change requests, lack of a
deep understanding of the requirements or lack of communica-
tion with the stakeholders [1]. In such a scenario, and because
the need of meeting strict deadlines, software developers often
perform maintenance activities in an undisciplined manner,
leading to the erosion of the original design and, thus, reducing
the quality of a software system [2].

Knowing in advance the code elements potentially exhibit-
ing a higher change-proneness is vital for developers for two
main reasons: on the one hand, change-proneness can be
considered as a quality indicator that can be used to warn
developers when touching code that should be refactored [3];
on the other hand, developers can plan preventive maintenance
operations, such as refactoring [4], peer-code reviews [5], and
testing [6], aimed at increasing the quality of the code and
reducing future maintenance effort and costs [4].

Change prediction is widely recognized as an effective
technique to identify the classes more prone to be modified in
the future, being able to help developers in both planning pre-
ventive maintenance actions and understanding the complexity
of source code [7]. For this reason, researchers devoted a lot of
attention to the problem by (i) analyzing the factors influencing

the change-proneness of classes [6], [8], [9], [10], [11], and
(ii) devising prediction models able to alert developers about
the classes on which preventive actions should be focused on
[12], [13], [14], [15].

Most of the previous work relied on product metrics (e.g.,
CK metrics [16]) as indicators of the change-proneness of
classes. The underlying assumption is that code elements
having low quality are more prone to be subject of changes
in the future. For example, Zhou et al. [3] investigated which
cohesion, coupling, and inheritance metrics are more suitable
for predicting change-prone classes, finding a subset of them
that should be used in the context of change prediction models.
At the same time, they also showed that the number of lines
of code is not a good predictor [3].

More recently, Elish et al. [17] started investigating the role
of process metrics as predictors of change-prone classes. To
this aim, they theoretically and empirically evaluated a new
set of metrics (called “evolution metrics”) that characterized
the history of a class in order to delineate its future change-
proneness. For instance, they considered the number of pre-
vious modifications a class underwent during a given time
period. The application of a prediction model based on such
new metrics produces more accurate predictions than the ones
provided when using the traditional code metrics suggested by
Zhou et al. because of the direct relationship existing between
previous and future modifications of a class [17].

Although Elish et al. exploited some process metrics, they
did not take into account developer-related factors that con-
sidering how developers apply changes in the source code
could be able to capture the complexity of the development
process. For instance, it is still unclear whether non-focused
developers that apply scattered changes over the entire system
tend to introduce maintainability pitfalls that lead to increase
the change-proneness of the modified classes. Our conjecture
is that such aspects can be a useful source of information to
predict classes more likely to be changed in the future. In this
paper, we aim at verifying our conjecture by studying the role
of the metrics measuring the complexity of the development
process in change prediction. In our study we investigated
three prediction models previously defined in literature each
one based on metrics that capture the complexity of the
development process under different perspectives, i.e., (i) the
Basic Code Change Model (BCCM) proposed by Hassan [18]
which relies on the entropy of changes applied by developers,
(ii) the Developer Changes Based Model (DCBM) devised by



Di Nucci et al. [19] that considers to what extent developers
apply scattered changes in the system, and (iii) the Developer
Model (DM) proposed by Bell et al. [20] which analyzes how
many developers touched a code element over time.

Even though the models that we investigate have originally
been proposed for fault prediction, we conjecture they can be
adopted in the change prediction context since they are based
on metrics able to influence the change-proneness of classes as
well. For instance, the lack of coordination between multiple
developers working on the same code element may lead to
the introduction of design pitfalls that negatively influence
the maintainability of source code [21], possibly making it
more change-prone. In order to assess the performance of the
three prediction models we employed ten open source software
systems with different size scope.

Moreover, to have a comprehensive view of the usefulness
of the experimented models, we compared their performance
with the ones achieved by the state-of-the-art change predic-
tion models proposed by Elish et al. [17] and Zhou et al. [3].

The results of our study highlight the good prediction ca-
pabilities of the experimented prediction models, which range
between 60% and 78% in terms of accuracy. In particular,
we observed that the best performance is achieved by the
model defined by Di Nucci et al. [19]. When compared to
the model exploiting the evolution metrics devised by Elish
et al., DCBM still produces better performances. This result
highlights how previous changes of a class are not enough
for adequately predicting its future change-proneness, while
measuring the complexity of the development process can give
more accurate predictions. Furthermore, the change prediction
model relying on code metrics achieved the worst performance
(accuracy=57%), indicating that structural analysis is not suf-
ficiently suitable for predicting change-prone classes.

Finally, all the experimented prediction models showed in-
teresting complementarities in the set of change-prone classes
correctly predicted. Indeed, different models capture different
change-prone instances, possibly indicating that better predic-
tion abilities can be obtained by combining the predictors used
by the experimented models.

Structure of the paper. Section II discusses the related
literature in the context of change prediction. In Section III the
design of the empirical study is described, while Section IV
reports the results achieved when evaluating the performances
of the experimented change prediction models. Section V
discusses the threats that could affect the validity of our study.
Finally, Section VI concludes the paper.

II. RELATED WORK

The analysis of the change-proneness of classes has been ex-
plored by the research community from two main perspectives.
A consistent body of research analyzed the factors influencing
the phenomenon [8], [9], [10], [11], [6], while others focused
on understanding the role of product and evolution metrics
to predict the future change-proneness of classes [22], [20],
[19], [23], [17]. Since this paper is about change prediction

models, in the following we summarize the related literature
on previous research in this branch.

Product metrics have been widely exploited in the context
of change prediction [24]. Lindvall [25] found that larger
classes are statistically more change-prone than classes having
a small size, and that developers tend to apply more changes to
such classes during maintenance and evolution [26]. Further
studies showed that coupling metrics are relevant measures
to estimate the changeability of source code [27], [28], [29],
while Chaumun et al. [30] and Tsantalis et al. [23] generalized
the usefulness of CK metrics [16] for change prediction. The
statistical analyses conducted by Lu et al. [31] and Malhotra
et al. [32] clarified which Object Oriented metrics are better
suited for change prediction, reporting a set of cohesion,
coupling, and inheritance metrics that should be used in this
context. On the basis of these results, several prediction models
based on product metrics have been devised.

Romano et al. [33] relied on code metrics for predicting
change-prone fat interfaces, while Eski et al. [34] proposed a
model based on both CK and QMOOD metrics [35] to estimate
change-prone classes and to determine parts which should be
tested first and more deeply.

Other previous research tried to estimate the change-
proneness of classes using alternative methodologies. For
instance, the combination between dependencies mined from
UML diagrams [36] and code metrics has been proposed [12],
[13], [14], [15]. Also genetic and learning algorithms have
been proposed in this context [37] [38] [39]. Specifically,
Malhotra et al. [37] validated the CK metrics suite for building
an efficient software quality model which predict change
prone classes with the help of Gene Expression Programming.
Marinescu [38] reported the goodness of GAs for both change-
and fault-prediction. Finally, Peer et al. [39] devised the use
of adaptive neuro-fuzzy inference system (ANFIS) to estimate
the change-proneness of classes.

Later on, Zhou et al. [3] showed that size metrics may
lead to multi-collinearity [40] when mixed together with other
cohesion and coupling metrics. As a result, they suggested
to avoid using the LOC metric in product-based change
prediction models [3].

The closest works to the one proposed in this paper are
the studies by Elish et al. [17] and Girba et al. [41]. Elish et
al. [17] reported the potential usefulness of evolution metrics
for change prediction. In particular, they defined a set of
historical metrics such as (i) the birth date of a class, (ii)
the total amount of changes applied in the past, and (iii)
the date of the first and the last modification applied on a
class. Their findings showed how such evolution metrics may
be useful for predicting change-prone classes. Girba et al.
[41] defined a tool that suggests change-prone code elements
by summarizing previous changes. In a small-scale empirical
study involving two systems, they observed that previous
changes can effectively predict future modifications.

Besides the evolution metrics defined by Elish et al. [17]
and Girba et al. [41], in this paper we also analyzed the role of
developer-related factors that have been shown to be relevant



for prediction purpose in other contexts [19].

III. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the empirical study is to evaluate to what extent
metrics capturing the complexity of the development process
are useful when discovering change-prone source code classes,
with the purpose of improving the allocation of resources
in preventive maintenance activities (e.g., refactoring, code
inspections etc.) focusing on classes having a higher change-
proneness. The quality focus is on the prediction performance
and complementarity between the investigated approaches,
while the perspective is of researchers who want to evalu-
ate the effectiveness of using developer-related factors when
identifying change-prone classes.

The context of the study consists of ten open source
software systems having different size scope. Table I reports
the characteristics of the considered systems, and in particular
(i) the software history that we investigated, (ii) the percentage
of change-prone classes identified (as explained later), and (iii)
the size in terms of number of commits, developers, classes,
methods, and KLOC.

The specific research questions formulated in this study are
the following:

• RQ1: To what extent are developer-based prediction
models able to correctly estimate the change-proneness
of classes?

• RQ2: How does the performance of developer-based
prediction models differ from the ones of existing change
prediction models?

• RQ3: To what extent are developer-based change predic-
tion models complementary to existing change prediction
models?

To answer RQ1 and understand the predictive power of
developer-related factors in change prediction, we decided to
test the performance of three prediction models (we refer to
them as developer-based model since they rely on developer
related factors):

1) The Basic Code Change Model (BCCM) defined by
Hassan [18], which relies on the entropy of changes
applied by developers in a time window of size α.

2) The Developer Changes Based Model (DCBM) pro-
posed by Di Nucci et al. [19]. It employs the structural
and semantic scattering of the developers that worked on
a code element in a time window of size α as predictors.
The structural scattering measures the distance between
every pair of classes modified by the developer, while
the semantic scattering computes the degree of textual
similarity between every pair of classes modified by the
developer.

3) The Developer Model (DM) devised by Bell et al. [20]
that takes into account the number of developers that
worked on a specific component of source code in a
time period of size α.

While such models have originally been defined in the
context of fault prediction, the choice of using them for change

prediction was guided by the will of exploring the role of
different aspects of the development process on the change-
proneness of classes. For instance, having a high entropy of
changes might indicate the presence of a complex development
process where developers apply changes in an undisciplined
manner that lead to source code that is less maintainable and
possibly more change-prone in the future.

Once chosen the baseline prediction models i.e., BCCM,
DCBM, DM, the subsequent step regarded the identification
of the machine learning technique to use for building the
change prediction models. The related literature proposed
several alternatives (e.g., Tsantalis et al. [23] relied on Logistic
Regression [42], while Romano and Pinzger [33] suggested the
use of Support Vector Machine [43]), however it is still unclear
which classifier is able to give the best overall performance.

For this reason, we experimented with several classifiers
previously used for prediction purposes from the research
community, i.e., ADTree [44], Decision Table Majority [45],
Logistic Regression [42], Multilayer Perceptron [46], Support
Vector Machine [43], and Naive Bayes [47]. We empirically
compared the results achieved when applying each classifier
on each experimented baseline model on the software systems
in our study (more details on the adopted procedure later in
this section), finding that Logistic Regression [42] provided the
best performances for all the tested prediction models. Thus,
in this paper we report the results of the models built with this
classifier. A comprehensive report of the analysis conducted
in order to identify the machine learning technique to use is
reported in online appendix [48].

To assess the performance of the three prediction models,
we split the evolution history of the subject systems into three-
month time periods and we adopted a three-month sliding
window to train and test the change prediction models. Specif-
ically, starting from the first time window TW1 (i.e., the one
starting from the first commit), we train each model on it,
and test its performances on the time window TW2 (i.e., the
subsequent three-month period). Then, we moved three months
forward to the next time window, training the classifier using
the data available in TW2 and testing the model on TW3. This
process has been repeated until the end of the evolution history
of the subject systems.

The choice of the validation methodology was based on
two aspects. Firstly, all the models refer to a specific time
window of size α in which their own predictors have to
be computed. Therefore, this validation technique better fits
the characteristics of the experimented models. Secondly, this
methodology has been widely used in recent years to test the
performance of prediction models [18], [19]. Moreover, the
choice of considering three-month periods is based on (i) the
results of previous work, such as the one by Hassan [18], and
(ii) the findings of the empirical assessment we performed
on such a parameter, which showed that the best results for
all experimented techniques are achieved when using three-
month periods. In particular, we tested time windows of size
α = 1, 2, 3, 6 months. A report of the results is available in
replication package [48].



TABLE I: Characteristics of the Software Projects in Our Dataset
System Period % Change-prone Classes #Releases #Commits #Dev. #Classes #Methods KLOCs
ArgoUML Oct 2002-Dec 2012 28% 16 19,961 31 777-1,415 6,618-10,450 147-249
Apache Ant Jan 2000-Jul 2014 35% 22 13,054 55 83-813 769-8,540 20-204
Apache Cassandra Mar 2007-Jan 2012 22% 13 20,026 128 305-586 1,857-5,730 70-111
Apache Xerces Nov 1999-Feb 2014 19% 16 5,471 34 162-736 1,790-7,342 62-201
aTunes Aug 2005-Apr 2010 31% 31 6,276 21 141-655 1,175-5,109 20-106
FreeMind Jun 2000-Feb 2012 28% 16 722 13 25-509 341-4,499 4-103
JEdit Jan 2005-Jun 2012 24% 29 24,340 18 228-520 1,073-5,411 39-166
JFreeChart Feb 1999-Jul 2013 33% 23 14,099 15 86-775 703-8,746 15-231
JHotDraw Jan 2001-Dec 2012 23% 16 1,121 27 159-679 1,473-6,687 18-135
JVLT Jan 2007-Dec 2012 29% 15 623 16 164-221 1,358-1,714 18-29
Overall - - 197 105,693 358 25-1,415 341-10,450 4-249

To measure the ability of the change prediction models in
correctly predicting change-prone classes, we needed an oracle
reporting the actual change-prone classes present in each of the
time windows analyzed. To the best of our knowledge, a public
oracle reporting the ground-truth for the phenomenon taken
into account is not available in literature. Thus, we needed to
build our own oracle. To this aim, we followed the guidelines
provided by Romano et al. [33], which considered a class
change-prone if, in a given time period TW, it underwent a
number of changes higher than the median of the distribution
of the number of changes experienced by all the classes of
the system. We made the oracle reporting the change-prone
classes of all the ten considered systems publicly available in
online appendix [48].

Once we defined the oracle and ran the prediction models
on every three-month window, we answered RQ1 by using
three widely-adopted Information Retrieval metrics, namely
accuracy, precision and recall [49]. As an aggregate indicator
of precision and recall, we also reported the F-measure, a
metric defined as the harmonic mean of precision and recall
[49]. In addition, we reported the Area Under the ROC Curve
(AUC-ROC) obtained by the experimented prediction models.
This metric quantifies the overall ability of a prediction model
to discriminate between change-prone and non-change-prone
classes. The closer the AUC-ROC to 1, the higher the ability
of the classifier to discriminate classes that will change less
and more in the future. On the other hand, the closer the AUC-
ROC to 0.5, the lower the accuracy of the classifier.

Finally, we also statistically compared the F-measure
achieved by the experimented prediction models. To this
aim, we exploited the Mann-Whitney test [50] (results are
intended as statistically significant at α=0.05). Furthermore,
we estimated the magnitude of the measured differences by
using Cliff’s Delta (or d), a non-parametric effect size measure
[51] for ordinal data. We followed well-established guidelines
to interpret the effect size values: negligible for |d| < 0.10,
small for |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and
large for |d| ≥ 0.474 [51].

As for RQ2, we are interested in understanding to what
extent the performance achieved by developer-based predic-
tion models is different from those achievable using existing
prediction models. To this aim, we firstly investigated the
Evolution Model (EM) proposed by Elish et al. [17], which
relies on the set of metrics they defined, i.e., (i) birth date of a
class, (ii) total amount of changes applied on a class in a time

window of size α, and (iii) the date of the first and the last
modification applied on a class. Note that this model directly
uses the number of previous changes of a class to predict
its future change-proneness. It is based on the concept of
“change-caching”, i.e., classes that underwent more changes
in the past will have more changes in the future since they
encapsulate most of the complexity of the system.

We also tested the performance of a product-based predic-
tion model. As reported in Section II, the research community
has been active in the definition of change prediction models
relying on code metrics as predictors [24]. In the context
of this paper, we used as baseline the model by Zhou et
al. [3] which relies on a set of cohesion (i.e., the Lack of
Cohesion of Method — LCOM), coupling (i.e., the Coupling
Between Objects — CBO — and the Response for a Class —
RFC), and inheritance metrics (i.e., the Depth of Inheritance
Tree — DIT). The choice of the baseline has been driven
by the findings reported by Zhou et al., which showed how
such metrics are effective in detecting the change-proneness
of classes [3]. In the following, we refer to this model as CM,
i.e., Code Metrics Model.

Note that for sake of readability, in Table II we report the
(i) abbreviations used over all the paper, (ii) the names, and
(iii) a brief description of the investigated models.

To compare the performance of the CM model with the
developer- and evolution-based models, we used the same pro-
cedures and metrics used in the context of RQ1, i.e., accuracy,
precision, recall, F-measure, and AUC-ROC. Moreover, we
have statistically compared the F-Measure achieved by such
models. It is worth noting that also in this case we investigated
different machine learning techniques, finding again that Lo-
gistic Regression [42] provided the best performance. Thus,
the comparison between the investigated models is fair.

Finally, to answer RQ3 and analyze the complementarity
between the considered predictors, we investigated to what
extent different models correctly classify the change-proneness
of different classes. To this aim, we exploited the overlap met-
rics. Specifically, for each pair mi and mj of the experimented
prediction models, we computed the overlap between the sets
of true positives correctly identified by both models (denoted
by corrmi∩mj ) and the percentage of change-prone classes
correctly classified by mi only and missed by mj (denoted by
corrmi\mj

) defined as follows:



TABLE II: Summary of the five investigated change prediction models
Abbreviation Name Description
BCCM [18] Basic Code Change Model It is based on the entropy of changes applied by developers in a given time period.
DCBM [19] Developer Changes Based Model It takes into account the developers structural and semantic scattering. The first measures how “structurally”

far the code components modified by a developer in a given time period are. The second capture how much
spread in terms of implemented responsibilities the code components modified by a developer in a given time period are.

DM [20] Developer Model It relies on the number of developers who modified a code component in a give time period.
EM [17] Evolution Model Based on a set of historical metrics such as the birth date of a class, the total amount of changes applied

in the past, and date of the first and the last modification applied on a class.
CM [3] Code Metrics Model It relies on a set of cohesion (i.e., LCOM), coupling (i.e., CBO and RFC), and inheritance metrics (i.e., DIT).

corrmi∩mj
=
|corrmi

∩ corrmj
|

|corrmi ∪ corrmj |
% (1)

corrmi\mj
=
|corrmi \ corrmj |
|corrmi

∪ corrmj
|
% (2)

where corrmi
represents the set of change-prone classes

correctly classified by the prediction model mi.

IV. ANALYSIS OF THE RESULTS

In this section we report the results achieved in the study,
discussing the performance of the investigated models, and the
complementarity between them.

A. RQ1: The Performances of Developer-based Models

Table III reports the performance achieved by the five inves-
tigated change prediction models over the ten considered sub-
ject systems. Looking at the table, we can immediately provide
quantitative answers to our first research question. In the first
place, while developer-based models tend to perform well, it
is worth noting that none of them achieves an overall accuracy
higher than 78%. Even if this value is still quite positive, it is
also important to highlight that a notable percentage of classes
(at least 22%) is not correctly classified by using the models
independently. Thus, the problem of identifying the change-
proneness of classes seems to be not easily addressable by
employing models counting single aspects of the development
process.

Among the three developer-based models investigated,
DCBM [19] tends to perform better than the others, achieving
the best scores in term of all the quality metrics computed, i.e.,
accuracy=78%, precision=61%, recall=70%, F-Measure=66%,
AUC-ROC=69%. Based on these results, we can claim that the
way developers apply changes in the system has an influence
of the likelihood to make the touched classes more change-
prone. The superiority of DCBM is particularly evident in
the comparison with the DM model (i.e., the model based
on the number of developers), where the F-Measure is 8%
higher. The result clearly highlights that it is not the simple
number of developers working on a class that influences
the change-proneness, but rather the way developers apply
(scattered) changes in the system. Our findings confirm, in
the context of change prediction, previous findings achieved
by Di Nucci et al. [19], which showed the superiority of
the DCBM model in predicting bugs. For instance, consider
the case of the class org.gjt.sp.BufferHistory of
the JEDIT system. Between August and October 2009 (i.e.,
one of the three-month periods considered in our study) the

class was modified 19 times by one developer. The DM model
predicted the class as non-change-prone. However, in the same
time period such developer performed 36 modifications over
five different packages, thus accumulating a high level of
both semantic and structural scattering. The scattered changes
applied by the developer led to a decreasing of the cohesion
of the modified classes (i.e., overall, the LCOM1 increases
of 16% in such classes): interestingly, the LCOM of the class
org.gjt.sp.BufferHistory is the one increasing more
(from 3 to 12). This made it more prone to be changed
since they encapsulated different responsibilities. Due to the
high scattering of the developer, DCBM correctly predicts
the change-proneness of the class. Thus, the results seem to
delineate that the scattered changes applied by developers can
produce some forms of software degradation that have effects
on the change-proneness of classes. The statistical analyses
conducted (see Table IV) confirm the superiority of DCBM
with respect to DM (α < 0.01, d = 0.81).

A similar discussion can be made when comparing the
DCBM and BCCM models. From Table III we can observe
that DCBM is able to obtain an F-Measure almost 8% higher
than the alternative model. Once again, the improvement is
statistically significant (α < 0.01) with a large effect size
(d = 0.73). The gain provided by DCBM is also visible when
considering the other evaluation metrics: for instance, the
accuracy is about 3% higher, while the recall 7%. Interestingly,
both models obtain the same level of AUC-ROC (69%). From
a practical point of view, this result indicates that DCBM and
BCCM have a comparable overall ability in distinguishing
those classes having a high change-proneness with respect
to those characterized by a low change-proneness. However,
the scattering metrics can capture the phenomenon with a
higher accuracy. This is due to the fact that DCBM works
at a higher abstraction level than BCCM [18]. Specifically,
it considers the way developers apply changes rather than
the changes themselves, allowing the model to be more
efficient when the change process is not chaotic, but developers
continuously perform modifications over different parts of the
system. To better understand the reasons behind the different
performances of these models, let us consider the case of the
class chartMeter.Legend belonging to the JFREECHART
system. Between April and June 2005, the class underwent
10 of the total 16 changes applied in that time window. In
this case, the entropy of changes involving this class is low
(i.e., -0.13), since most of the effort has been devoted to
maintain it. However, the two developers performing mod-

1Note that the lower the LCOM the higher the cohesiveness of a class.



TABLE III: Performances (in percentage) achieved by the investigated change prediction models.
A=Accuracy; P=Precision; R=Recall; F-M=F-Measure; AR=AUC-ROC

Project BCCM DCBM DM EM CM
A P R F-M AR A P R F-M AR A P R F-M AR A P R F-M AR A P R F-M AR

ArgoUML 89 87 88 87 93 87 93 81 86 93 62 57 61 58 52 87 93 82 87 93 73 73 45 55 76
Apache Ant 72 65 79 72 82 71 63 71 67 66 48 51 57 55 51 67 58 63 61 55 56 55 61 58 52
Apache Cassandra 88 79 85 82 91 77 84 90 87 84 65 67 68 68 64 69 62 60 61 58 61 61 65 63 59
Apache Xerces 76 69 73 72 65 87 69 71 70 62 69 66 75 71 52 75 59 66 62 57 81 69 71 70 61
aTunes 62 66 50 58 50 63 58 62 60 67 61 52 55 54 53 63 50 50 50 57 56 42 48 45 52
FreeMind 35 35 28 31 42 68 42 45 44 70 62 62 64 63 63 68 36 44 40 83 52 55 36 44 75
JEdit 75 48 53 51 63 78 42 74 58 62 55 48 52 50 52 64 29 35 32 50 54 42 50 45 50
JFreeChart 71 45 67 56 55 73 42 62 52 55 64 45 61 53 57 73 36 51 44 50 58 48 55 52 67
JHotDraw 97 77 59 67 79 97 66 72 69 75 62 61 69 65 61 98 79 78 79 86 42 46 27 34 51
JVLT 80 50 50 50 50 81 51 76 62 59 49 44 48 46 52 61 51 75 61 59 41 37 43 40 50
Overall 75 56 63 58 69 78 61 70 66 69 60 55 61 58 56 72 55 60 58 65 57 53 50 51 59

TABLE IV: Wilcoxon’s t-test p-values of the hypothesis F-
Measure achieved by a model is > than the compared model.
Statistically significant results are reported in bold face. Cliff
Delta d values are also shown.

Compared models p-value Cliff Delta Magnitude
DCBM - BCCM < 0.01 0.73 large
DCBM - DM < 0.01 0.81 large
DCBM - EM < 0.01 0.82 large
DCBM - CM < 0.01 0.84 large
BCCM - DM 0.07 0.35 medium
BCCM - EM 0.04 0.21 small
BCCM - CM < 0.01 0.74 large
DM - EM 0.94 0.09 negligible
DM - CM 0.03 0.44 medium
EM - CM 0.03 0.48 large

ifications in the time window not only apply changes to
the chartMeter.Legend class, but also to other classes
involving 3 different packages. All these modifications were
related to the visualization of chart legends, and indeed dif-
ferent other classes related to visualization components (e.g.,
the chart.VerticalBarRenderer class) were modified.
However, the changes applied by developers had the effect
of reducing the overall quality of such classes, making them
more prone to be changed in the future. For instance, the
CBO of chartMeter.Legend reached 8 (+3 with respect
to the previous version). This example seems to confirm
the hypothesis behind the good performance of the DCBM,
namely the negative effect that scattering changes have on the
maintainability of classes.

To broaden the scope of the discussion, we can generally
observe that models previously used in the context of fault
prediction achieve good performance also when employed in
the identification of change-prone classes. This is somehow
unexpected and seems to delineate a direct relationship be-
tween the complexity of the development process and sev-
eral maintainability issues, including the change- and fault-
proneness of classes. We plan to perform an extensive analysis
of the impact of developer-related factors on a wider range of
maintainability problems, as well as of the interplay between
change- and fault-proneness of classes in our future research
agenda.

Summary for RQ1. The investigated developer-based

models achieve quite positive results. Among them, the
prediction model relying on scattering metrics obtains the
highest performances, having an overall F-Measure equals
to 66% and an accuracy equals to 78%. The superiority
of DCBM is statistically significant and has a large effect
size when compared to all the other models.

B. RQ2: The Comparison between Developer-based and
State-of-the-art Models

The results achieved by the baseline change prediction
models investigated in this study (i.e., EM and CM) are
reported in Table III. As it is possible to see, the EM model
achieves the same overall F-Measure as the DM and BCCM
models (i.e., 58%), while it is always outperformed by the
DCBM model (-8% in terms of F-Measure). From Table IV
we can observe how the differences between EM and the other
developer-based models are often small or negligible, even if
mostly statistically significant. The only exception regards the
comparison between DCBM and EM, where the differences
are statistically significant (α < 0.01) and the magnitude is
large (d = 0.82). When considering the CM model, we can see
that EM is generally a better predictor (the overall F-Measure
is 58% vs 51% for EM and CM, respectively) and, indeed,
the results are statistically confirmed (α = 0.03, d = 0.48).

Generally, it is important to remark that EM is the only
model that directly measures the previous number of changes
of a class to predict its future change-proneness: our results
indicate that this feature is not able to characterize the future
change-proneness of classes better than other predictors. This
confirms previous findings by Ekanayake et al. [52] on the
variability of the change-proneness of classes during different
stages of software evolution. As a consequence, the previous
knowledge about the number of changes a class underwent is
not always suitable to correctly identify change-prone classes
in future versions of a software system. Further analyzing
the predictions provided by EM, we discovered that it is
generally effective when a class has a central role in the
architecture of a system and, as such, usually undergoes a high
number of changes. For example, in the JHOTDRAW system,
the class svg.io.SVGFigureFactory is responsible for
performing the main functionality of the entire project, i.e.,
it manages the graph creation. This class is present in the
system since its first commit and it was frequently modified
by developers among all the time windows analyzed. In this



case, the predictors used by the EM model (e.g., previous
changes and birth date) are particularly effective since they
characterize well the change-proneness of the class. On the
other hand, the performance decreases in cases where a
significant restructuring of the system’s architecture is applied,
since the responsibilities of several code artifacts are modified
and, therefore, predictors such as the birth date or the previous
changes are less meaningful. For instance, in the time window
ranging between December and February 2006 the APACHE
ANT developers performed an entire restructuring of the
system, which led to the removal of some old classes as
well as the re-distribution of the responsibilities of several
code artifacts2. As a consequence, the data considered by
the EM model was not sufficient to correctly predict the
change-proneness of classes: in fact, the accuracy achieved
by the model in that time window was 43%. Noticeably, in
the same time period the DCBM and DM models reached an
accuracy equal to 87% and 83%, respectively. As excepted,
in the considered period the developers was busy modifying
the source code and, thus, models relying on such information
were performing better.

On the one hand, our results confirm previous findings on
the potential usefulness of the evolution metrics in the context
of change prediction [17]. On the other hand, we also found
how the “change-caching” concept exploited by this model is
valid on classes having a central role in the system, while it has
less effect in other cases. At the same time, we showed that (i)
other metrics based on developers can be effectively used for
prediction purpose, and (ii) they seem to capture information
orthogonal with respect to the EM model.

Switching the attention to the results obtained by the model
relying on code metrics, we can observe that developer-based
prediction models generally obtain higher performances than
the product-based baseline. Indeed, all these models have
an overall F-Measure always higher than the CM model.
For instance, DCBM achieves, overall, an F-Measure 15%
higher than the model based on code metrics (66% vs 51%).
The superiority of DCBM is also confirmed when consid-
ering all the other evaluation metrics, i.e., accuracy=+18%,
precision=+8%, recall=+20%, AUC-ROC=+10%. This result
contradicts previous findings [3], [31], demonstrating that
the use of code metrics is not enough to efficiently pre-
dict change-prone classes. A clear example is represented
by the class xerces.dom.ElementImpl of the APACHE
XERCES project. During the time window between May and
July 2007, the class experienced only three changes (i.e.,
it is non-change-prone) applied by two different developers,
who focused all their activities on the maintenance of classes
belonging to the xerces.dom package. As a consequence,
the value of their scattering metrics is zero, since they never
performed modifications outside the scope of the package [19].
Thus, the DCBM model correctly marked this class as non-
change-prone. At the same time, the class has an LCOM=28

2As indicated in the release notes of the version 1.7.1, which correspond
to that time period: http://tinyurl.com/hqwazgg

and a CBO=7. Both the metrics are higher than the average
metric values of the other classes composing the system, and
for this reason the CM model wrongly marked the class as
change-prone. This example highlights an important aspect
related to the maintainability of source code: indeed, even
if the code may be considered poorly maintainable looking
at the values of code metrics, this seems to be not always a
real issue since developers performing focused maintenance
activities (thus, being more expert on the modified code) can
keep its complexity under control.

Summary for RQ2. Developer-based prediction models
generally perform better than the existing models. This
is particularly true when considering the DCBM model,
which has an overall F-Measure 15% higher than the CM
model and 8% higher than EM.

C. RQ3: The Complementarity of the Investigated Models

Table V reports the complementarity between each pair of
prediction models. Note that for sake of space limitations,
the results on the complementarity have been aggregated
by considering the overall overlap between the models. A
complete report of the findings on each system is available
in online appendix [48].

As it is possible to observe from the table, all the inves-
tigated prediction models are complementary to each other,
thus being able to correctly point out different sets of change-
prone classes. To better understand the reasons behind such
complementarities, we deeper analyzed the predictions pro-
vided by different models. Firstly, it is worth discussing
the complementarity between DCBM and the other models.
When considering the relationship between scattering and
code metrics, we observed a consistent set of change-prone
classes (i.e., 43%) classified by both the prediction models,
but at the same time in almost 40% of the cases the only
model able to correctly predict the change-proneness is the
DCBM model. Finally, 27% of change-prone classes have been
identified only using code metrics. This result highlights the
high complementarity between the two models, showing that
different predictors work well on different sets of classes.

As for the comparison between DCBM and DM, we observe
that 51% of the predicted change-prone classes are in the
intersection, while 39% of change-prone classes are detected
correctly by only the DCBM model. Finally, the change-
proneness of a smaller percentage of classes (10%) can be
solely detected using the DM model. Thus, the two models
partially complement each other, making prediction improve-
ments conceivable. An interesting case explaining when the
DM model is able to outperform the DCBM model can be
found in the FREEMIND project (the smallest one of our
dataset). Here the seven developers of the system often per-
form changes to a few classes located in the two core packages.
Due to the small structure of the system, the scattering metrics
cannot correctly capture the developers’ activities and, thus,
they always have low values. In such case, the DM model



TABLE V: Overlap among the experimented change prediction models.

A=BCCM A=DCBM A=DM A=EM A=CM
A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A A∩B A-B B-A

B=BCCM - - - 63 14 23 59 22 19 55 26 19 53 28 19
B=DCBM 63 14 23 - - - 51 39 10 53 26 21 43 40 27
B=DM 59 22 19 51 39 10 - - - 59 20 21 54 27 19
B=EM 55 26 19 53 26 21 59 20 21 - - - 47 31 22
B=CM 53 28 19 43 40 27 54 27 19 47 31 22 - - -

produces more reliable predictions: indeed, it is worth noting
that this project is the only one where the DM model performs
better than the DCBM one (see Table III).

The discussion is similar when comparing the DCBM and
BCCM models. Even if the model based on scattering metrics
generally achieved better performance than the BCCM model
(Table III), we observed an interesting complementarity that
may lead to an additional improvement in the prediction
through a combination. In fact, Table V shows that the change-
proneness of almost 37% of classes can be correctly detected
by only one of the two models (i.e., 23% of correct prediction
have been made only by DCBM, 14% only by BCCM).
Moreover, it is worth noting that the complementarity between
BCCM and the other models is high as well. For instance,
when compared to the CM model, we found 28% of correct
predictions performed by the BCCM only and a further 19%
of classes for which the change-proneness has been identified
using code metrics. An interesting example is represented by
the class thrift.CassandraServer which had a value
of LCOM=44 and an RFC=23 in the time window between
March and May 2010. In that period, this class has been
changed 13 times, being classified as an actual change-prone
class. However, the BCCM model was not able to correctly
mark its change-proneness because the class always changed
together with a few other classes of the system (on average,
2 classes). As a consequence, the entropy of changes is low.
On the other hand, the poor quality of the class was a relevant
indicator of the change-proneness. Furthermore, it is important
to note that also the evolution metrics have nice complemen-
tarities with the other models. For instance, when comparing
EM and BCCM, we observed that in 26% of the cases the
change-proneness of classes can be correctly identified by the
EM model only. At the same time, the contribution provided
by the EM model is still more valuable in comparison to
the CM model, where 31% of the change-prone classes are
identified by using only the evolution metrics. An interesting
example of a change-prone class correctly classified by EM
and missed by CM is present in the ARGOUML project.
During the time period between October and December 2006,
the class ui.ProjectBrowser underwent 19 changes,
while it has been introduced at the beginning of the project.
Even though the structural metrics do not indicate issues
in the maintainability of the class (i.e., LCOM=6, CBO=2,
DIT=2, RFC=4), it tends to change frequently, being an
actual class to keep under control. In this case, the CM
model does not recognize the change-proneness of the class,
while the evolution metrics are able to better characterize

its future maintainability. Conversely, an example of a class
identified by CM and missed by EM in the same ARGOUML
project is generator.GeneratorJava. This class has
been introduced during the time window between March and
May 2006 (i.e., in the middle of the observed history), where it
underwent 10 changes. Since the class has not been introduced
in the early stages of software development, the EM model was
not able to correctly mark this class as change-prone. On the
other hand, the class contains a well-known design issues, i.e.,
it is affected by a Complex Class code smell. Thus, the code
metrics are particularly high (e.g., LCOM=49) and effective
in capturing the change-proneness of the class.

All in all, the analyses conducted show that the problem
of change prediction cannot be solved by only relying on
a subset of metrics considered. More importantly, different
models are able to capture different change-prone classes:
from a practical point of view, this means that the investigated
developer-based metrics can nicely complement evolution met-
rics, possibly providing additional performance improvements
when combined. At the same time, the CM model can provide
further insights, being able to correctly recognize the change-
proneness of a good portion of classes missed by other models
(e.g., CM identified 22% of classes that the EM model was
not able to identify).

Summary for RQ3. All the investigated models show
nice complementarities, being able to correctly capture
the change-proneness of the different classes. As a con-
sequence, our findings reveal the possibility to achieve
better performance when considering a combination of the
predictors considered in this study.

V. THREATS OF VALIDITY

This section describes the threats that can affect the validity
of our study.

Construct Validity. Threats to construct validity concern
the relationship between theory and observation. We exploited
the guidelines provided by Romano et al. [33] in order to build
a golden set reporting the actual change-prone classes present
in each of the analyzed time windows. This strategy has been
widely used in the past to assess the change-proneness of
classes [3], [17], [34], and it is recognized as a efficient way
to distinguish change and non-change prone classes [33].

Internal Validity. A factor that possibly could have affected
the variables investigated regards the evaluation procedure we
exploited to test the different prediction models. In particular,



since we had the need to exploit change history information to
compute the metrics composing the experimented developer-
based models, the evaluation design adopted in our study is
different from the ten-fold validation [53] generally exploited
in the context of change prediction. In particular, we split the
change history of the object systems into three-month time
periods and we adopted a three-month sliding window to train
and test the experimented fault prediction models. This type
of validation is typically adopted when using process metrics
as predictors [18], although it might be penalizing when using
code metrics, which are typically assessed using a ten-fold
cross validation.

Another threat is related to the use of developer-based and
evolution metrics as predictors of the change-proneness of
classes. Indeed, they somehow encapsulate the concept of
change, possibly producing an “interplay” between indepen-
dent and dependent variables of a prediction model. While the
model proposed by Elish et al. [17] directly uses the number
of changes a class underwent by a class in a previous time
window as predictor of the future change-proneness of that
class, we carefully verified whether this possible interplay
produced unreliable results, finding that the usefulness of the
model is limited to the cases where a class has a central role
in the system. As for the BCCM, DCBM, and DM models,
it is important to note that all of them rely on metrics able
to capture the complexity of the development process under
different perspectives (e.g., the number of developers who
worked on a code component). Thus, they provide a higher
abstraction level and do not directly measure the change-
proneness of a class.

Conclusion Validity. Threats to conclusion validity refer
to the relation between treatment and outcome. In order to
evaluate the change prediction models we used metrics such as
accuracy, precision, recall, F-Measure, and AUC-ROC, which
are widely used in the evaluation of the performances of
prediction models. Moreover, we also applied appropriate sta-
tistical procedures, i.e., the Wilcoxon [50] and the Cliff’s tests
[51], to understand whether the differences in the performance
of the experimented models were significant.

External Validity. As for the generalizability of the results,
we analyzed ten different systems from different application
domains and having different characteristics (size, number of
classes, etc.). However, we are aware that our study is based
on systems developed in Java only, and therefore future inves-
tigations aimed at corroborating our findings on a different set
of systems would be worthwhile.

VI. CONCLUSION

Predicting the classes more likely to change in the future is
an effective way to focus preventive maintenance activities on
specific parts of a software system. While several researchers
relied on code or evolution metrics to build change prediction
models, little knowledge is available on the actual usefulness
of developer-related factors in this context. This paper aimed
at bridging this gap, by providing an empirical analysis of the

performance achieved by three developer-based change pre-
diction models on a set of ten software systems. Specifically,
the contributions made by this paper are:

1) An empirical investigation into the role of developer-
related factors in change prediction. To this aim, we
analyzed the performance attained by three prediction
models relying on metrics able to capture the complexity
of the development process under different perspectives
[19], [18], [20].

2) A comparison between developer-based and state-of-
the-art change prediction models. We compared the
prediction capabilities of developer-based models with
two baseline approaches, i.e., the Evolution Model [17]
and the Code Metric model [3].

3) An analysis of the complementarity between the
investigated models. We evaluated the orthogonality of
the different experimented models by computing overlap
metrics and providing qualitative examples to understand
under which situations a given model performs better
than others.

The achieved results provide several findings:
• Developer-based change prediction models generally

show good performance. Among them, the DCBM pro-
posed by Di Nucci et al. [19] shows the best performance,
reaching an overall F-Measure of 66% and an accuracy
equals to 78%.

• Developer-based change prediction models work better
than a model built using code metrics. In particular, when
developers apply focused modifications in a given time
period they are able to keep the complexity of the source
code under control even in the cases where the code
metrics highlight design issues.

• The studied models show interesting complementarities,
indicating that different metrics are suitable for predicting
the change-proneness of different classes.

Our observation of complementarity of models using different
sources of information is our main input for future research in
this field. Indeed, we plan to define a change prediction model
that efficiently combines different sources of information.
We also plan to corroborate our results on a larger set of
software systems. Finally, a very important next step that we
envision is to perform an extensive analysis of a wide range
of maintainability problems and how they are impacted by
developer-related factors. Part of this analysis is to study the
relationship between these developer-related factors and the
interplay between change-proneness and fault-proneness.
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