
Re-evaluating Method-Level Bug Prediction
Luca Pascarella

Delft University of Technology
The Netherlands

L.Pascarella@tudelft.nl

Fabio Palomba
University of Zurich

Switzerland
palomba@ifi.uzh.ch

Alberto Bacchelli
University of Zurich

Switzerland
bacchelli@ifi.uzh.ch

Abstract—Bug prediction is aimed at supporting developers in
the identification of code artifacts more likely to be defective.
Most approaches defined so far target the prediction of bugs at
class-level, thus pinpointing the presence of a bug in an entire
source file. Nevertheless, past research has provided evidence
that this granularity might be too coarse-grained, thus reducing
the usability of bug prediction in practice. As a consequence,
researchers have started proposing method-level bug prediction
models, showing promising evidence that it is possible to operate
at this level of granularity.

In this study, we first replicate previous research on method-
level bug prediction on different systems/timespans. Afterwards,
we reflect on the evaluation strategy and propose a more realistic
one. Key results of our study show that the performance of the
method-level bug prediction model is similar to what previously
reported also for different systems/timespans, when evaluated
with the same strategy. However—when evaluated with a more
realistic strategy—all the models show a dramatic drop in
performance showing results close to that of a random classifiers.
Our replication and negative results indicate that method-level
bug prediction is still an open challenge.

Index Terms—empirical software engineering; bug prediction;
replication; negative results

I. INTRODUCTION

The last decade has seen a remarkable involvement of
software artifacts in our daily life [1]. Reacting to the frenzied
demands of the market, most software systems nowadays
grow fast introducing new and complex functionalities [38].
While having more capabilities in a software system can
bring important benefits, there is the risk that this fast-paced
evolution leads to a degradation in the maintainability of the
system [67], with potentially dangerous consequences [6].

Maintaining an evolving software structure becomes more
complex over time [47]. Since time and manpower are typi-
cally limited, software projects must strategically manage their
resources to deal with this increasing complexity. To assist
this problem, researchers have been conducting several studies
on how to advise and optimize the limited project resources.
One broadly investigated idea, known as bug prediction [32],
consists in determining non-trivial areas of systems subjected
to a higher quantity of bugs, to assign them more resources.

Researchers have introduced and evaluated a variety of bug
prediction models based on the evolution [34] (e.g., number of
changes), the anatomy [7] (e.g., lines of code, complexity), and
the socio-technicals aspects (e.g., contribution organization) of
software projects and artifacts [21]. These models have been

evaluated individually or heterogeneously combining different
projects [71], [84], [88].

Even though several proposed approaches achieved remark-
able prediction performance [55], the practical relevance of
bug prediction research has been largely criticized as not
capable of addressing a real developer’s need [75], [48], [46].
One of the criticisms regards the granularity at which bugs are
found; in fact, most of the presented models predict bugs at a
coarse-grained level, such as modules of files. This granularity
is deemed not informative enough for practitioners, because
files and modules can be arbitrarily large, thus requiring a
significant amount of files to be examined [29]. In addition,
considering that large classes tend to be more bug-prone [42],
[63], the effort required to identify the defective part is even
more substantial [7], [30], [60].

Giger et al. [29] and Hata et al. [35] presented the first work
acting at a finer granularity: method-level. Giger et al. found
that product and process metrics contribute to the identification
of buggy methods andtheir combination achieves promising
performance [29]. Hata et al. found that method-level bug
prediction saves more effort than both file-level and package-
level prediction [35].

In this paper, we replicate their investigation on bug predic-
tion at method-level, focusing on the study by Giger et al. [29].
We use the same features and classifiers as the reference
work, but on a different dataset to test the generalizability of
their findings. Then we reflect on the evaluation strategy and
propose a more realistic one. That is, instead of taking change
history and predicted bugs from the same time frame and of
using cross-validation, we estimate the performance using data
from subsequent releases (as done by the most recent studies,
but at a coarser granularity [70]).

Our results—computed on different systems/timeframes
than the reference work—corroborate the generalizability of
the performance of the proposed method-level models, when
estimated using the previous evaluation strategy. However,
when evaluated with a release-by-release strategy, all the
estimated models present lower performance, close to that
of a random classifier. As a consequence, even though we
could replicate the reference work, we found that its realistic
evaluation leads to negative results. This suggests that method-
level bug prediction is still not a solved problem and the
research community has the chance to devote more effort
in devising more effective models that better assist software
engineers in practice.

II. BACKGROUND AND RELATED WORK

Bug prediction has been extensively studied by our research
community in the last decade [32]. Researchers have inves-
tigated what makes source code more bug-prone (e.g., [3],
[4], [18], [8], [12], [42], [62], [63], [64], [73], [69]), and
have proposed several unsupervised (e.g., [20], [56], [87])
as well as supervised (e.g., [11], [22], [39], [65], [89]) bug
prediction techniques. More recently, researchers have started
investigating the concept of just-in-time bug prediction, which
has been proposed with the aim of providing developers with
recommendations at commit-level (e.g., [43], [40], [76], [27],
[86], [51], [37]).

Our current paper focuses on investigating how well su-
pervised approaches can identify bug-prone methods. For this
reason, we first describe related work on predicting bug-prone
classes, then we detail the earlier work on predicting bug-
prone methods and how our work investigates its limitations
and re-evaluates it.

A. Class-level Bug Prediction

The approaches in this category differ from each other
mainly for the underlying prediction algorithm and for the
considered features, i.e., product metrics (e.g., lines of code)
and/or process metrics (e.g., number of changes to a class).
Product metrics. Basili et al. [7] found that five of the CK

metrics [15] can help determining buggy classes and that
Coupling Between Objects (CBO) is that mostly related
to bugs. These results were later re-confirmed [30], [41],
[78].
Ohisson et al. [59] focused on design metrics (e.g., ‘num-
ber of nodes’) to identify bug-prone modules, revealing
the applicability of such metrics for the identification
of buggy modules. Nagappan and Ball [53] exploited
two static analysis tools to predict the pre-release bug
density for Windows Server, showing good performance.
Nagappan et al. [54] experimented with code metrics
for predicting buggy components across five Microsoft
projects, finding that there is no single universally best
metric. Zimmerman et al. [89] investigated complexity
metrics for bug prediction reporting a positive correlation
between code complexity and bugs. Finally, Nikora et al.
[57] showed that measurements of a system’s structural
evolution (e.g., ‘number of executable statements’) can
serve as bug predictors.

Process metrics. Graves et al. [83] experimented both product
and process metrics for bug prediction, finding that product
metrics are poor predictors of bugs.
To further investigate the role played by product and
process metrics, Moser et al. [52], [72] performed two
comparative studies, which highlighted the superiority of
process metrics in predicting buggy code components.
Later on, D’Ambros et al. [19] performed an extensive
comparison of bug prediction approaches relying on both
the sources of information, finding that no technique works
better in all contexts. A complementary approach is the

use of developer-related factors for bug prediction. For
example, Hassan investigated a technique based on the
entropy of code changes by developers [34], reporting
that it has better performance than models based on code
components changes. Ostrand et al. [9], [61] proposed the
use of the number of developers who modified a code
component as a bug-proneness predictor: however, the
performance of the resulting model was poorly improved
with respect to existing models. Finally, Di Nucci et al.
[21] defined a bug prediction model based on a mixture of
code, process, and developer-based metrics outperforming
the performance of existing models.

Despite the aforementioned promising results, developers
consider class/module level bug prediction too coarse-grained
for practical usage [75]. Hence, the need for a more fine-
grained prediction, such as method-level. This target adjust-
ment does not negate the value of the preceding work but
calls for a re-evaluation of the effectiveness of the proposed
methods and, possibly, a work of adaptation.

B. Method-level Bug Prediction

So far, only Giger et al. [29] and Hata et al. [35] indepen-
dently and almost contemporaneously targeted the prediction
of bugs at method-level. Overall they defined a set of metrics
(Hata et al. mostly process metrics, while Giger et al. also
considered product metrics) and evaluated their bug prediction
capabilities. Giger et al. found that both product and process
metrics contribute to the identification of buggy methods and
their combination achieves promising performance (i.e., F-
Measure=86%) [29]. Hata et al. found that using method-level
bug prediction one saves more effort (measured in number of
LOC to be analyzed) than both file-level and package-level
prediction [35]. The data collection approach used by both
sets of researchers is very similar, here we detail that used by
Giger et al. [29], as an exemplification.

To produce the dataset used in their evaluation, Giger et al.
conducted the following steps [29]: they (1) took a large time
frame in the history of 22 Java OSS systems, (2) considered
the methods present at the end of the time frame, (3) computed
product metrics for each method at the end of the time frame,
(4) computed process metrics (e.g., number of changes) for
each method throughout the time frame, and (5) counted
the number of bugs for each method throughout the time
frame, relying on bug fixing commits. Finally, they used
10-fold cross-validation [44] to evaluate three models (only
process metrics, only product metrics, and both combined),
considering the presence/absence of bug(s) in a method as the
dependent binary variable.

In the work presented in this paper, we replicate the same
methodology of Giger et al. and Hata et al. on an overlapping
sets of projects to see whether we are able to reach similar
results for other contexts. For simplicity and because the
methodological details are more extensive, we follow more
closely the case of Giger et al. [29].

III. RESEARCH GOAL AND SUBJECTS

This section defines the goal of our empirical study in terms
of research questions and the subject systems we consider.

A. Research Questions

The first goal in our study is to replicate bug-prediction
work at method level, by using the research method employed
by Giger et al. [29] on a partially overlapping set of software
systems in different moments in time, with the purpose of
understanding the extent to which their results are actually
generalizable. This leads to our first research question:

RQ1. How effective are existing method-level bug predic-
tion approaches when tested on new systems/timespans?

While replicating the methodology proposed by Giger et
al. [29], we found some limitations with the validation ap-
proach that they followed to assess the effectiveness of the
prediction methods. In fact, although reasonable for an initial
validation, the type of validation followed by Giger et al. has
the following limitations: (1) it uses 10-fold cross-validation,
which is at the risk of producing biased estimates in certain
circumstances [82], (2) product metrics are considered only at
the end of the time frame (while bugs are found within the
time frame), (3) the number of changes and the number of
bugs were both considered in the same time frame (this time-
insensitive validation strategy may have led to biased results).

In the second part of our study we try to overcome the
aforementioned limitations by re-evaluating the performance
using data from subsequent releases (i.e., a release-by-release
validation). Release-by-release validation better models a real-
case scenario where a prediction model is updated as soon
as new information is available. Our expectation is that the
performance is going to be weaker in this setting, but we hope
still promising. This leads to our second research question:

RQ2. How effective are existing method-level bug pre-
diction models when validated with a release-by-release
validation strategy?

B. Subject systems

The context of our work consists of the 13 software systems
whose characteristics are reported in Table I. For each system,
the table reports its size (in KLOCs), number of contributors,
releases, methods, and number of buggy methods over the
entire change history, and number of buggy methods contained
in its last release. In particular, we focus on systems imple-
mented in Java (i.e., one of the most popular programming
languages [23]), since the metrics previously used/defined by
both Giger et al. [29] and Hata et al. [35] mainly target this
programming language. In addition, we choose projects whose
source code is publicly available (i.e., open-source software
projects) and are developed using GIT as version control
system, in order to enable the extraction of product and process

metrics. Hence, starting from the list of open-source projects
available on GITHUB,1 we randomly selected 13 systems that
have a change history composed of at least 1, 000 commits and
more than 5, 000 methods. Our dataset is numerically smaller
than the one by Giger et al., but comprises larger systems
composed of a much larger number of both methods (1.8M vs
112,058) and bugs (63,400 vs 23,762); this allows us to test
the effectiveness of method-level bug prediction on software
systems of a different kind of size.

IV. RQ1 - REPLICATING METHOD-LEVEL BUG PREDICTION

Our RQ1 aims at replicating the study conducted by Giger
et al. [29] on a different set of systems/timespans.

A. RQ1 - Research Method

To answer our first research question, we (i) build a method-
level bug prediction model using the same features as Giger
et al. [29] and (ii) evaluate its performance applying it to our
projects. To this aim, we follow a set of methodological steps
such as (i) creation of an oracle reporting buggy methods in
each of the projects considered, i.e., the dependent variable
to predict (ii) definition of the independent variables, i.e.,
the metrics on which the model relies on, (iii) testing of
the performance of different machine learning algorithms,
and (iv) definition of the validation methodology to test the
performance of the model.
Extraction of Buggy Data. For each system we need to detect

the buggy methods contained at the end of the time frame,
i.e., in the last release Rlast, to do so we use a methodology
in line with that followed by Giger et al. [29]. Given
the issues available in the issue tracking systems (i.e.,
BUGZILLA or JIRA) of the subject systems, we firstly
use RELINK [85] to identify links between issues and
commits. RELINK considers several constraints, i.e., (i) a
match exists between the committer and the contributor
who created the issue in the issue tracking system, (ii) the
time interval between the commit and the last comment
posted by the same contributor in the issue tracker is less
than seven days, and (iii) the cosine similarity between
the commit note and the last comment referred above,
computed using the Vector Space Model (VSM) [5], is
greater than 0.7. Afterwards, we consider as buggy all the
methods actually changed in the buggy commits detected
by RELINK and referring to the time period between the
Rlast−1 and Rlast, i.e., the ones introduced during the final
time frame. We filtered out test cases, which might be
modified with the production code, but might not directly
be implicated in a bug.

Independent variables. As for the metrics to characterize
source code methods, we compute the set of 9 product
and 15 process features defined by Giger et al. [29].
• Product Metrics: Existing literature demonstrated how

such set of features might be effective to characterize
the extent to which a source code method is difficult to

1https://github.com

Table I
OVERVIEW OF THE SUBJECT PROJECTS INVESTIGATED IN THIS STUDY

Projects LOC Developers Releases Methods All Buggy Methods Last Buggy Methods
Ant 213k 15 4 42k 2.3k 567
Checkstyle 235k 76 6 31k 4.1k 670
Cloudstack 1.16M 90 2 85k 13.4k 6.8K
Eclipse JDT 1.55M 22 33 810k 3.3k 96
Eclipse Platform 229k 19 3 7k 2.7k 932
Emf Compare 3.71M 14 2 9k 0.7k 444
Gradle 803k 106 4 73k 4.6k 1.1k
Guava 489k 104 17 262k 1.2k 71
Guice 19k 32 4 9k 0.5k 145
Hadoop 2.46M 93 5 179k 5.8k 1.3k
Lucene-solr 586k 59 7 213k 8.7k 962
Vaadin 7.06M 133 2 43k 11.3k 7.7K
Wicket 328k 19 2 30k 4.9k 2.2K
Overall 19M 782 91 1.8M 63.4k 22.9k

Table II
LIST OF METHOD-LEVEL PRODUCT METRICS USED IN THIS STUDY

Metric name Description (applies to method-level)
FanIN # of methods that reference a given method
FanOUT # of methods referenced by a given method
LocalVar # of local variables in the body of a method
Parameters # of parameters in the declaration
CommentToCodeRatio Ratio of comments to source code (line based)
CountPath # of possible paths in the body of a method
Complexity McCabe Cyclomatic complexity of a method
execStmt # of executable source code statements
maxNesting Maximum nested depth of all control structures

Table III
LIST OF METHOD-LEVEL PROCESS METRICS USED IN THIS STUDY

Metric name Description (applies to method level)
MethodHistories # of times a method was changed
Authors # of distinct authors that changed a method
StmtAdded Sum of all source code statements added
MaxStmtAdded Maximum StmtAdded
AvgStmtAdded Average of AvgStmtAdded
StmtDeleted Sum of all source code statements deleted
MaxStmtDeleted Maximum of StmtDeleted
AvgStmtDeleted Average of StmtDeleted
Churn Sum of stmtAdded - stmtDeleted
MaxChurn Maximum churn for all method histories
AvgChurn Average churn per method history
Decl # of method declaration changes
Cond # of condition changes over all revisions
ElseAdded # of added else-parts over all revisions
ElseDeleted # of deleted else-parts over all revisions

maintain, possibly indicating the presence of defects [7],
[15], [19], [59]. Giger et al. [29] proposed the use of the
metrics reported in Table II. The features cover different
method characteristics, e.g., number of parameters or
McCabe’s cyclomatic complexity [50]. We re-implement
all of the metrics due to the lack of available tools.

• Process Metrics: According to previous literature [72],
[79], process features effectively complement the ca-
pabilities of product predictors for bug prediction. For
this reason, Giger et al. [29] relied on the change-
based metrics described in Table III and that widely
characterize the life of source code methods, e.g., by

considering how many statements were added over time
or the number of developers that touched the method.
Also in this case, we re-implement the proposed process
metrics defined at method-level by Giger et al. [29].

Similarly to Giger et al. [29], in the context of RQ1, we
build three different method-level bug prediction models
relying on (i) only product metrics, (ii) only process
metrics, and (ii) both product and process metrics.

Training Data Preprocessing. Once we have the dataset con-
taining (i) product and process metrics (i.e., the indepen-
dent variables) and (ii) buggy methods (i.e., the dependent
variable), we start the method-level bug prediction process.
As first step, we take into account two common problems
that may affect machine learning algorithms, namely (i)
data unbalance [14] and (ii) multi-collinearity [58].
The former represents a frequent issue in bug prediction
occurring when the number of instances that refer to buggy
resources (in our case, source code methods) is drastically
smaller than the number of non-buggy instances. We
address this problem by applying the RANDOM OVER-
SAMPLING algorithm [13] implemented as a supervised
filter in the WEKA toolkit.2 The filter re-weights the
instances in the dataset to give them the same total weight
for each class maintaining unchanged the total sum of
weights across all instances.
The second problem comes from the use of multiple
metrics. These independent variables may have a high
correlation causing collinearity that negatively impacts the
performance of bug prediction models [24]. To cope with
this problem, we preprocess our dataset filtering out the
unwanted features. Specifically, we apply the Correlation-
based Feature Selection [31] algorithm implemented as a
filter in the WEKA toolkit: It evaluates the worth of a subset
of attributes by considering the individual predictive ability
of each feature along with their degree of redundancy.

Machine Learner. Once preprocessed the training data, we
need to select a classifier that leverages the independent

2https://www.cs.waikato.ac.nz/ml/weka/

variables to predict buggy methods [26]. To this aim, we
exploit the four classifiers used by Giger et al., which are
all available in WEKA toolkit: Random Forest, Support
Vector Machine, Bayesian Network, and J48. Afterwards,
we compare the different classification algorithms using
validation strategy and metrics we describe later.

Evaluation Strategy. The final step to answer RQ1 consists
of the validation of the prediction models. As done in
the reference work, we adopt the 10-fold cross-validation
strategy [44], [80]. This strategy randomly partitions the
original set of data into 10 equal sized subset. Of the 10
subsets, one is retained as test set, while the remaining
9 are used as training set. The cross-validation is then
repeated 10 times, allowing each of the 10 subsets to be
the test set exactly once.

Evaluation Metrics. Once we had run the experimented mod-
els over the considered systems, we measure their per-
formance using the same metrics proposed by Giger et
al. [29] to allow for comparison: precision and recall [5].
Precision is defined as precision = |TP |

|TP+FP | where
TP (True Positives) are methods that are correctly re-
trieved by a prediction model and FP (False Positives)
are methods that are wrongly classified by a prediction
model. Recall is defined as recall = |TP |

|TP+FN | , where
FN (False Negatives) are methods that are not retrieved
by a prediction model (i.e., buggy methods misclassified as
non-buggy by a model). We also compute F-Measure [5],
which combines precision and recall in a single metric:
F −Measure = 2 · Precision·Recall

Precision+Recall .
In addition to the aforementioned metrics, we also compute
the Area Under the Receiver Operation Characteristic
curve (AUC-ROC) [33]. In fact, the classification chosen
by the machine learning algorithms is based on a threshold
(e.g., all the method whose predicted value is above the
threshold 0.5 are classified as buggy), which can greatly
affect the overall results [82]; precision and recall alone
are not able to capture this aspect. ROC plots the true
positive rates against the false positive rates for all possible
thresholds between 0 and 1; the diagonal represents the
expected performance of a random classifier. AUC com-
putes the area below the ROC and allows us to have a
comprehensive measure for comparing different ROCs: An
area of 1 represents a perfect classifier (all the defective
methods are recognized without any error), whereas for a
random classifier an area close 0.5 is expected (since the
ROC for a random classifier tends to the diagonal).

B. RQ1 - Results

Table IV reports the median precision, recall, F-measure,
and AUC-ROC achieved by models based on (i) only product,
(ii) only process, and (iii) both product and process features
when using different classifiers. A detailed report of the
performance achieved by the single classifiers over all the
considered systems is available in our online appendix [68].
Overall, the obtained results are in line with those by Giger et

al., yet we achieve values that are 10 percentage points lower
on average.

The model based on product metrics achieves the lowest
results. For instance, the overall precision is 0.71, meaning
that a software engineer using this model has to needlessly
analyze almost 39% of the recommendations it outputs. This
result is in line with the findings provided by Giger et al.,
who already showed that the model only trained on product
metrics offers performance generally lower than all the other
experimented models.

Secondly, our results confirm that process metrics are
stronger indicator of bug-proneness of source code methods
(overall F-Measure=0.80). Also in this case, this finding is
in line with the previous results achieved by the research
community that report the superiority of process metrics
with respect to product ones [70], [72]. Our results also
confirm another finding by Giger et al.: The combination of
product and process metrics does not improve dramatically
the prediction capabilities: Results are—at most—two points
percentage higher than the model with process metrics only.
We find this surprising, since both set of metrics have values
in the prediction and we expected that the use of these
orthogonal predictors would improve the overall performance
of the approach.

As for the different classifiers experimented, Support Vector
Machines gives the worst results; likely, this is due to the
extreme sensibility of the classifier to the configuration [16].
In fact, as shown in previous research [16], [36], the use of
the default configuration might lead to significantly worsen
the overall performance of the machine learner. Future studies
could be setup and conducted to investigate the impact of the
configuration on SVM for method-level bug prediction.

Other classifiers provide more stable results. Random Forest
and J48 obtain the best prediction accuracy considering all
the evaluation metrics. The differences are particularly evident
when considering the AUC-ROC values, which are 36% and
29% higher than VSM, respectively. Our results confirm what
was reported by Giger et al. on the capabilities of Random
Forest, and more in general on the performance of this
classifier in the context of bug prediction [22], [49].

To test the statistical significance of the results discussed so
far, we compared the AUC-ROC values of the experimented
models over the different systems using the Scott-Knott Effect
Size Difference (ESD) test [81], which is effect-size aware
variant of the Scott-Knott test [74] that is recommended in
case of comparisons of multiple models over multiple datasets
[81]. As a result, process-based models built using Random
Forest and J48 are considered statistically better than product-
based ones, while they work similarly to the combined ones.
Detailed statistical results are in our online appendix [68].

Table IV
MEDIAN CLASSIFICATION RESULTS OF METHOD-LEVEL BUG PREDICTION MODELS WHEN VALIDATED USING 10-FOLD CROSS VALIDATION.

π = Product Precision Recall F-measure AUC-ROC
Π = Process π Π π&Π S Π π&Π π Π π&Π π Π π&Π

Bayesian Network 0.71 0.77 0.77 0.46 0.68 0.70 0.56 0.72 0.72 0.60 0.72 0.72
J48 0.73 0.82 0.84 0.60 0.84 0.83 0.65 0.83 0.83 0.60 0.79 0.80
Random Forest 0.72 0.85 0.86 0.64 0.86 0.86 0.68 0.85 0.86 0.66 0.84 0.86
Support Vector Machines 0.66 0.74 0.74 0.09 0.80 0.79 0.16 0.77 0.76 0.50 0.51 0.51
Overall 0.71 0.80 0.80 0.44 0.80 0.80 0.51 0.80 0.80 0.59 0.72 0.73

Result 1: Our results, computed with the same evaluation
strategy but on a different set of systems/timespans, confirm
the findings by Giger et al.: Method-level bug prediction
models based on process metrics perform better than those
based on product metrics. Our results are 10 percentage
points lower than those of Giger et al., yet far better than
random. The combination of predictors of different nature
does not dramatically improve the prediction capabilities.

V. REFLECTING ON THE EVALUATION STRATEGY

By replicating the work by Giger et al., we had the chance
to reflect on the evaluation strategy. Figure 1 shows an
exemplification of the history of a system and how the training
and testing are done in the approach by Giger et al. (named
‘10-fold overall evaluation’ in the figure and depicted using
red lines and text) and in the one we propose in this work
(named ‘release-by-release’ and depicted in blue).

Ma
Mb
Mc
Md

system’s
release

Rx Rx+1 Rx+2

system’s
history

10-fold overall evaluationrelease-by-release evaluation

training testing

independent
variable, training

independent
variable, testing

training

testing

data collection
point

independent
variable

bug-related changenon bug-related change

Figure 1. Training and testing strategies for method-level bug prediction.

The system in Figure 1 has four methods (i.e., Ma, Mb,
Mc, Md) that where changed several times throughout the
history of the system. The changes sometimes were related to
a bug (i.e., the method was involved in a bug fix; purple dot),
sometimes not (i.e., green dot); for example method Ma was
changed four times, two of which involving a bug fix. This
system had at least three releases (i.e., Rx throughout Rx+1).

The approach applied by Giger et al. collects all the
available information until the ‘data collection point’, then
marks a method as ‘buggy’ whenever the method was involved
in a bug fix (hence it was buggy before the bugfix) in the entire
history of the system. Then, each method would be considered

as an instance to classify, where the independent variable is
whether the method was marked as ‘buggy’ or not. In this
case, the validation would be done “vertically”: 10-fold cross
validation ensures that the classifier is trained on a subset of
methods (e.g., Ma, Mb, Mc in Figure 1) that is different from
that used for the testing (e.g., Md).

The limitation of this approach is that it uses dependent
variables (such as most of the process metrics, including
‘number of changes’) (1) whose value could not be known at
prediction time in a real-world scenario (i.e., one would try to
predict bugs that still have to occur, not that already happened)
and that (2) seem to be highly correlated to the independent
variable (for each bug fix there has to be a change). Moreover,
there are moments in which the methods were not buggy, but
if they have been buggy at least once in the lifetime of the
system, they are considered as buggy.

Although reasonable for an initial validation, the approach
followed by Giger et al. may lead to unrealistic results. For
this reason, we propose a release-by-release strategy. We train
and test “horizontally” instead of “vertically”: We assume to
be in the moment of a release (e.g., Rx+1 in Figure 1) and we
train on all the information available from the previous release
to this moment (e.g., from Rx); in this case the independent
variable is whether or not a method has been buggy during the
considered release. Then, we consider the next release (e.g.,
Rx+2) and try to predict which methods will be buggy in
the course of the development of this release; yet, we do not
consider any information available from the current release to
the next, because this would not be available in real life. With
this strategy we answer RQ2.

An addition to the release-by-release strategy would be
to consider the SZZ algorithm [77] and consider as buggy
only the methods in which a bug was introduced before the
release (regardless of when the fix happened). We decided
not to follow this path for three reasons: (1) SZZ could give
information that is not available at prediction time (e.g., when
the bug fix happens after the considered release, but the bug
inducing commit happens before the release), (2) SZZ has
been proven to be not reliable [17], and (3) we want to reduce
at a minimum the differences from the work of Giger et al.
we are replicating, so that the obtained results are not due to
unconsidered causes.

VI. RQ2 - RE-EVALUATING METHOD-LEVEL BUG
PREDICTION

Our RQ2 seeks to evaluate the performance of method-level
bug prediction models in a more realistic setting.

A. RQ2 - Methodology

To answer RQ2, we need to (i) extract all the releases of the
considered projects, (ii) identify the buggy methods occurring
in each of them, and (iii) build the three bug prediction models
considered in the context of RQ1.
Extraction of The Major Releases. The first step to test the

performance of method-level bug prediction models con-
sists in the identification of the major releases of the
considered systems. To this purpose, we automatically
extract them from the list of releases declared on the
GITHUB repository of the subject systems. To discriminate
major releases from the others we rely on a heuristic based
on naming conventions: if the version name ends with the
patterns 0 or 0.0 (e.g., versions 3.0 or 3.0.0), then a major
release is identified. We manually verified the performance
of this heuristic on one of the systems considered in the
study: We verified that all the major releases of LUCENE-
SOLR were correctly caught, thus quantifying the actual
performance of this approach.

Extraction of Buggy Data. Differently from what we have
done in RQ1, in this research question we need to extract
the buggy data for all the considered releases. For each
release pair ri− 1 and ri, we (i) run RELINK and (ii)
consider as buggy all the methods actually changed in the
buggy commits detected by RELINK and referring to the
time frame between ri− 1 and ri. Also in this case, we
filtered out test cases.

Bug Prediction Models: Setup. As done for RQ1, we test the
performance of three bug prediction models, i.e., the ones
relying on (i) product metrics only, (ii) process metrics
only, and (ii) both product and process metrics, built using
the same set of machine learning approaches, i.e., Random
Forest, Support Vector Machine, Bayesian Network, and
J48. Also in this case, the training data is preprocessed
to avoid (i) data unbalance and (ii) multicollinearity by
using the same set of techniques previously exploited, i.e.,
Random Over-Sampling algorithm [13] and Correlation-
based Feature Selection [31], respectively.

Bug Prediction Models: Validation. As a final step to answer
the second research question, we test the performance
of the prediction models by applying an inter-release
validation procedure, i.e., we trained the prediction models
using the release ri−1 and tested it on ri. This technique
implies that the first release of each system could not be
used as testing set as well as the last release could not be
used as training. To measure the accuracy of such models,
we computed the same set of metrics previously exploited,
i.e., precision, recall, F-Measure, and AUC-ROC.

B. RQ2 - Results

Table IV reports the median precision, recall, F-measure,
and AUC-ROC achieved by models based on (i) only product,
(ii) only process, and (iii) both product and process metrics
when using different classifiers and the release-by-release

strategy. For sake of space limitation, we report the results
aggregated using the median operator, however, detailed re-
ports are available in our appendix [68].

The performance achieved by all the prediction models
experimented is significantly lower than those found in the
replication presented in RQ1. We observe a limited decrease
between the highest/lowest values and overall in each of the
subject systems in our dataset.

In this evaluation scenario, the use of code metrics as
predictors only slightly improves the capabilities of method-
level bug prediction models. This is in contrast with past
literature reporting the superiority of process metrics for bug
prediction [70], [72]. We hypothesize that this result may be
caused both by the different granularity of the experimented
models and by the different validation strategy with respect
to the one used in RQ1. In particular, while the historical
information computed at class-level could better characterize
the complexity of the development process followed by de-
velopers while implementing changes in an entire class [34],
it is reasonable to think that the bugginess of source code
methods may be better expressed by the methods’ current
code quality. An additional possible cause that confutes the
observation of previous studies [70], [72] comes from the
irregular distribution of the length of the time frames for the
considered releases. In our analyzed projects, these intervals
stretch between a few months to a couple of years and the
distribution of the releases is strictly correlated to the needs
and the approach adopted by developers in a given historical
moment. The higher prediction capabilities of code metrics
are confirmed also when looking at other indicators, i.e.,
precision, recall, AUC-ROC. Moreover, this result holds for
all the classifiers considered.

Finally, we observe that the performance of different clas-
sifiers is similar and there is no clear winner. To some extent,
this result confirms previous findings in the field [28], [66]
showing that different classifiers achieve similar performance.
This result potentially highlights the possibility to further study
the orthogonality of classifiers for method-level bug prediction
with the aim of exploiting ensemble methodologies [22], [49].

Result 2: All the experimented method-level bug prediction
models resulted in dramatically lower performance (up to
20 points percentage less in terms of AUC-ROC) when
evaluated with the more realistic release-by-release eval-
uation strategy, instead of 10-fold cross validation. The
achieved AUC-ROC scores achieved by all the models,
regardless of the machine learning approach, are close to
the results that a random classifier would provide.

VII. THREATS TO VALIDITY

In this section, we describe the factors that might have
affected the validity of our empirical study.
Threats to Construct Validity. A first factor influencing the

relationship between theory and observation is related to
the dataset exploited. In our study, we rely on the same

Table V
MEDIAN CLASSIFICATION RESULTS OF METHOD-LEVEL BUG PREDICTION MODELS WHEN VALIDATED USING A RELEASE-BY-RELEASE STRATEGY.

S = Product Precision Recall F-measure AUC-ROC
H = Process S H S&H S H S&H S H S&H S H S&H

Bayesian Network 0.72 0.70 0.70 0.58 0.64 0.65 0.59 0.60 0.61 0.53 0.52 0.53
J48 0.71 0.71 0.71 0.59 0.59 0.59 0.62 0.62 0.63 0.51 0.51 0.51
Random Forest 0.72 0.70 0.72 0.63 0.60 0.63 0.64 0.61 0.63 0.52 0.51 0.52
Support Vector Machines 0.72 0.73 0.72 0.59 0.57 0.60 0.62 0.58 0.62 0.53 0.53 0.53
Overall 0.71 0.71 0.71 0.59 0.60 0.60 0.62 0.60 0.61 0.52 0.52 0.53

methodology previously adopted by Giger et al. [29] to
build our own repository of buggy methods, i.e., we first
retrieve bug-fixing commits using the textual-based tech-
nique proposed by Fisher et al. [25] and then consider as
buggy the methods changed in that commits. To understand
possible imprecisions and/or incompleteness of the data used
in this study, we manually validate a statistically significant
sample of 275 buggy methods detected on the LUCENE-
SOLR system. Such a set represents a 95% statistically
significant stratified sample with a 5% confidence interval
of the 962 total buggy methods detected in the last release
of the project. The validation was conducted by the first
two authors of this paper. Based on (i) the description
of the bug reported on the issue tracker system, (ii) the
source code of a method detected as buggy in a commit
ci, and (iii) the list of modifications to the method between
ci and its predecessor ci−1 (extracted using the diff
unix command), each author checked independently whether
the changes applied between the two revisions might have
actually introduced the bug reported on the issue tracker.
After the first round, the two inspectors started a discussion
on the independent classifications made to reach consensus.
The level of agreement between the inspectors is computed
using the Krippendor’s α [45], finding it to be 0.84, which
is higher than the 0.80 used as standard reference score [2].
As for the accuracy of the linking methodology, we found
that it correctly captured the bugginess of 85% of methods.
Thus, at the end of this process we can claim that the oracle
built is accurate enough for our purposes.
A threat to the validity of our replication is that we had to re-
implement the product and process metrics used to build the
experimented models, due to the lack of a publicly available
tool. When re-implementing such metrics we faithfully
followed the descriptions by Giger et al. [29].
Although we test the performance of the models using
the same machine learning classifiers used by Giger et al.
[29] to closely replicate their study, the use of different
classifiers may produce different results. Moreover, all the
tested classifiers use the default parameters, since finding
the best configurations would have been too expensive [10].

Threats to Conclusion Validity. To ensure that the results
would not have been biased by confounding effects such
as data unbalance [14] or multi-collinearity [24], we adopt
formal procedures aimed at (i) over-sampling the training
sets [14] and (ii) removing non-relevant independent vari-
ables through feature selection [31].

Threats to External Validity. This category refers to the gen-
eralizability of our findings. While in the context of this
work we analyze software projects having different size and
scope, we limit our focus to Java systems because some
of the tools exploited to compute the independent and de-
pendent variables mainly target this programming language.
Thus, the generalizability with respect to systems written
in different languages as well as to projects belonging to
industrial environments is limited.

VIII. CONCLUSION

We replicated previous work [29] on method-level bug pre-
diction. We first re-implement the models and evaluate them
with the same strategy applied by the reference work, yet on
different systems/timespans to test its generalizability, finding
aligned results. However, a deep analysis of the evaluation
strategy revealed some of its limitations, which we address
proposing a to use a release-by-release evaluation strategy.
The method-level bug prediction models, when tested with the
latter strategy, achieve far lower performance, similar to thatof
a random classifier. As such, current strategies for method-
level bug prediction do not seem to be sophisticated enough
to reach their goal.

The main contributions made by this work are:
1) A re-evaluation on different systems/timespans of

method-level bug prediction models. The results confirm
previous findings in the field [29].

2) An empirical analysis of how the performance of existing
method-level bug prediction models change when ap-
plied in a more realistic, release-by-release scenario. Our
results provide evidence that current method-level bug
prediction models are not able to dramatically outperform
a random classifier; hence we reveal the need for further
research on this area.

3) An online appendix [68] that reports the dataset and all
the additional analyses performed in the work described
in this paper.

Based on the results achieved so far, our future agenda
includes (i) the replication of our study on a larger set of
systems along with a study aimed to measure the capabilities
of ensemble methods [22], [49] and (ii) the investigation of
novel features for improving method-level defect prediction.

ACKNOWLEDGMENT

Bacchelli and Palomba gratefully acknowledge the support
of the Swiss National Science Foundation through the SNF
Project No. PP00P2 170529.

REFERENCES

[1] M. Andreessen. Why software is eating the world. The Wall Street
Journal, 20(2011):C2, 2011.

[2] J.-Y. Antoine, J. Villaneau, and A. Lefeuvre. Weighted krippendorff’s
alpha is a more reliable metrics for multi-coders ordinal annotations:
experimental studies on emotion, opinion and coreference annotation.
In EACL 2014, pages 10–p, 2014.

[3] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc.
Is it a bug or an enhancement?: a text-based approach to classify change
requests. In Proceedings of the 2008 conference of the center for
advanced studies on collaborative research: meeting of minds, page 23.
ACM, 2008.

[4] A. Bacchelli, M. D’Ambros, and M. Lanza. Are popular classes more
defect prone? In International Conference on Fundamental Approaches
to Software Engineering, pages 59–73. Springer, 2010.

[5] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval,
volume 463. ACM press New York, 1999.

[6] R. D. Banker, G. B. Davis, and S. A. Slaughter. Software development
practices, software complexity, and software maintenance performance:
A field study. Management science, 44(4):433–450, 1998.

[7] V. Basili, L. Briand, and W. Melo. A validation of object-oriented design
metrics as quality indicators. Software Engineering, IEEE Transactions
on, 22(10):751–761, Oct 1996.

[8] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo. When does a refactoring induce bugs? an empirical study.
In Source Code Analysis and Manipulation (SCAM), 2012 IEEE 12th
International Working Conference on, pages 104–113. IEEE, 2012.

[9] R. Bell, T. Ostrand, and E. Weyuker. The limited impact of individual
developer data on software defect prediction. Empirical Software
Engineering, 18(3):478–505, 2013.

[10] J. Bergstra and Y. Bengio. Random search for hyper-parameter op-
timization. Journal of Machine Learning Research, 13(Feb):281–305,
2012.

[11] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella. Multi-objective cross-project defect prediction. In
Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on, pages 252–261. IEEE, 2013.

[12] G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, and A. Zaidman.
Developer-related factors in change prediction: an empirical assessment.
In Proceedings of the 25th International Conference on Program Com-
prehension, pages 186–195. IEEE Press, 2017.

[13] N. V. Chawla. Data mining for imbalanced datasets: An overview.
In Data mining and knowledge discovery handbook, pages 875–886.
Springer, 2009.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial
intelligence research, 16:321–357, 2002.

[15] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering (TSE), 20(6):476–
493, June 1994.

[16] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and
E. Mendes. Using tabu search to configure support vector regression
for effort estimation. Empirical Software Engineering, 18(3):506–546,
2013.

[17] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E.
Hassan. A framework for evaluating the results of the szz approach for
identifying bug-introducing changes. IEEE Transactions on Software
Engineering, 43(7):641–657, 2017.

[18] M. D’Ambros, A. Bacchelli, and M. Lanza. On the impact of design
flaws on software defects. In Quality Software (QSIC), 2010 10th
International Conference on, pages 23–31. IEEE, 2010.

[19] M. DAmbros, M. Lanza, and R. Robbes. Evaluating defect prediction
approaches: a benchmark and an extensive comparison. Empirical
Software Engineering, 17(4):531–577, 2012.

[20] D. J. Dean, H. Nguyen, and X. Gu. Ubl: Unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems. In
Proceedings of the 9th international conference on Autonomic comput-
ing, pages 191–200. ACM, 2012.

[21] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and
A. De Lucia. A developer centered bug prediction model. IEEE
Transactions on Software Engineering, 2017.

[22] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia. Dynamic selec-
tion of classifiers in bug prediction: An adaptive method. IEEE Transac-

tions on Emerging Topics in Computational Intelligence, 1(3):202–212,
2017.

[23] N. Diakopoulos and S. Cass. The top programming
languages 2016. IEEE Spectrum, http://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2016, Jul 2016.

[24] T. Dietterich. Overfitting and undercomputing in machine learning. ACM
computing surveys (CSUR), 27(3):326–327, 1995.

[25] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on, pages 23–32. IEEE, 2003.

[26] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

[27] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi.
An empirical study of just-in-time defect prediction using cross-project
models. In Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 172–181. ACM, 2014.

[28] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact
of classification techniques on the performance of defect prediction
models. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 789–800. IEEE Press, 2015.

[29] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug
prediction. In Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement, pages 171–180.
ACM, 2012.

[30] T. Gyimóthy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE
Transactions on Software Engineering (TSE), 31(10):897–910, 2005.

[31] M. A. Hall. Correlation-based feature selection for machine learning.
1999.

[32] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A sys-
tematic literature review on fault prediction performance in software
engineering. IEEE Transactions on Software Engineering, 38(6):1276–
1304, 2012.

[33] J. A. Hanley and B. J. McNeil. The meaning and use of the area under
a receiver operating characteristic (roc) curve. Radiology, 143(1):29–36,
1982.

[34] A. E. Hassan. Predicting faults using the complexity of code changes.
In ICSE, pages 78–88, Vancouver, Canada, 2009. IEEE Press.

[35] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction based on fine-
grained module histories. In Proceedings of the 34th International
Conference on Software Engineering, pages 200–210. IEEE Press, 2012.

[36] C. Huang, L. Davis, and J. Townshend. An assessment of support vector
machines for land cover classification. International Journal of remote
sensing, 23(4):725–749, 2002.

[37] Q. Huang, X. Xia, and D. Lo. Supervised vs unsupervised models: A
holistic look at effort-aware just-in-time defect prediction. In Software
Maintenance and Evolution (ICSME), 2017 IEEE International Confer-
ence on, pages 159–170. IEEE, 2017.

[38] Z. Jiang and S. Sarkar. Free software offer and software diffusion: The
monopolist case. ICIS 2003 proceedings, page 81, 2003.

[39] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams,
and A. E. Hassan. Revisiting common bug prediction findings using
effort-aware models. In Software Maintenance (ICSM), 2010 IEEE
International Conference on, pages 1–10. IEEE, 2010.

[40] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi. A large-scale empirical study of just-in-time quality
assurance. IEEE Transactions on Software Engineering, 39(6):757–773,
2013.

[41] W. M. Khaled El Emam and J. C. Machado. The prediction of faulty
classes using object-oriented design metrics. Journal of Systems and
Software, 56(1):63–75, 2001.

[42] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol. An
exploratory study of the impact of antipatterns on class change-and fault-
proneness. Empirical Software Engineering, 17(3):243–275, 2012.

[43] S. Kim, E. J. Whitehead Jr, and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineering,
34(2):181–196, 2008.

[44] J. Kittler et al. Pattern recognition. a statistical approach. 1982.
[45] K. Krippendorff. Content analysis: An introduction to its methodology.

Sage, 2004.
[46] M. Lanza, A. Mocci, and L. Ponzanelli. The tragedy of defect prediction,

prince of empirical software engineering research. IEEE Software,
33(6):102–105, 2016.

http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016

[47] M. M. Lehman and L. A. Belady. Program evolution: processes of
software change. Academic Press Professional, Inc., 1985.

[48] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr.
Does bug prediction support human developers? Findings from a Google
case study. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE 2013, pages 372–381. IEEE Press, 2013.

[49] R. Malhotra. A systematic review of machine learning techniques for
software fault prediction. Applied Soft Computing, 27:504–518, 2015.

[50] T. J. McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

[51] S. McIntosh and Y. Kamei. Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction. IEEE
Transactions on Software Engineering, 2017.

[52] R. Moser, W. Pedrycz, and G. Succi. Analysis of the reliability of
a subset of change metrics for defect prediction. In Proceedings of
the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’08, pages 309–311, New York,
NY, USA, 2008. ACM.

[53] N. Nagappan and T. Ball. Static analysis tools as early indicators of
pre-release defect density. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 580–586, New
York, NY, USA, 2005. ACM.

[54] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proceedings of the 28th International Conference
on Software Engineering, ICSE ’06, pages 452–461, New York, NY,
USA, 2006. ACM.

[55] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy.
Change bursts as defect predictors. In Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on, pages 309–318.
IEEE, 2010.

[56] T. T. Nguyen, T. N. Nguyen, and T. M. Phuong. Topic-based defect
prediction (NIER track). In Proceedings of the 33rd international
conference on software engineering, pages 932–935. ACM, 2011.

[57] A. P. Nikora and J. C. Munson. Developing fault predictors for
evolving software systems. In Proceedings of the 9th IEEE International
Symposium on Software Metrics, pages 338–349. IEEE CS Press, 2003.

[58] R. M. O’brien. A caution regarding rules of thumb for variance inflation
factors. Quality & Quantity, 41(5):673–690, 2007.

[59] N. Ohlsson and H. Alberg. Predicting fault-prone software modules
in telephone switchess. Software Engineering, IEEE Transactions on,
22(12):886–894, 1996.

[60] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location
and number of faults in large software systems. IEEE Transactions on
Software Engineering, 31(4):340–355, 2005.

[61] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Programmer-based
fault prediction. In Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, PROMISE ’10, pages
19:1–19:10, New York, NY, USA, 2010. ACM.

[62] G. J. Pai and J. B. Dugan. Empirical analysis of software fault content
and fault proneness using bayesian methods. IEEE Transactions on
software Engineering, 33(10), 2007.

[63] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia. On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation. Empirical Software
Engineering, pages 1–34, 2017.

[64] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia.
The scent of a smell: An extensive comparison between textual and
structural smells. IEEE Transactions on Software Engineering, 2017.

[65] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto.
Smells like teen spirit: Improving bug prediction performance using
the intensity of code smells. In Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on, pages 244–255.
IEEE, 2016.

[66] A. Panichella, R. Oliveto, and A. De Lucia. Cross-project defect
prediction models: L’union fait la force. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week-IEEE Conference on, pages 164–173. IEEE, 2014.

[67] D. L. Parnas. Software aging. In Proceedings of the 16th international
conference on Software engineering, pages 279–287. IEEE Computer
Society Press, 1994.

[68] L. Pascarella, F. Palomba, and A. Bacchelli. Re-evaluating method-
level bug prediction - online appendix. http://www.mediafire.com/
?u4w771qz2y8be, 2018.

[69] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov. Dual ecological
measures of focus in software development. In Proceedings of the 2013

International Conference on Software Engineering, ICSE ’13, pages
452–461. IEEE Press, 2013.

[70] F. Rahman and P. Devanbu. How, and why, process metrics are
better. In Proceedings of the 2013 International Conference on Software
Engineering, pages 432–441. IEEE Press, 2013.

[71] F. Rahman, D. Posnett, and P. Devanbu. Recalling the imprecision of
cross-project defect prediction. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineer-
ing, page 61. ACM, 2012.

[72] W. P. Raimund Moser and G. Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction. In International Conference on Software Engineering (ICSE),
ICSE ’08, pages 181–190, 2008.

[73] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. De-
vanbu. On the naturalness of buggy code. In Proceedings of the
38th International Conference on Software Engineering, pages 428–439.
ACM, 2016.

[74] A. J. Scott and M. Knott. A cluster analysis method for grouping means
in the analysis of variance. Biometrics, 30:507–512, 1974.

[75] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang. An industrial
study on the risk of software changes. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, page 62. ACM, 2012.

[76] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features
to improve code change-based bug prediction. IEEE Transactions on
Software Engineering, 39(4):552–569, 2013.

[77] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? SIGSOFT Softw. Eng. Notes, 30(4):1–5, May 2005.

[78] R. Subramanyam and M. S. Krishnan. Empirical analysis of ck metrics
for object-oriented design complexity: Implications for software defects.
Software Engineering, IEEE Transactions on, 29(4):297–310, 2003.

[79] A. N. Taghi M. Khoshgoftaar, Nishith Goel and J. McMullan. Detection
of software modules with high debug code churn in a very large legacy
system. In Software Reliability Engineering, pages 364–371. IEEE,
1996.

[80] M. Tan, L. Tan, S. Dara, and C. Mayeux. Online defect prediction for
imbalanced data. In Proceedings of the 37th International Conference
on Software Engineering-Volume 2, pages 99–108. IEEE Press, 2015.

[81] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto.
Automated parameter optimization of classification techniques for defect
prediction models. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on, pages 321–332. IEEE, 2016.

[82] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. An
empirical comparison of model validation techniques for defect predic-
tion models. IEEE Transactions on Software Engineering, 43(1):1–18,
2017.

[83] J. S. M. Todd L. Graves, Alan F. Karr and H. P. Siy. Predicting fault
incidence using software change history. Software Engineering, IEEE
Transactions on, 26(7):653–661, 2000.

[84] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. On the relative
value of cross-company and within-company data for defect prediction.
Empirical Software Engineering, 14(5):540–578, 2009.

[85] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering
links between bugs and changes. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, pages 15–25. ACM, 2011.

[86] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. Deep learning for just-
in-time defect prediction. In Software Quality, Reliability and Security
(QRS), 2015 IEEE International Conference on, pages 17–26. IEEE,
2015.

[87] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan. Cross-project defect
prediction using a connectivity-based unsupervised classifier. In Pro-
ceedings of the 38th International Conference on Software Engineering,
pages 309–320. ACM, 2016.

[88] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-
project defect prediction: a large scale experiment on data vs. domain
vs. process. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 91–100. ACM, 2009.

[89] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for
eclipse. In Proceedings of the Third International Workshop on Predictor
Models in Software Engineering, PROMISE ’07, pages 9–, Washington,
DC, USA, 2007. IEEE Computer Society.

http://www.mediafire.com/?u4w771qz2y8be
http://www.mediafire.com/?u4w771qz2y8be

