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Abstract—The intense competition characterizing mobile appli-
cation’s marketplaces forces developers to create and maintain
high-quality mobile apps in order to ensure their commercial
success and acquire new users. This motivated the research
community to propose solutions that automate the testing process
of mobile apps. However, the main problem of current testing
tools is that they generate redundant and random inputs that are
insufficient to properly simulate the human behavior, thus leaving
feature and crash bugs undetected until they are encountered by
users. To cope with this problem, we conjecture that information
available in user reviews—that previous work showed as effective
for maintenance and evolution problems—can be successfully
exploited to identify the main issues users experience while using
mobile applications, e.g., GUI problems and crashes. In this
paper we provide initial insights into this direction, investigating
(i) what type of user feedback can be actually exploited for
testing purposes, (ii) how complementary user feedback and
automated testing tools are, when detecting crash bugs or errors
and (iii) whether an automated system able to monitor crash-
related information reported in user feedback is sufficiently
accurate. Results of our study, involving 11,296 reviews of 8
mobile applications, show that user feedback can be exploited
to provide contextual details about errors or exceptions detected
by automated testing tools. Moreover, they also help detecting
bugs that would remain uncovered when rely on testing tools
only. Finally, the accuracy of the proposed automated monitoring
system demonstrates the feasibility of our vision, i.e., integrate
user feedback into testing process.
Index Terms—Automated Software Testing, Mobile Applications, User
Reviews Analysis

I. INTRODUCTION

Mobile devices, such as smartphones and tablets, acquired
more and more a central role in everyday life in recent years
[31]. Consequently, we witnessed an unprecedented growth
of the app industry, with around 149 billions of mobile
apps downloaded by September 2016 [47] and 12 million of
developers maintaining them [36]. The growing competition
characterizing mobile application marketplaces, like Google
Play and the Apple App Store, ensures that only high quality
apps stay on the market and gain users. This forces developers
to deliver high quality apps, maintaining them through ade-
quate software testing activities [27], [31]. However, mobile
applications differ from traditional software, being structured
around Graphical User Interface (GUI) events and activities
[1], [34]. Therefore, they expose different kinds of bugs and
suffer of a higher defect density compared to traditional
desktop and server applications [21]. To support developers
in building high-quality applications, the research community

has recently developed novel techniques and tools to automate
such a testing process [21], [27], [29], [34]. They generate,
according to different strategies, UI and system events, like the
tap on a button or an incoming notification. Such events are
then transmitted to the application under test (AUT) with the
aim of detecting unhandled runtime exceptions. If an exception
occurs, such techniques typically save two different informa-
tion: (i) the correspondent stack trace and (ii) the sequence of
events that led to the crash [34]. Unfortunately, most of these
tools suffer of three important limitations. Firstly, the reports
they generate (composed as mentioned, by a stack trace and
a sequence of inputs) lack of contextual information and are
difficult to understand and analyze [10], [23]. Secondly, they
are able to detect only bugs that actually cause unhandled
exceptions, thus possibly missing those not raising any. Third
and most important limitation, current tools “are not suited
for generating inputs that require human intelligence (e.g.,
constructing valid passwords, playing and winning a game,
etc.)” [27]. Indeed, the generation of such random inputs often
results in a redundant sequences of events that are not able to
simulate the human behavior. For this reason, such tools (i)
are often not able to achieve high code coverage [12], [35] and
(ii) might fail to detect bugs and crashes that are encountered
by users [11], [27].
In this context, recent work demonstrate that it is possible to
leverage information available in app reviews to identify the
main problems encountered by users while using an app [13],
[38], [41], [45], [48]. We believe that such information can
be successfully exploited to overcome some of the limitations
of state-of-the-art tools for automated testing of mobile apps.
Specifically, we argue that the integration of user feedback
into the testing process can (i) complement the capabilities of
automated testing tools, by identifying bugs that they cannot
reveal or (ii) facilitate the diagnosis of bugs or crashes (since
users might describe the actions that led to a crash).
To better explain the motivations behind our work, we pro-
vide below two concrete examples taken from the dataset
gathered for this study (detailed in Section II). In the first
example, we report the content of a user review, related to
the com.danvelazco.fbwrapper app, revealing a bug
missed by widely adopted automated testing tools such as
MONKEY [17] and SAPIENZ [29]:

“Love the idea of this app but anytime I leave the page the screen



goes completely white and won’t come back until force-stopped.
Update: I thought the white screen was because my phone was so

outdated but it still does it on my Nexus 6 ...”.

In this case, the user complains for a white screen displayed
after leaving the previous page in the application. However,
such white screen did not throw any unhandled exception. As
a consequence, all the current Android automated testing tools
could not detect at all such a problem.
The second example shows the opposite situation: in this
case, SAPIENZ detects the following exception for the
com.amaze.filemanager app.

Long Msg: java.lang.NullPointerException

at com.afollestad.materialdialogs.util.DialogUtils.hideKeyboard(

DialogUtils.java:226)

at com.afollestad.materialdialogs.MaterialDialog.dismiss(

MaterialDialog.java:1810)

...

at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(

ZygoteInit.java:795)

at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:611)

at dalvik.system.NativeStart.main(Native Method)

... 3 more

While this piece of information correctly reveals an actual
error occurring in the app, locating the exact origin of the
failure might be hard for developers since it lacks of contextual
information, i.e., they cannot understand what is the event that
induces the failure. Thus, we believe that having a monitoring
system that provides developers with information about the
bugs encountered by users might be useful for comprehending
the causes behind a failure, easing the debugging phase, and
discovering errors that existing testing tools cannot reveal.

Paper contribution. In this paper we conducted a set of
methodological steps aimed at (i) characterizing the types
of user review feedback that can be exploited for testing
purposes; (ii) investigating the extent to which information
coming from user reviews are complementary with respect to
crashes discovered by testing tools. Furthermore, we define
an initial automated monitoring system able to link user
reviews to stack traces. Our aim is dual: linked feedback might
describe the cause of a failure, helping in its resolution; on
the contrary, developers would deeper focus on the not-linked
ones, which are likely to describe bugs missed by tools. Thus,
the contributions introduced by this paper are:
• the definition of a high and a low level taxonomy of user

review feedback. The former allows to classify reviews
relevant from a maintenance and testing perspective. The
latter focuses only on the reviews claiming about crashes,
discerning them from the user’s perspective;

• an automated Machine Learning (ML) approach able
to discriminate the user feedback exploitable for testing
purposes;

• an empirical study on the complementarity between test-
ing tools and user review information in identifying crash
bugs in mobile apps. In addition, we shed some light on
the root causes of such problems, specifying which ones
are mostly detected rely only on one of the two analyzed
sources;

• an automated approach based on Information Retrieval
(IR) able to link stack traces to user feedback that refers to
the same failure; the combination of such technique with
the automated ML approach described above, alleviates
one of the discussed problems in Android automated
testing, i.e., the inability of testing tools to reveal some
kind of bugs. Indeed, the remaining non-linked crash-
related reviews are the ones that developers might want to
analyze, since they are likely revealing errors not retrieved
by testing tools.

To give an intuition of the potential of the approach we
propose, we report below an user review automatically linked
to the stack trace we previously showed.

“Every time I press the the recent apps button the app crashes.”.

There is no doubt about how such an user’s perspective
description, together with the occurred exception, drastically
facilitate the diagnosis of the problem and therefore, its
eventual fix.

Structure of the paper. Section II presents the empirical
study, data collection process, our research questions and the
approaches we use to answer them. Section III describes the
achieved results, while Section IV discusses the main threats.
Related work are presented in Section V while Section VI
concludes the paper drawing the envisioned future work.

II. EMPIRICAL STUDY DESIGN

The goal of the study is to (i) assess the extent to which
the information coming from the user reviews posted in app
stores can be exploited to facilitate testing activities of mobile
applications, (ii) analyze whether and to what extent such
information is complementary with the one coming from auto-
mated testing tools and (iii) proposing an automated solution to
provide developers with a monitoring system able to support
the integration of user feedback in the testing process. The
perspective is both of researchers interested in understanding
how user feedback can be leveraged for testing activities and
mobile developers, who might want to identify bugs in their
applications relying on multiple and complementarily sources
of information. Thus, this empirical study aims at answering
the following research questions:
• RQ1: What type of user feedback can we leverage to

detect bugs and support testing activities of mobile apps?
• RQ2: How complementary is user feedback information

with respect to the outcomes of automated testing tools?
• RQ3: To what extent can we automatically link the crash-

related information reported in both user feedback and
testing tools?

RQ1 investigates which type of user feedback can be fruitfully
integrated into the testing activities of mobile apps. RQ2

aims at (i) investigating the complementary of user feedback
information with respect to the outcomes of automated testing
tools and (ii) assessing whether user feedback can reveal
bugs that state-of-the-art automated testing tools cannot detect.
Finally, with RQ3 we explore possible automated solutions



ML
IR

1 2 3 4Data Collection Classification Complementarity Linking

stack traces

HLT & LLT

user reviews

external
validator

golden set crash-related crash related

tools
3 authors

stack traces stack traces8 apps - 24 stack traces

6,600 reviews 534 reviews8 apps

Fig. 1. Overall Approach

able to link the failures revealed by automated tools with
the ones claimed in user reviews to help developers discern
the app bugs that can be detected relying on such sources
of information. The research approach we adopted to answer
our research questions is depicted in Figure 1: 1© depicts
the data collection step; the process used to answer our RQ1

corresponds to 2©; 3© visualizes the manual analysis needed
for RQ2, while 4© refers to the proposed linking approach.

A. Context of the study

The context of the study is composed of the set of apps avail-
able in the F-Droid repository [15] and by the correspondent
user reviews gathered from the Google Play Store. To answer
our first research question we relied (as explained in Section
II-C1) on such an entire dataset of apps and reviews. For the
other two one, we narrowed the investigation to a subset of 8
Android applications, showed in Table I. The selection of such
a subset was guided by two major considerations. At first, we
selected only mobile apps for which it was possible to reveal
at least 1 unhandled exception with the employed automated
testing tools. Moreover, amongst them, we picked the ones
having the highest number of collected reviews. To limit the
threats to external validity, we also selected them considering
different Play Store’s categories, sizes and domains.

B. Data Collection

This section reports the steps ( 1© in Figure 1) conducted to
extract user reviews and stack traces to answer our research
questions. Such a dataset is publicly available in our replica-
tion package [4].

User Reviews Extraction. To answer RQ1 and determine
which kind of feedback can be exploited to support automated
testing, we first build a crawler to collect the meta-data (e.g.,
package name, version and so on) and the latest apk available
for each app stored in the F-Droid repository. Afterwards, we
mined from the Google Play Store the correspondent reviews,
i.e., the ones posted after the release of our gathered versions
[18]. We are aware that such set of reviews might contain
user comments that do not refer to the last version of the
app. However, Pagano and Maalej empirically demonstrated
that user feedback is mostly triggered by new releases [37].

Thus, at the end of this phase, we collected in total a set of
about 40,000 reviews for about 600 applications that we later
used to construct our golden set (as detailed in Section II-C1)
relevant to answer our RQ1. It is worth to underline that, from
the original F-Droid set of apps, we discarded the ones with
less than 30 user reviews available.

Stack Trace Collection. To extract the stack traces for the
crashes occurring in the analyzed apps, we employed two well-
known tools for Android automated testing, namely MON-
KEY [17] and SAPIENZ [29]. The choice of using these tools
was given by multiple factors. In the first place, MONKEY,
coming directly integrated into the Android development en-
vironment, is the most used tool and therefore, a standard-de-
facto for automated testing of mobile apps. Moreover, despite
employing a relatively trivial random exploration strategy, it
outperforms most of the recent tools in continuous mode (i.e.,
fixed execution time and same hardware configuration) [29].
On the other hand, the selection of SAPIENZ was driven by
recent findings reporting that it is the most effective tool in
both fault revelation and code coverage [29]. These tools were
ran over the applications described in Table I: as done in
previous work, we ran them for 60 minutes [12], using a
Samsung Galaxy Tab 8 inches with Android Kitkat 4.4. The
choice of the Android version is due to SAPIENZ constraints.
It is worth to remark that we refer to a crash for an application
as an unhandled exceptions that results in a stack trace. At the
end, we merged together the arose crashes from both tools.
Thus, we manually analyzed them in order to (i) discard stack
traces due to native crashes (i.e., the ones not caused by the
AUT) and (ii) remove possible duplicates.

C. Research method

In this section, for each research question, we describe the
research approach we employed to answer it.
1) RQ1 research method: The primarily goal of this research
question is to identify and therefore be able to automatically
classify the feedback in user reviews that can fruitfully em-
ployed to facilitate testing activities. To pursue such a goal,
we built a multi-level taxonomy composed by (i) an high-
level layer that categorize the reviews that are relevant for



TABLE I
SUBSET OF APPS SELECTED FOR THE STUDY

Application Category Crashes Reviews
Total Crash

com.amaze.filemanager Tools 7 1,438 28
com.danvelazco.fbwrapper Social 4 1,900 252
com.eleybourn.bookcatalogue Productivity 1 677 11
com.evancharlton.mileage Finance 2 1,064 39
com.fsck.k9 Communication 1 2,895 106
com.ringdroid Video Pl. & Editor 4 2,363 84
cri.sanity Communication 1 695 11
org.liberty.android.fantastischmemo Education 4 264 3

Total 24 11,296 534

a maintenance and an evolution perspective, and (ii) a low-
level layer, that further specialize the previous one, focusing
on the user feedback that can be directly used to improve and
facilitate testing activities.

High-level Taxonomy (HLT). The fist step required to build
our taxonomy was to derive a manual labeled golden set (step
2© in Figure 1). Therefore, using a stratified approach, we

randomly selected from the entire set of reviews, collected as
described in Section II-B, the 15% from each app, resulting in
a set of over 6,600 reviews. To derive the HLT we proceeded
as follows. At first, a Master student at University of Zurich
performed an iterative content analysis [24], starting with an
empty list of user feedback categories and carefully analyzing
each review. Each time she found a new review feedback
type, a new category was added to the list and each review
was labeled with the matching categories. After the first
step, the initial categorization was refined performing another
interaction involving one of the authors of this paper who
double-checked each review and removed potential redundant
categories in the taxonomy. The resulting HLT is described
in Section III-A. The set of 6,600 reviews manually validated
according to the HLT represents our golden set.
Once defined such taxonomy, we adopted an automated ap-
proach, similar to the one presented by Ciurumelea et al.
[13], to classify reviews according to the defined HLT. The
main differences with this work is that we (i) used a larger
dataset of reviews to build the taxonomy and (ii) focused
on a reduced set of categories tailored for maintenance and
evolution tasks. Thus, we leveraged a supervised machine
learning (ML) technique by performing the following steps:
• Preprocessing and Feature Extraction: First, the review

text is preprocessed by applying lower case reduction,
English stop words removal and reducing words to their
root form using stemming [5]. As features, the tf-idf
scores of the 1-grams, 2-grams and 3-grams of terms
are computed for each review. Note that an n-gram is
defined as a contiguous sequence of n items from a given
sequence of text [49]. We prefer the tf-idf score [5], as
opposed to simple frequency counts, because it assigns
a higher value to rare words (or group of words) and a
lower value to common ones, therefore identifying the
important words in a review.

• ML Models Training: After experimenting with different
models we decided to use the Gradient Boosted Classifier
algorithm, as this returned the best results. We used the
implementation from the scikit-learn library [44],
because it is open source and widely used in practice. The
model achieved the best results while keeping the default
values for the different hyper-parameters. We only mod-
ified the n_estimators argument, setting it to 500,
which increased the precision and recall while slightly
increasing the training time. We plan as future work to
investigate whether the tuning of such hyper-parameters
can further improve the accuracy of the classification.

To train and evaluate the classifiers, we used the aforemen-
tioned golden set, extracting the features previously described.
The dataset was highly unbalanced in terms of user feedback
categories, thus, training the classifiers on the entire dataset did
not result in very high accuracy and recall for the minority
categories. For this reason, we applied a known technique,
called under-sampling, to tackle the data imbalance problem
[50]. Specifically, from the initial dataset we selected all the
reviews that were manually labeled as belonging to the relevant
categories, and additionally we randomly selected a subset of
the reviews that did not belong to either of the categories,
finally obtaining a dataset of 2,565 reviews. Therefore, we
used the classifier trained on such a balanced dataset and
evaluated its performances using a 10-fold cross validation
procedure [16]. Such results are presented in Section III-A.

Low-level Taxonomy (LLT). Differently from previous work,
we aim to detect a very specific subset of user reviews that
might facilitate developers’ testing activities and complement
the usage of automated testing tools. Being one of the focus
of this work investigating the complementarity between the
outcome of such tools and the user reviews, we fine-grained
the HLT taxonomy with a new layer tailored to take into
account only the feedback discussing crashes. That choice
was driven by the fact that testing tools are not able to
reveal semantic bugs, but only failures that result in unhandled
exceptions. Hence, we performed a further iterative content
analysis by manually categorizing a stratified sample set of
534 user reviews, selected from the projects reported in Table
I, as described in Section II-C2. The result of such a process
is a fine-grained taxonomy describing the various root causes
that can lead to a crash, from the users perspective. We
proceeded as follows. In a first iteration, three authors of
the paper independently performed a first categorization of
the sampled set of reviews, by reading their descriptions and
trying to logically group them. The purpose of this task was
to ensure that the three authors assigned each problem to the
right category. As results, they deducted independently three
different LLT. Observing the results of the initial iteration,
we noticed that the low-level taxonomies were already very
similar. The main difference between them concerned the
adoption of different labels (or names) for the same types of
issue. Thus, in a second and final iteration, the three authors
met and discussed all cases of disagreement, merging and/or



renaming existing categories. That resulted in the final version
of the LLT, reported in Section III-A.
2) RQ2 research method: The goal of this research question
is to shed some light on the possibility to leverage user
feedback to complement the capabilities of current automated
testing tools. Specifically, we aim to detect (i) crashes de-
scribed by users in app reviews and that are detected as
well by automated testing tools and (ii) crashes described
by users that automated tools are not able to reveal. Hence,
we strive to manually observe/explore possible differences
and commonalities between the two sources. To achieve this
goal, we manually analyzed both user reviews and stack traces
generated by automated testing tools ( 3© in Figure 1). Being
such analysis extremely time consuming, we narrowed the
investigation to the 8 apps described in Table I, relying on
the selection criteria described in Section II. The outcome
of this manual analysis is both quantitative and qualitative.
The quantitative part discusses the percentage and types of
crash bugs detected (i) by users only and described in user
reviews (ii) the one detected by only automated tools and (iii)
the one detected by automated tools and reported in crash-
related reviews. Instead, the qualitative analysis complements
the quantitative side by giving insights about the reasons why
specific app bugs are detected by both sources of information,
while others are detectable by solely relying on one of them.
To do that, we involved an external inspector having 2 years
of experience in Android development. We gave her (i) the
stack traces arose from the execution of the tools, (ii) the logs
of the executed events that led to the crashes, (iii) the apk
and the source code for the used apps, as well as the image
of the same emulator used for the stack trace extraction, and
(iv) the set of reviews related to the Crashes sub-category
for our HLT. It is worth to notice that we relied on our ML
classifier to discern such reviews. Table I reports, for each app,
the number of stack traces and of the crash-related reviews
provided. At first, using a MONKEY feature, she had to re-
run the stored sequences of events for the collected crashes,
to reproduce them and understand their dynamics. Whenever
such analysis was not enough for a full comprehension, she
had to inspect the source code trying to figure out its behavior
in the proximity of the piece of code that threw the exception.
At the end, she went through the set of provided reviews,
linking them, whenever possible, to one of the stack traces.
Despite the evident amount of work done by the external
evaluation, we missed to precisely measure the hours spent
for the aforementioned tasks. Once the evaluator completed the
manual link process, we quantitatively answered this research
question by computing the percentage of issues coming from
the various sources of information, relying on the following
metrics:

• IC : % of issues reported in both reviews and crash logs;
• IR: % of issues reported only in user reviews;
• IS : % of issues reported only in crash logs.

To compute them, we first defined T as the total number
of unique issues reported for a given app. Such value is

formalized as follows:

T = L+ S +R

where L represents the number of links detected by the
evaluator between a review and a stack trace; S represents
the number of stack traces that was not possible to link to
any reviews and R, on the contrary, the number of reviews
that were not linked to any stack trace. Thus, we can formally
describe the three overlap metrics introduced above as follow:

IC =
L
T

IR =
R
T

IS =
S
T

In order to have a fair computation of the three metrics
IC , IR and IS , presented above we proceeded to manually
(i) detect duplicated stack traces and (ii) cluster the user
reviews claiming about the same crash (avoiding to count
twice or more the same bug). Moreover, we relied on the
aforementioned LLT with the aim to deeper understand the
nature of the user reviews that was not possible to link to any
stack trace (R). Since all the user reviews used for the RQ2

analysis were labelled according to the LLT, we observed the
distribution of the not-linked reviews in the categories of such
taxonomy. Results of the described quantitative and qualitative
analysis are reported in Section III-B.
3) RQ3 research method: The goal of this research question
consists of exploring approaches able to link the failures
revealed in the stack traces (contained in the reports) generated
by automated tools to the corresponding crash-related reviews.
Specifically, an automated approach of this kind is required
as it will (i) enable the identification of crashes that are
detected by both automated tools and user reviews and (ii)
discriminating the crashes that are detected only by automated
tools or only by user reviews information.
Linking the two sources of information is difficult because
they are very different: user reviews contain informal text
documentation which describe the overall scenario that led
to a failure [32], while the stack traces contain technical
information about the exceptions raised during the execution of
a certain test case. To account for this aspect, the automated
approach devised only considers the name and cause of the
raised exceptions, while it removes the remaining pieces of
information that creates noise in the collected stack traces
(e.g., the list of native methods involved in the exception).
The choice of considering only some specific parts of the stack
traces was driven by experimental results—available in our on-
line appendix [4]—where we tested how the linking accuracy
was influenced by the presence/absence of this information.
After cleaning the reports, the remaining text is augmented
with the source code methods included in the stack trace. This
step extends the information from the reports with contextual
information from the source code, possibly providing addi-
tional information useful for the linking process. Also in this
case, the choice was not random but driven by the experimental
results available in our on-line appendix [4].
Afterwards, the approach performs a systematic Information
Retrieval (IR) preprocessing [5] on both the user reviews



and augmented stack traces aimed at (i) correcting mistakes,
(ii) expanding contractions (e.g., can’t is replaced with can
not), (iii) filtering nouns and verbs (which are the most
representative textual parts of a software artifacts and a general
textual description [9]), (iv) removing common words or
programming language keywords (the entire list is available
in the on-line appendix [4]), and (v) stemming words (e.g.,
aiming is replaced with aim). This step returns two documents
containing the bag of words representation of the two different
sources of information.
Finally, to link the resulting documents we tested three dif-
ferent IR techniques, i.e., (i) the Dice similarity coefficient
[14], (ii) the Jaccard index [22], and (iii) the Vector Space
Model (VSM) [5]. Specifically, the asymmetric Dice similarity
coefficient [5] is defined as follow:

Dice (review j , crashi) =

∣∣Wreviewj ∩Wcrashi

∣∣
min

(∣∣Wreviewj

∣∣ , |Wcrashi
|
)

where Wreviewj
represents the set of words composing a

user review j, Wcrashi
is the set of words contained in an

augmented stack trace i and the min function normalizes the
Dice score with respect to the number of words contained
in the shortest document between j and i. The asymmetric
Dice similarity returns values between [0, 1]. In our study,
pairs of documents having a Dice score higher than 0.5 were
considered as linked by the approach.
The Jaccard index, instead, is defined in terms of the following
equation:

Jaccard (review j , crashi) =

∣∣Wreviewj ∩Wcrashi

∣∣
|Wreviewj

∪Wcrashi
|

where Wreviewj
and Wcrashi

represent the set of words
contained in the user review j and the augmented stack trace i,
respectively. Also in this case, the index varies in the interval
[0, 1], and pairs of documents obtaining a Jaccard index higher
than 0.5 were considered as candidate links.
Finally, in the VSM user reviews and augmented stack traces
are represented as vectors of terms (i.e., implemented through
a term-by-document matrix [5]) that occur within the two
sources. The similarity between pairs of document is given
by the cosine of the angle between the corresponding vectors.
The selection of these three linking strategies was based on
the analysis of previous literature [3], [30], [38], [39], and
allowed us to perform a wider analysis of pros and cons of
their usage. In Section III-C we firstly report the performance
achieved by the three different linking approaches in terms
of precision, i.e., number of true positive links retrieved over
the total number of candidate links identified [5]. In case a
particular app does not have any link between crash-related
reviews and stack traces, it is not possible to compute precision
(i.e., division by zero). Secondly, we compute the recall, i.e.,
number of correct links retrieved by an approach over the
total number of correct links in the application [5] for all the
experimented apps having at least one crash-related reviews
and a stack trace related to each other (i.e., if this condition

TABLE II
HIGH LEVEL TAXONOMY (HLT)

Category # Sub-Level Description

Bugs 1,202
Crashes claims about app crashes
Features & UI claims about UI or feature problems

Feature Requests 1,639
Addition requests for new features
Improvements requests for improving existing features

Resources 656
Performance discussing performance issues
Battery discussing battery problems

Request Info 2,149 clarification request for app features
Usability 648 discuss the ease or difficulty to use a feature
Compatibility & Update 352 issues after updates or for device compatibility

TABLE III
EVALUATION OF MACHINE LEARNING CLASSIFIERS

Category Precision Recall F1 Score

Feature & UI Bugs 0.83 0.82 0.83
Crashes 0.91 0.94 0.92

Average 0.87 0.88 0.87

does not hold the golden set for that app would be empty,
thus precluding the computation of recall). To this aim, we
exploited the golden set of links created in the context of RQ2.

III. RESULTS AND DISCUSSIONS

In this section we report the results of the presented research
questions and discuss the main related findings.

A. RQ1 - What type of user feedback can we leverage to detect
bugs and support testing activities of mobile apps?

The two content analysis described in Section II-C1 resulted in
two different taxonomies: a high-level (HLT) and a low-level
(LLT) one. The resulting HLT, along with the description for
the 6 categories, their sub-levels, and the number of reviews
for each category is showed in Table II. Since our main goal is
to investigate user feedback useful to complement and improve
the efficiency of automated testing tools, we mainly focused
on the reviews belonging to the Bugs category. Indeed, since
the current tools are only able to detect runtime unhandled
exceptions (and therefore, crashes), we particularly sharped
the Crash sub-level.

ML Classifier. Before describing the categories of user review
feedback composing the LLT, we report the accuracy of the
automated ML classifier described in Section II-C1. Indeed,
to evaluate its performances, we adopted well-known metrics
such as precision, recall, and F1 score [5]. We relied on a
10-fold cross validation on the manual labeled golden set
as described in Section II-C1. As we can observe from the
average results reported in Table III, all the evaluation metrics
have values higher than 0.8 and 0.9 for the Feature & UI Bugs
and Crashes sub-categories, respectively. Despite such already
accurate classification results, we plan as future work to label
more reviews and extend the training set in order to provide
more robust and generalizable ML models.

LLT Description. Table IV shows the categories of feedback
describing app crashes resulting from the manual analysis



of the 534 reviews selected as explained in Section II-C1.
It reports also the numbers of feedback for every category.
It is worth to notice that a reviews might have more than
one assigned label. As is obvious, Not Meaningful and Wrong
cannot be used or are not relevant for the conducted research.
Specifically, the first one groups user reviews that discuss
crashes, but do not provide any fruitful additional information
to understand the cause of it (e.g., “It crashes!”) The latter
instead collects all the reviews that were misclassified from
the top-level taxonomy, according to the manual analysis.
Feature category involves the reviews that discuss a crash of
the application while using a specific feature of the applica-
tion, as well the crashes that occurs while moving between
activities. Following, two examples that fall in this category.

“I try to scan and IBSN # the app crashes”.
“When I try to open links on a page using open a new tab thing

crashes”.

Resource Management involves every problem connected to
the access of a resource, like the load, the upload or the refresh.
This category counts also feedback that refers to situation
where the crash of the application might occur only where the
application itself is handling a considerable amount of data.
The following is a review in our dataset that depicts such a
situation:

“Crashes Every Time on large messages Used to be good but it
can’t handle large emails any more. Will they ever fix it?”.

Instead, the Update category groups the reviews claiming
about crashes popping up especially after an app update.
Finally, the Android branch refers to crashes that might depend
more on the system than from the app itself. It is worth to
notice that a review could be classified/assigned to more than
one category of the taxonomy. Such LLT is used to investigate
in RQ2 which kind of problems are most likely to be detected
only trough user reviews (see analysis in Section III-B).

B. RQ2 - How complementary is user feedback information
with respect to the outcomes of automated testing tools?

As explained in Section II-C2, to answer this research question
we firstly perform a quantitative analysis to assess the overlap
between the crashes detected by the tools and the ones claimed
into reviews. Afterwards, we conduct a qualitative analysis to
deeper investigate the reasons of such discrepancies.

Quantitative Analysis.
In order to measure the complementarity between tools and
reviews, we rely on the overlap metrics described in Section
II-C2. Table V reports the value of such metrics along with
the counts of the crashes from each source. We can observe
as the average percentage of the crashes solely described in
the user reviews (IR) is almost 62%, while the percentage of
the crashes that can be observed in both sources (IS) is 22%.
Finally, the percentage of crashes only detected by testing tools
(IC) is just 16%. Thus, our first finding is summarized as
follow.

TABLE IV
LOW LEVEL TAXONOMY

Category Description #

Feature a crash that occurs while trying to use a feature
of the app

328

Resource Manage-
ment

problems due to a resource access (loading, up-
loading, download, refresh)

195

Update problems that pop up after an update 67
Android problems relevant to the Android framework or

with the interaction with native apps
15

Not Meaningful everything that describe a crash but useless or
unclear

96

Wrong reviews misclassified and not belonging to the
HLT

16

Finding 1: The number of crashes solely detected by users is
higher than the one identified by automated testing tools.

Qualitative Analysis. To better understand the results de-
scribed above, three of the authors performed a qualitative
analysis on the links manually established by the external eval-
uator (as described in Section II-C2), with the aim to deeper
understand the reasons that prevent for a crash claimed in a
review to be revealed as well by the testing tools. We following
report some of the most interesting cases encountered. As
general a result, we noticed that tools miss to detect failures
both when a login or an account creation is required and
when a complex sequence of inputs need to be executed. For
instance, in the com.amaze.filemanager app the testing
tools were able to collect 7 distinct stack traces, all of them
pretty well distinguishable from each other. Our evaluator
was able to find links to reviews for 3 out of such 7 stack
traces. Reading the user reviews for this app, it immediately
comes out that most of the non-linked ones, i.e., crashes likely
not revealed by the tools, involved complex sequences of
connected input actions, like copying or cut/paste. Thus, one
limitation of current tools is that they are not able to detect
problem caused by such complex user behavioral patterns.
For the app com.danvelazsco.fbwrapper, we were
able to collect 4 distinct kind of stack traces. In this case, our
validator was able to retrieve links for 3 of such 4 crashes.
However, in the available set of user reviews we noticed
that several descriptions of crashes occurred when using the
message functionality of the app. Nevertheless, such problem
was not detected at all by the automated testing tools. For this
reason, one of the authors tested manually such a feature. It is
worth to specify that this application is a Facebook wrapper.
Therefore, while some components of the app could be used
without be logged in, a large part of its functionalities can
be properly tested only after performing a login with a valid
account. Unfortunately, such prerequisite was not fulfilled by
the automated testing tools. Thus, the author logged into
the app with his account and tried to manually reproduce
the scenarios described in the reviews that led to the crash
while using the messaging feature. Using the monitor tool
provided with the Android SDK, she discovered that the app



TABLE V
COMPLEMENTARITY OF REVIEWS AND STACK TRACES

App IC IR IS L S R T

com.amaze.filemanager 13.6% 68.2% 18.2% 3 4 15 22
con.danvelazco.fbwrapper 23.1% 69.2% 7.7% 3 1 9 13
con.ringdroid 7.1% 71.4% 21.4% 1 3 10 14
com.eleybourn.bookcatalogue 50.0% 50.0% 0.0% 1 0 1 2
com.evancharlton.mileage 11.1% 77.8% 11.1% 1 1 7 9
com.fsck.k9 0.0% 92.3% 7.7% 0 1 12 13
cri.sanity 0.0% 50.0% 50.0% 0 1 1 2
org.liberty.android.fantastischmemo 20.0% 20.0% 60.0% 1 3 1 5

Average 16% 62% 22%

effectively crashes, without useful hints about the cause of
crash in the stack traces (that is reported in [4]).
For the com.ringdroid app, the tools extracted 4 distinct
stack traces. It is worth to notice that such stack traces do not
differ too much from each other. Indeed, all of them report a
StaleDataException. Our external validator linked just
one failure to a review. While analyzing the reviews for which
there are no links to crashes reported in stack traces, we
discovered two interesting findings. At first, a set of reviews
for this app discuss about a crash that sometimes occurs when
editing or saving a new track. However, such problems was
not recognizable in any of the available stack traces. Thus,
one of the authors replicated some scenarios described in the
reviews and was able to capture the following exception.

java.lang.NullPointerException

at com.ringdroid.RingdroidEditActivity$15.run(RingdroidActivity.

java:1268)

She discovered that such exception is raised when the user
use the edit feature of a track and then try to rename it.
Continuing with such analysis, we noticed that some reviews
claimed crashes experienced while trying to delete a track.
Again, there was no sign of such failure in the collected stack
traces. By exercising such feature, we discovered that the app
actually forced closing in such situation. However, also in this
case there is not any raised unhandled exception reported by
the Android monitor employed for this analysis.
At the bottom of this analysis we found that the crashes
that are described only in user reviews tend to follow a
certain pattern. In particular, in this category we often find
crashes that occur after a precise sequence of input event,
which are hard to randomly replicate by automated tools.
Examples are the cut/paste feature we described for the
com.amaze.filemanager app or the ones observed for
com.danvelazsco.fbwrapper when using the messag-
ing feature: another example is the review below, which claims
about a crash occurring during a particular swipe input event:

“Quick fix for messages crash Slide in from the right go to
preferences and use either desktop version or basic version...”

Similarly, situation of overload of an application are difficult
to catch for testing tools. For instance, in com.ringdroid
an user claim that a particular crash could be due to his large
library usage:

Fig. 2. Distribution of not-linked reviews in LLT

“Force closes when I search Maybe the problem is my large library
but it truly is unusable...”

To broad our analysis we show in Figure 2 the absolute
numbers—discerning between main and secondary labels—of
the not-linked reviews for the LLT categories. We can observe
that feature and resource management are the most represented
ones. However, it is interesting to notice that reviews tend to
be a noisy source of information: the third more occurring
category indeed is the not meaningful one (e.g., “It crashes”).
Thus, we can conclude that:

Finding 2: Testing tools potentially miss several failures experi-
enced by users. Such failures are hardly replicable sequences of
events or external conditions. Moreover, in many cases crashes
information provided in the stack trace are useless or totally not
available to understand the root cause of the fault.

We believe that such results highlight the need of novel
recommender systems able to distill the actionable informa-
tion provided in both user reviews and mobile testing tools,
providing to developers contextual information of a wider (or
more complete) set of bugs present in their applications.

C. RQ3 - To what extent can we automatically link the crash-
related information reported in both user feedback and testing
tools?

Table VI reports the performance achieved by the three
different baselines experimented to link user reviews onto
crash reports, i.e., the ones relying on (ii) the Dice similarity
coefficient [14], (ii) the Jaccard index [22], and (iii) the Vector
Space Model (VSM) [5]. It is worth to note that for two of
the considered apps the golden set of links was empty, thus
we could not evaluate precision and recall.
Looking at the results, it is clear that the technique based on
the Dice coefficient was the one having the best performance
over all the mobile apps of our study, with an average precision
of 82% and a recall of 75% (F1 Score = 78%). Thus, we could
confirm previous findings showing that such an index provides



TABLE VI
PERFORMANCE OF THE EXPERIMENTED LINKING APPROACHES (RECALL AND F1 SCORE ARE COMPUTED ONLY FOR THREE OF THE SUBJECT APPS)

App Dice Linking Jaccard Linking VSM Linking
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

com.amaze.filemanager 67% 57% 62% 50% 43% 46% 22% 29% 25%
com.danvelazsco.fbwrapper 62% 68% 65% 68% 48% 56% 54% 40% 46%
com.ringdroid 64% 60% 62% 56% 47% 51% 55% 45% 50%
com.eleybourn.bookcatalogue 100% 66% 80% 100% 34% 50% 0% 0% 0%
com.evancharlton.mileage 100% 100% 100% 100% 100% 100% 100% 100% 100%
org.liberty.android.fantastischmemo 100% 100% 100% 100% 100% 100% 100% 100% 100%
cri.sanity - - - - - - - - -
com.fsck.k9 - - - - - - - - -
Average 82% 75% 78% 79% 62% 70% 55% 52% 54%

better insights when comparing user reviews and technical
documentation [38]: likely, this is due to the fact that it is more
suitable for texts composed of few words. Indeed, it weights
the number of common terms between two documents with
the number of terms composing the shorter document, thus
giving more importance to the number of overlapping terms
rather than the total number of terms composing the documents
[14]. As a result, this characteristic seems to be highly relevant
in the context of user reviews (which are usually composed
by few meaningful words) because in this way they can be
compared with technical documentation such as crash reports.

From a more general point of view, it is also worth noting
that the average recall value tells us that other correct links
cannot be identified by just relying on a Dice-based technique.
While on the one hand this result was somehow expected
since we are treating types of documents deeply different from
each other (i.e., informal and noisy user reviews vs formal
and well-structured crash reports), on the other hand we can
claim that more sophisticated approaches (e.g., relying on
clustering of user reviews [38], [48] and/or a proper adoption
of other textual-based techniques such ad LDA [7], [40])
might be useful to improve the linking capabilities of our
methodology and better supporting developers maintenance
and testing decisions.

Turning our attention to the other experimented techniques,
we could observe that the Jaccard-based one has a precision
comparable to the Dice-based approach, however it has a
recall value 13% lower. This result confirms that taking into
consideration all the terms composing user reviews and crash
reports is not the ideal way to find relationships between them.

Finally, the results achieved when using the Vector Space
Model were somehow surprising. Indeed, according to Bordag
[8] this technique is supposed to work better than the others
since it is able to capture semantic relationships that go beyond
the mere use of terms overlap. However, in the context of user
reviews simpler string-matching approaches tend to be more
effective. This is particularly true when considering the recall
value, which just reached 54%. On the light of these results,
we could conclude that:

Finding 3: It is possible to provide developers with an automated
tool for linking crash-related user reviews and stack traces having
an average precision and recall of 82% and 75%, respectively.
The best approach is the Dice similarity coefficient since it gives
a higher importance to overlapping terms rather than the total
number of terms composing the treated documents.

Thus, an approach based on Dice similarity coefficient can
(i) enable the identification of crashes that are detected by
both automated tools and user reviews, (ii) discriminating the
crashes that are detected only by automated tools or only by
user reviews information. This information is highly important
for developers and testers of mobile applications.

IV. THREATS TO VALIDITY

Threats to Construct Validity. The main threat to internal
validity in our first research question regards the assessment
of the high- and low-level taxonomies which is performed
on data provided by human subjects. Indeed, there is a level
of subjectivity in deciding whether a user feedback belongs
to a specific category of the taxonomy or not. To counteract
this issue, the first taxonomy was initially defined by a
Master student having two years of experience in mobile
development: since she might have committed errors during
the process, one of the paper’s authors double-checked each
review removing potential redundant categories. As for the
low-level one, we conducted an iterative content analysis,
where three researchers (i) firstly independently categorize
user reviews and (ii) then reached a joint decision by merging
the categories identified in the first iteration. Similarly, in RQ2

we exploited the linking provided by an external inspector
having experience in Android development. Also in this case,
one of the authors double-checked each provided link to verify
potential errors. To automatically classify the categories in
the high-level taxonomy, we devised a ML approach. Indeed,
we tested different classifiers in order to rely on the most
effective one. It is worth discussing that we relied on the
default configurations of the experimented classifiers since the
identification of the best configuration for all of them would
have been too expensive [6]. As part of our future work, we
plan to analyze the role of parameters’ configuration. It is



worth recalling that to have a wide overview of the extent
to which an automated solution might support developers in
monitoring crash-related user reviews and crash reports, we
experimented three textual-based linking approaches such as
(i) the Dice similarity coefficient [14], (ii) the Jaccard index
[22] and (iii) the Vector Space Model (VSM) [5]. Future
effort will be devoted to enlarging the set of baseline linking
approaches. Still about RQ2, it is worth to point out that
multiple user reviews might refer to the same crash. We plan
to tackle this issue in future work.
Threats to Conclusion Validity. In this category, it is worth
observing that to interpret the results of the experimented
machine learning approach as well as the linking techniques
we relied on well-known metrics such as precision, recall,
and F1 Score [5]. Furthermore, we supported our findings by
performing fine-grained qualitative investigations with the aim
of understanding the motivations behind the achieved results.
Threats to External Validity. About threats to the gen-
eralizability of our findings, our study focused on 8 apps
having different size and scope. However, we cannot ensure
generalizability to other apps. At the same time, it is worth
recalling that the analysis required a lot of manual effort and
therefore we were not able to work on a larger sample. As
part of our future agenda, we plan to extend the dataset.

V. RELATED WORK

In the following, we summarize the main research on (i)
automated testing tools for Android apps, and on (ii) mining
user reviews from app stores to support maintenance of mobile
applications.

A. Automated Android Testing

Automated testing tools can be grouped into three major
categories, depending on their exploration strategy [12]: ran-
dom [17], [27], systematic [28], [33] and model-based [2],
[11], [26]. The former employs a random generation of UI
and system events which reveals many failures, but it is
highly inefficient since it creates too many of such events
[12]. The most widely used random tool is MONKEY [17],
coming directly provided by Google. Tools using a systematic
explorations strategy rely on symbolic execution and evolu-
tionary algorithms [12]. CRASHSCOPE was the first attempt
to augment the crash reports with information useful for
its reproduction [33]. SAPIENZ introduced a multi-objective
search-based technique to both maximize coverage and fault
revelation, while minimizing the sequence lengths [29]. We
use SAPIENZ [29] and MONKEY [17] as main baseline for
the reasons we reported in Section II-B. Su et al. proposed
STOAT, a novel approach that rely on a stochastic model
of the app continuously adapted using the Gibbs sampling
technique. Recent work on testing of mobile apps are related
to the introduction of crowdsourced testing solutions [51];
approaches that record user-guided app executions to com-
plement automated testing techniques [25]; or solutions that
generate relevant inputs to unmodified Android apps [27].
To the best of our knowledge this paper represents the first

work that propose to leverage information available in user
reviews—that previous work showed as effective for mainte-
nance and evolution problems—to identify the main issues
users experience while using mobile apps, complementing
state-of-art approaches for automating their testing process.

B. Mining App Stores

The concept of app store mining was first introduced by
Harman et al. [20]. In this context, many researchers focused
on the analysis of user reviews to support the maintenance
and evolution of mobile applications [31]. Pagano et al. [37]
analyzed the feedback content and their impact on the user
community, while Khalid et al. [24] conducted a study on
iOS apps discovering 12 types of user complaints posted
in reviews. Several approaches have been proposed with the
aim to classify useful reviews. AR-MINER [10] was the
first one able to discern informative reviews. Panichella et
al. relied on a mixture of natural language processing, text
and sentiment analysis in order to automatically classify user
reviews [41], [42]. Gu and Kim [19] proposed an approach that
summarizes sentiments and opinions of reviews and classifies
them according to 5 predefined classes (aspect evaluation, bug
reports, feature requests, praise and others). Ciurumelea et al.
[13] employed machine learning techniques for the automatic
categorization of user reviews on a two level taxonomy.
Following the general idea to incorporate user feedback into
typical development process, Di Sorbo et al. [45], [46] and
Scalabrino et al. [43], [48] proposed SURF and CLAP,
two approaches aimed at recommending the most important
reviews to take into account while planning a new release of
a mobile application. Finally, Palomba et al. [38] proposed
CHANGEADVISOR, a tool able to suggest the source code
artifacts to maintain according to user feedback.

VI. CONCLUSIONS & FUTURE WORK

In this paper we investigated the possibility to automatically
integrate user feedback into the Android testing process. Re-
sults confirm the high usefulness of user reviews information
for the testing process of mobile apps as it helps to (i) com-
plement the capabilities of such testing tools, by identifying
bugs that they cannot reveal and (ii) facilitating the diagnosis
of bugs or crashes. Moreover, we proposed an automated
approach able to link user reviews to stack traces that showed
high accuracy. Those results, together with our qualitative
analysis, show how support testing process with the integration
of user feedback is highly promising. We believe that our work
might pave the way for a user-oriented testing, where user
feedback is systematically integrated into the testing process.
As future direction of this work we envision the definition
of a tool able to (i) summarize stack traces and user reviews
linked together, supporting the bug fixing activities performed
by developers, (ii) prioritize the generated failures taking into
account the user feedback and (iii) generate test cases that are
directly elicited from user reviews.
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