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Abstract—Code smells are symptoms of poor design and im-
plementation choices weighing heavily on the quality of produced
source code. During the last decades several code smell detection
tools have been proposed. However, the literature shows that the
results of these tools can be subjective and are intrinsically tied
to the nature and approach of the detection. In a recent work
Arcelli Fontana et al. [1] proposed the use of Machine-Learning
(ML) techniques for code smell detection, possibly solving the
issue of tool subjectivity giving to a learner the ability to discern
between smelly and non-smelly source code elements. While this
work opened a new perspective for code smell detection, in the
context of our research we found a number of possible limitations
that might threaten the results of this study. The most important
issue is related to the metric distribution of smelly instances in
the used dataset, which is strongly different than the one of non-
smelly instances. In this work, we investigate this issue and our
findings show that the high performance achieved in the study
by Arcelli Fontana et al. was in fact due to the specific dataset
employed rather than the actual capabilities of machine-learning
techniques for code smell detection.

Index Terms—Code Smells; Machine Learning; Empirical
Studies; Replication Study;

I. INTRODUCTION

Nowadays, the complexity of software systems is growing
fast and software companies are required to continuously
update their source code [2]. Those continuous changes
frequently occur under time pressure and lead developers to
set aside good programming practices and principles in order
to deliver the most appropriate but still immature product
in the shortest time possible [3]–[5]. This process can often
result in the introduction of so-called technical debt [6], design
problems likely to have negative consequences during the
system maintenance and evolution.

One of the symptoms of the technical debt are code
smells [7], suboptimal design decisions applied by developers
that can negatively affect the overall maintainability of a
software system. Over the last decade, the research community
heavily investigated (i) how code smells are introduced [8],
[9], (ii) how they evolve [10]–[13], (iii) what is their effect on
program comprehension [14], [15] as well as on the change-
and bug-proneness of the affected source code elements [16],
[17], and (iv) the perception and ability of developers to deal
with them [18]–[20].

Moreover, several code smell detectors have been pro-
posed [21], [22]: the detectors mainly differ in the underlying
algorithm (e.g., metric-based [23]–[26] vs search-based tech-

niques [27], [28]) and for the specific metric types considered
(e.g., product metrics [23], [24] vs process metrics [26]).

Despite the good performance shown by the detectors, recent
studies highlight a number of important limitations threatening
adoption of the detectors in practice [21], [29]. In the first
place, code smells detected by existing approaches can be
subjectively perceived and interpreted by developers [30], [31].
Secondly, the agreement between the detectors is low [32],
meaning that different tools can identify the smelliness of
different code elements. Last, but not least, most of the current
detectors require the specification of thresholds that allow
them to distinguish smelly and non-smelly instances [21]: as a
consequence, the selection of thresholds strongly influence the
detectors’ performance.

To overcome these limitations, machine-learning (ML)
techniques are being adopted to detect code smells [1]. Usually
a supervised method is exploited, i.e., a set of independent
variables (a.k.a. predictors) are used to determine the value
of a dependent variable (i.e., presence of a smell or degree of
the smelliness of a code element) using a machine-learning
classifier (e.g., Logistic Regression [33]).

In order to empirically assess the actual capabilities of
ML techniques for code smell detection, Arcelli Fontana et
al. [1] conducted a large-scale study where 32 different ML
algorithms were applied to detect four code smell types, i.e.,
Data Class, Large Class, Feature Envy and Long Method. The
authors reported that most of the classifiers exceeded 95%
both in terms of accuracy and of F-Measure, with J48 and
RANDOM FOREST obtaining the best performance. The authors
see in these results an indication that “using machine learning
algorithms for code smell detection is an appropriate approach”
and that “performances are already so good that we think
it does not really matter in practice what machine learning
algorithm one chooses for code smell detection” [1].

In our research, we have observed important limitations
of the work by Arcelli Fontana et al. [1] that might affect
the generalizability of their findings. Specifically, the high
performance reported might be due to the way the dataset
was constructed: for each type of code smell analyzed, the
dataset contains only instances affected by this type of smell
or non-smelly instances, with a non-realistic balance of smelly
and non-smelly instances [8], [30] and a strongly different
distribution of the metrics between the two groups of instances,
which is far from reality.

In this paper, we propose a replicated study on the usage of



ML techniques for code smell detection that aims at addressing
the issue related to the metric distribution of smelly and non-
smelly elements exploited in the work by Arcelli Fontana et
al. [1]. For this reason, we first statistically analyze the metric
distribution of smelly and non-smelly code elements; then we
replicate the study conducted by Arcelli Fontana et al. [1]
on a different dataset containing code elements affected by
different types of code smells, with a less balanced distribution
of smelly and non-smelly instances and with a more smoothed
boundary between the metrics distributions of the two groups
of instances, thus depicting a more realistic scenario.

Our results show that the high performance achieved by
Arcelli Fontana et al. [1] can be attributed to the dataset
exploited, rather than to the real capabilities of prediction
models. Indeed, we found the metric distributions of smelly
and non-smelly elements in the dataset used by Arcelli Fontana
et al. to be very different. When testing code smell prediction
models on the revised dataset, we noticed that they are up to
90% less accurate in terms of F-Measure than those reported
by Arcelli Fontana et al. [1].

Our findings have important implications for the research
community: the problem of detecting code smells through
the adoption of ML techniques is far from being solved, and
therefore more research is needed to devise proper tools for
software engineers.

Structure of the paper. Section II discusses the related
literature. Section III describes the reference work and its
limitations. Section IV reports the overall methodology adopted.
In Section V we report the design and results of the study
aimed at analyzing the metric distribution of smelly and non-
smelly elements in the dataset used in the reference work,
while Section VI discusses how we replicated the reference
study and what are the achieved results. Section VII reports
possible threats affecting our findings and how we mitigated
them. Finally, Section VIII concludes the paper and outlines
our future research agenda.

II. RELATED WORK

The problem of detecting code smells [7] in source code has
attracted the attention of several researchers over the recent
years [21]. The research literature can be roughly divided in
two main groups: on the one hand, empirical studies have
been performed with the aim of understanding code smell
evolution [8]–[13], [34], their perception [18], [19], [35]–[37],
as well as their impact on non-functional properties of source
code [14]–[17], [38]–[40]. On the other hand, several detection
approaches have been devised: most of them rely on the analysis
of structural information extractable from the source code [23]–
[25], [41], while a recent trend is concerned with the analysis
of alternative sources of information [26], [42], [43] or the
usage of search-based software engineering methods [27], [28],
[44], [45]. In the context of this paper we mainly focused on
supervised methods for the detection of design flaws. Thus,
in this section we discuss papers leveraging machine-learning
models to identify design flaws.

Kreimer [46] originally proposed the use of decision trees
for the detection of the Blob and Long Method code smells on
two small-scale software systems, finding that such a prediction
model can lead to high values of accuracy. The findings were
then confirmed by Amorin et al. [47], who tested decision
trees over four medium-scale open-source projects. Later on,
Vaucher et al. [48] relied on a Naive Bayes technique to track
the evolution of the Blob smell, while Maiga et al. [49], [50]
devised a SVM approach for the incremental detection of the
same smell which is able to reach a F-Measure of ≈80%.

Khomh et al. [51], [52] proposed the use of Bayesian
Belief Networks to detect Blob, Functional Decomposition, and
Spaghetti Code instances on open-source programs, finding
an overall F-Measure close to 60%. Following this direction,
Hassaine et al. [53] defined an immune-inspired approach for
the detection of Blob smells, while Oliveto et al. [54] relied on
B-Splines for understanding the “signatures” of code smells and
training a machine learner for detecting them. More recently,
machine-learning techniques have been also adapted for the
detection of a specific type of code smell, i.e., the Duplicated
Code (a.k.a, code clones) [55]–[57].

Arcelli Fontana et al. [1], [58], [59] provided the most
relevant advances in this field: in the first place, they theorized
that the use of machine-learning might have lead to a more
objective evaluation of the harmfulness of code smells [58].
Furthermore, they provided a machine-learning method for
the assessment of code smell intensity, i.e., the severity of
a code smell instance perceived by developers [59]. Finally,
they empirically benchmarked a set of 16 machine-learning
techniques for the detection of four code smell types [1]: they
performed their analyses over 74 software systems belonging
to the Qualitas Corpus dataset [60]. This is clearly the
reference work for our study. In their study, they found that all
the machine learners experimented achieved high performance
in a cross-project scenario, with the J48 and RANDOM
FOREST classifiers obtaining the highest accuracy. Perhaps
more importantly, they discovered that a hundred training
examples are enough for reaching at least 95% accuracy.

Our study aims at addressing one of the limitations of this
work, to understand whether the problem of detecting code
smells using ML techniques can be actually considered solved.

III. THE REFERENCE WORK

The reference work of our replication is the one by Arcelli
Fontana et al. [1]. The authors analyze three main aspects
related to the use of machine-learning algorithms for code
smell detection: (i) performance of a set of classifiers over
a sample of the total instances contained in the dataset, (ii)
analysis of the minimum training set size needed to accurately
detect code smells, and (iii) analysis of the number of code
smells detected by different classifiers over the entire dataset.

In this paper, we focus on the first research question of
the reference work. As discussed later in this section, we
have identified important limitations that might have led to
biased results. In the following subsections we detail the
methodological process adopted by Arcelli Fontana et al. [1].



A. Context Selection

The context of the study by Arcelli Fontana et al. was
composed of software systems and code smells.

The authors have analyzed systems from the Qualitas
Corpus [60], release 20120401r, one of the largest curated
benchmark datasets to date, specially designed for empirical
software engineering research. Among 111 Java systems of the
corpus, 37 were discarded because they could not be compiled
and therefore code smell detection could be applied. Hence,
the authors focused on the remaining 74 systems.

For each system 61 source code metrics were computed at
class level and 82—at method level. The former were used by
Arcelli Fontana et al. as independent variables for predicting
class-level smells Data Class and God Class, the latter for
predicting method-level smells Feature Envy and Long Method:

1) God Class. It arises when a source code class implements
more than one responsibility; it is usually characterized by
a large number of attributes and methods, and has several
dependencies with other classes of the system;

2) Data Class. This smell refers to classes that store data
without providing complex functionalities;

3) Feature Envy. This is a method-level code smell that
appears when a method uses much more data than another
class with respect to the one it is actually in;

4) Long Method. It represents a large method that implements
more than one function;

The choice of these smells is due to the fact that they capture
different design issues, e.g., large classes or misplaced methods.

B. Machine-learning Techniques Experimented

Arcelli Fontana et al. [1] evaluated six basic ML techniques:
J48 [61], JRIP [62], RANDOM FOREST [63], NAIVE BAYES
[64], SMO [65], and LIBSVM [66]. As for J48, the three
types of pruning techniques available in WEKA [67] were
used, SMO was based on two kernels (e.g., POLYNOMIAL
and RBF), while for LIBSVM eight different configurations,
using C-SVC and V-SVC, were used. Thus, in total Arcelli
Fontana et al. [1] have evaluated 16 different ML techniques.
Moreover, the eight ML techniques were also combined with
the ADABOOSTM1 boosting technique [68], i.e., a method
that iteratively uses a set of models built in previous iterations
to manipulate the training set and make it more suitable for
the classification problem [69], leading to 32 different variants.

An important step for an effective construction of machine-
learning models consists in the identification of the best
configuration of parameters [70]: the authors applied to each
classifier the Grid-search algorithm [71], capable of exploring
the parameter space to find an optimal configuration.

C. Dataset Building

To establish the dependent variable for code smell prediction
models, the authors applied for each code smell the set of
automatic detectors shown in Table I. However, code smell
detectors cannot usually achieve 100% recall, meaning that
an automatic detection process might not identify actual code
smell instances (i.e., false positives) even in the case that

Table I
DETECTORS CONSIDERED FOR BUILDING A CODE SMELL DATASET.

Code Smell Detectors
God Class iPlasma, PMD
Data Class iPlasma, Fluid Tool, Antipattern Scanner
Feature Envy iPlasma, Fluid Tool
Long Method iPlasma, PMD, Marinescu [23]

multiple detectors are combined. To cope with false positives
and to increase their confidence in validity of the dependent
variable, Arcelli Fontana et al. [1] applied a stratified random
sampling of the classes/methods of the considered systems:
this sampling produced 1,986 instances (826 smelly elements
and 1,160 non-smelly ones), which were manually validated
by the authors in order to verify the results of the detectors.

As a final step, the sampled dataset was normalized for
size: the authors randomly removed smelly and non-smelly
elements building four disjoint datasets, i.e., one for each code
smell type, composed of 140 smelly instances and 280 non-
smelly ones (for a total of 420 elements). These four datasets
represented the training set for the ML techniques above.

D. Validation Methodology

To test the performance of the different code smell prediction
models built, Arcelli Fontana et al. [1] applied ten-fold cross
validation [72]: each of the four datasets was randomly
partitioned in ten folds of equal size, such that each fold
has the same proportion of smelly elements. A single fold was
retained as test set, while the remaining ones were used to
train the ML models. The process was then repeated ten times,
using each time a different fold as the test set. Finally, the
performance of the models was assessed using mean accuracy,
F-Measure, and AUC-ROC [73] over the ten runs.

E. Limitations and Replication Problem Statement

The results achieved by Arcelli Fontana et al. [1] reported
that most of the classifiers have accuracy and F-Measure higher
than 95%, with J48 and RANDOM FOREST being the most
powerful ML techniques. These results seem to suggest that
the problem of code smell detection can be solved almost
perfectly through ML approaches, while other unsupervised
techniques (e.g., the ones based on detection rules [24]) only
provide suboptimal recommendations.

However, we identified possible limitations of the work by
Arcelli Fontana et al. [1] that might have threatened this view:

1) Selection of the instances in the dataset. A first factor
possibly affecting the results might be represented by the
characteristics of smelly and non-smelly instances present
in the four datasets exploited (one for each smell type):
in particular, if the metric distribution of smelly elements
is strongly different than the metric distribution of non-
smelly instances, then any ML technique might easily
distinguish the two classes. Clearly, this does not properly
represent a real-case scenario, where the boundary between
the structural characteristics of smelly and non-smelly



code components is not always clear [8], [30]. In addition,
the authors built four datasets, one for each smell. Each
dataset contained code components affected by that type
of smell or non-smelly components. This also makes the
datasets unrealistic (a software system contains different
types of smells) and might have made easier for the
classifiers to discriminate smelly components.

2) Unrealistically balanced dataset. In the reference work,
one third of the instances in the dataset was composed
of smelly elements. According to recent findings on the
diffuseness of code smells [17], software systems are
usually affected by a small percentage of code smells.
For instance, Palomba et al. [17] found that God Classes
represent less than 1% of the total classes in a software
system.

3) Biased validation methods. The authors applied the ten-
fold cross validation on a balanced dataset. The problem
raises because in this way both the training and the test
sets are balanced, thus leading the model to be exercised
and evaluated on a test set having much more smelly
instances than in reality.

4) Missing analysis of relevant features. As reported in
literature [74], building a model containing independent
variables that are highly correlated with each other might
lead to model over-fitting, leading to biased results.

Because of the points above, we argue that the capabilities of
ML techniques for code smell detection should be reevaluated.
In this paper, we start addressing this challenge by focusing
on the first two issues, i.e., instance selection in the dataset
and unrealistic dataset balancing.

IV. EMPIRICAL STUDY DEFINITION

The goal of the empirical study reported in this paper was to
analyze the sensitivity of the results achieved by our reference
work, i.e., the study by Arcelli Fontana et al. [1] with respect
to the metric distribution of smelly and non-smelly instances,
with the purpose of understanding the real capabilities of
existing prediction models in the detection of code smells.
The perspective is of both researchers and practitioners: the
former are interested in understanding possible limitations of
current approaches in order to devise better ones; the latter are
interested in evaluating the actual applicability of code smell
prediction in practice.

We pose the following research questions:
• RQ1. What is the difference in the metric distribution

of smelly and non-smelly instances in the four datasets
exploited in the reference work

• RQ2. What is the performance of ML techniques when
trained on a more realistic dataset, containing different
types of smells, with a reduced proportion of smelly
components and with a smoothed boundary between the
metric distribution of smelly and non-smelly components?

RQ1 can be considered as a preliminary analysis aimed at
assessing whether and to what extent the metric distribution

of smelly and non-smelly instances in the datasets used by
Arcelli Fontana et al. [1] is different. With RQ2 we aim at
assessing the performance of code smell prediction techniques
in a more realistic setting where the differences between smelly
and non-smelly instances are less prominent.

To enable a proper replication, the context of our study was
composed of the same dataset and code smells used by the
reference work. Thus, we took into account the 74 software
systems and the four code smells discussed in Section III.

V. RQ1—METRICS ANALYSIS

We start by comparing the distributions of metrics over
smelly and non-smelly code elements (RQ1).

A. Design

To answer this research question, we compared the dis-
tribution of the metrics representing smelly and non-smelly
instances in the dataset exploited by Arcelli Fontana et al. [1].
Given the amount of metrics composing class- and method-
level code smells, i.e., 61 and 82, respectively, an extensive
comparison would have been prohibitively expensive, other
than being not practically useful since not all the metrics
actually have an impact on the prediction of the dependent
variable [74]. For this reason, we first reduce the number of
independent variables by means of feature selection, i.e., we
consider only the metrics impacting more the prediction of
code smells. To this aim, we employed the widely-adopted
Gain Ratio Feature Evaluation algorithm [75], identifying the
features having more weight in the code smell detection. Let
M be a code smell prediction model, P = {m1, . . . ,mn}
be the set of independent variables composing M , then the
Gain Ratio Feature Evaluation algorithm [75] computes the
difference in entropy before and after the set M is split on the
metrics mi:

GainRatio(M,mi) = H(M)−H(M |mi), (1)

where H(M) indicates the entropy of the model that includes
the metric mi, H(M |mi) the entropy of the model that does
not include mi, and the entropy is computed as

H(M) = −
n∑

i=1

prob(pi) log2 prob(pi). (2)

The algorithm quantifies the extent of uncertainty in M that
was reduced after considering M without mi. The output of
the algorithm is represented by a ranked list—ranks ranging
between 0 and 1—in which the metrics having the higher
expected reduction in entropy are placed at the top, i.e., the
metrics giving more weight to the prediction are ranked first. As
cut-off point of the ranked list we selected 0.1, as recommended
by Quinlan [75]. The output of this process consisted of the
set of metrics really relevant for the prediction.

Afterwards, we compared the distribution of the metrics
representing smelly and non-smelly instances among them
using the Wilcoxon Rank Sum statistical test [76] with p-
value = 0.05 as significance threshold. Since we performed



multiple tests, we adjusted p-values using the Bonferroni-
Holm’s correction procedure [77]. The procedure firstly sorts
the p-values resulting from n tests in ascending order of values,
multiplying the smallest p-value by n, the next by n− 1, and
so on. Then, each resulting p-value is then compared with the
desired significance level (e.g., 0.05) to determine whether or
not it is statistically significant. Furthermore, we estimated the
magnitude of the observed differences using Cliff’s Delta (or d),
a non-parametric effect size measure [78] for ordinal data. To
interpret the effect size values, we follow established guidelines
[78]: small for d < 0.33 (positive as well as negative values),
medium for 0.33 ≤ d < 0.474 and large for d ≥ 0.474.

If the differences in the metric distributions of smelly and
non-smelly instances are statistically significant and with a
large effect size, then the two classes can be clearly considered
as too easy to classify for any machine-learning technique.

B. Results

Table II
DISTRIBUTION OF THE METRICS FOR SMELLY AND NON-SMELLY

INSTANCES. THE TABLE REPORTS THE WILCOXON TEST p-VALUES, ALONG
WITH CLIFF DELTA EFFECT SIZE VALUES.

N.
Data Class God Glass Feature Envy Long Method

p-value Cliff Delta p-value Cliff Delta p-value Cliff Delta p-value Cliff Delta
1 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
2 < 0.01 Small < 0.01 Large < 0.01 Large < 0.01 Large
3 < 0.01 Medium < 0.01 Large < 0.01 Small < 0.01 Large
4 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
5 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
6 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
7 < 0.01 Large < 0.01 Large 1.00 Negligible < 0.01 Large
8 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
9 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large

10 < 0.01 Large < 0.01 Large < 0.01 Large 1.00 Negligible
11 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
12 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
13 1.00 Negligible < 0.01 Large < 0.01 Large < 0.01 Large
14 1.00 Negligible < 0.01 Large < 0.01 Large < 0.01 Large
15 1.00 Negligible < 0.01 Large < 0.01 Large < 0.01 Large
16 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
17 < 0.01 Medium < 0.01 Large < 0.01 Large 1.00 Negligible
18 1.00 Negligible < 0.01 Large < 0.01 Large < 0.01 Large
19 < 0.01 Large < 0.01 Medium < 0.01 Large < 0.01 Large
20 < 0.01 Large < 0.01 Large < 0.01 Large < 0.01 Large
21 1.00 Negligible 1.00 Negligible < 0.01 Large < 0.01 Large
22 < 0.01 Large < 0.01 Large < 0.01 Medium < 0.01 Large
23 1.00 Negligible < 0.01 Medium < 0.01 Medium < 0.01 Large
24 0.69 Small < 0.01 Large < 0.01 Small < 0.01 Large
25 1.00 Negligible < 0.01 Large < 0.01 Small < 0.01 Large
26 < 0.01 Medium < 0.01 Large < 0.01 Small < 0.01 Large
27 < 0.01 Small < 0.01 Large - - < 0.01 Large
28 < 0.01 Medium < 0.01 Large - - < 0.01 Medium
29 < 0.01 Medium < 0.01 Large - - < 0.01 Medium
30 < 0.01 Small < 0.01 Large - - < 0.01 Medium
31 < 0.01 Small < 0.01 Large - - < 0.01 Medium
32 < 0.01 Medium < 0.01 Large - - < 0.01 Medium
33 < 0.01 Small < 0.01 Large - - < 0.01 Medium
34 < 0.01 Medium < 0.01 Small - - < 0.01 Large
35 - - < 0.01 Medium - - - -
36 - - < 0.01 Small - - - -

Table II reports the comparison of the metric distribution of
smelly and non-smelly instances. For sake of readability, we
avoid adding the complete metric names in the table. However,
our online appendix contains the information about the relevant
metrics for each dataset. It is important to note that the feature
selection process detected approximatively one third of the
total features as relevant: this actually means that most of
the metrics present in the original dataset did not impact the
prediction of code smells, but rather than might have caused
overfitting of the model.

It is possible to notice that in most cases the differences
between the distributions are statistically significant. Analyzing

Data Class, we can notice that in 26 of 34 considered metrics
there is a significant difference (14 with Large effect size).
Moreover looking at the first 10 features in terms of GainRatio,
we can notice that in 8 out 10 case there is a Large effect size.

More evident results are observable when analyzing God
Class. In this case, 35 out of 36 metrics distributions are
statistically different (p-value < 0.05). In particular, in 29 cases
the distributions are different with a Large effect size, while
in 3 cases the effect size is medium.

Analyzing the method-level code smells (e.g., Feature Envy
and Long Method), we can notice similar results. Indeed, in
the first case, 96% of the metrics distributions filtered with
GainRatio are statistically different (73% with Large effect
size), while in the second case, 94% of metrics distributions
are statistically different (74% with Large effect size).

These results demonstrate that smelly and non-smelly
instances selected in the original dataset are clearly different.
Hence, the selected instances could lead to overestimate the
performances of machine learning techniques in the context of
bad smell prediction.

Summary for RQ1. Metrics distribution between smelly
and non-smelly instances is different in most cases with
Large effect size. The selection of the instances could
lead to overestimate the performances of machine learn-
ing techniques in the context of bad smell prediction.

VI. RQ2—REPLICATION STUDY

Based on the results of our RQ1, we decided to modify
the dataset in order to have (i) a less strong difference in the
metrics distribution, (ii) a less balanced dataset between smelly
and non-smelly instances, and (iii) different types of smells in
the same dataset so that we can model a more realistic scenario
[17].

A. Design

To answer our second research question, we replicated the
reference study after setting up the original dataset. Specifically,
we designed our replication in two steps, described below.

Dataset Setup. In RQ1, we found that the two sets of
elements to predict, i.e., smelly and non-smelly ones, are
almost totally disjoint from a statistical point of view and
hence any machine-learning approach can be expected to easily
discriminate them. To verify the actual capabilities of the code
smell prediction models experimented in the reference study,
we built a dataset closer to reality by merging the instances
contained in the four original datasets and replicated the study
by Arcelli Fontana et al. [1] on such a new dataset. In this
way, we created a new dataset including source code elements
affected by different smells, thus generating a more realistic
scenario in which different code elements having a similar
metric profile are affected by different design issues.

To this aim, we firstly merged the datasets regarding God
Class and Data Class for class-level code smells and secondly
the ones related to Feature Envy and Long Method for method-
level ones. Afterwards, we duplicated the datasets so that we



could have (i) two class-level datasets in which the dependent
variable was represented by the presence of God Class or Data
Class, respectively, and (ii) two method-level datasets having
as dependent variables the presence of Feature Envy or Long
Method, respectively.

Replicating the study. Once we had created the four
datasets, we performed exactly the same experiment as done
in the reference work, thus using the same machine-learners
configured in the same way. Finally, to measure the performance
of the different machine-learning algorithms and compare them
with the one achieved by Arcelli Fontana et al. [1], we computed
the mean accuracy, F-Measure, and AUC-ROC achieved over
10 runs, as done in the reference work.
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Figure 1. Data Class: Bar charts of Accuracy, F-Measure, and AUC-ROC
achieved by the methods under study on the dataset we created.
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Figure 2. God Class: Bar charts of Accuracy, F-Measure, and AUC-ROC
achieved by the methods under study on the dataset we created.

B. Results

Before discussing the results of this research question, it is
important to note that we replicated the statistical analyses made
in RQ1 on the merged dataset we created. We reported the
detailed results in our online appendix [79], however we found
that in our datasets smelly and non-smelly elements were much
less different in terms of metric distribution than the original
dataset: most of the differences between the distributions of
smelly and non-smelly elements are not statistically significant
or have a small/negligible effect size.

Figures 1 to 4 show the performance of the code smell
prediction models experimented on the merged datasets we
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Figure 3. Feature Envy: Bar charts of Accuracy, F-Measure, and AUC-ROC
achieved by the methods under study on the dataset we created.

created. For sake of space limitations, we made available the
fine-grained results in our online appendix [79]. Note that due
to computational reasons, in our experiment we limited the
execution time to 10 minutes: N/A values in the figures indicate
that a certain classifier did not complete the computation in
the given time slot. Moreover, we could not run the nu-based
VSM models because (i) the default parameter set in Weka
was too high to allow the model to complete the execution in
the considered time slot and (ii) the parameter values assigned
by Arcelli Fontana et al. [1] was not specified.

As a first point of discussion, we noticed that the accuracy
of all the models is still noticeable high when compared to
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Figure 4. Long Method: Bar charts of Accuracy, F-Measure, and AUC-ROC
achieved by the methods under study on the dataset we created.

the results of the reference study (on average, 76% vs 96%):
this is mainly due to the characteristics of the accuracy metric,
which takes into account the ability of a model to classify true
negative instances, possibly leading to a misinterpretation of
the performance a prediction model [80]. It is worth noting
that non-smelly elements in each dataset are 5/6 of the total
instances (whereas in the datasets by Arcelli Fontana et al.
they were 2/3 of the instances).

However, the F-Measure tells a different story. Indeed, the
results are 90% lower than in the reference work (e.g., Random
Forest), indicating that the models were not actually able to
properly classify the smelliness of the analyzed code elements.



This result holds for all the code smell types considered, thus
confirming that the high performance achieved by Arcelli
Fontana et al. [1] was due to the dataset selection rather than
to the real capabilities of the experimented models.

The best performance (for all the smells) is achieved by
the tree-based classifiers, i.e., RANDOM FOREST and J48: this
confirms the results of the reference study, which highlighted
how this type of classifiers perform better than the others.

Finally, the results for AUC-ROC contrast with the ones
achieved in the reference study. While Arcelli Fontana et al.
[1] reported that basically all the classifiers had an AUC-
ROC ranging from 95% to 99%, we found that instead
the choice of the ML approach might be highly relevant
for effectively detecting code smells, thus paving the way
for a more sophisticated way to combine machine-learning
approaches for an effective detection of code smells.

Summary for RQ2. The performance of code smell
prediction models is up to 90% lower than the one
reported in the reference study. High performance
reported in the reference study can be therefore mainly
attributed to the specific dataset employed rather than
to the capabilities of ML techniques for code smell
detection.

VII. THREATS TO VALIDITY

In this section we discuss the threats that might have affected
our empirical study and how we mitigated them.

Threats to construct validity. As for potential issues related
to the relationship between theory and observation, a first dis-
cussion point regards the dataset used in the study. Specifically,
we exploited the same dataset used by Arcelli Fontana et al. [1]
in order to rely on their classification of the dependent variable
(i.e., the smelliness of source code elements), thus reducing the
bias of a different manual classification. Of course, we cannot
exclude possible imprecisions contained in the Qualitas
Corpus dataset [60], e.g., imprecisions in the computations
of the metrics for the source code elements exploited in this
study.

In the context of RQ1, before comparing the distribution
of the metrics in the dataset we applied a feature selection
algorithm named Gain Ratio Feature Evaluation. Doing this,
we did not compare all the metrics distributions, but we only
limited the analysis to the relevant ones, i.e., approximatively
one third of the total features. However, the missing extensive
comparison does not represent an issue for our results. Indeed,
the unselected features do not have an impact on the dependent
variable: even in case of negligible differences between
non-relevant metrics distributions of smelly and non-smelly
instances, this would have not affected the performance of the
experimented prediction models.

As for the experimented prediction models, we exploited the
implementation provided by the WEKA framework [67], which
is widely considered as a reliable tool. Moreover, to faithfully
replicate the empirical study by Arcelli Fontana et al. [1] we
adopted the same classifiers and their best configurations.

Threats to conclusion validity. Threats in this category
impact the relation between treatment and outcome. A first
discussion point is related to the validation methodology:
in particular, we adopted the 10-fold cross validation. We
are aware of the existence of other validation methodologies
that might possibly provide a better interpretation of the real
performance of code smell prediction models [81], however we
choose a multiple 10-fold cross validation in order to directly
compare our results with those achieved in the reference work
by Arcelli Fontana et al. [1]. Future effort will be devoted to
establish the impact of the validation technique on the results.

We are also aware of other possible confounding effects
like (i) data unbalance [82] and (ii) wrong data scaling [83].
However, we preferred replicate the reference study using the
same methodology. As part of our future work, we plan to
assess the role of such preprocessing techniques on the results
achieved.

As for the evaluation metrics adopted to interpret the
performance of the experimented models, we adopted the same
metrics as Arcelli Fontana et al. [1]. We are aware that measures
like AUC-ROC and MCC have been highly recommended by
Hall et al. [80] since they are threshold-independent. Also
in this case, we aimed at replicating as closer as possible
the reference study to demonstrate its limitation, but we plan
to investigate more in depth the performance of code smell
prediction models.

Threats to external validity. With respect to the generaliz-
ability of the findings, we took into account one of the largest
datasets publicly available, and containing 74 software projects
coming from different application domains and with different
characteristics. We are aware that our findings may and may
not be directly applicable to industrial environments, however
the replication of our study on closed-source and industrial
projects is part of our future research agenda.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this work, we presented a replicated study of the work by
Arcelli Fontana et al. [1]. We highlighted some limitations
of this study and started addressing the issue related to
the construction of the dataset, which contained smelly and
non-smelly elements clearly distinguishable for any machine
learning approach. As a result, we found that the problem of
detecting code smells using machine learning models is still
far from being solved, and therefore more research is needed
toward this direction.

As future work, we firstly plan to assess the impact of
(i) dataset size, (ii) feature selection, and (iii) validation
methodology on the results of our study. At the same, we
aim at addressing these issues, thus defining new prediction
models for code smell detection.
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