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ABSTRACT

To gain a deeper empirical understanding of how developers work
on Android apps, we investigate self-reported activities of Android
developers and to what extent these activities can be classified
with machine learning techniques. To this aim, we firstly create
a taxonomy of self-reported activities coming from the manual
analysis of 5,000 commit messages from 8,280 Android apps. Then,
we study the frequency of each category of self-reported activities
identified in the taxonomy, and investigate the feasibility of an
automated classification approach. Our findings can inform be used
by both practitioners and researchers to take informed decisions or
support other software engineering activities.

KEYWORDS
Android, Empirical Study, Mining Software Repositories

1 INTRODUCTION

Developing Android apps is fundamentally different from devel-
oping other types of software [11, 16, 41, 51]: On the one hand,
even the smallest error may have quick and large effects (such as
negative user reviews, with subsequent loss of future users [32]);
on the other hand, Android apps have to deal with potential inter-
action with other apps, heavy usage of sensors like accelerometer
and GPS, limited battery life, limited display size, and so forth. This
inherent difference in the development of Android apps limits the
possibility to use results, off-the-shelf, from software engineering
research done on other kind of software systems. Instead, to use
and guide our research to support the engineering of Android apps,
first we need to gain a novel, deeper empirical understanding of how
developers work on these apps.

Our goal, in line with this need, is to investigate and understand
the various types of activities performed by Android developers
in the context of real projects. We focus on self-reported activities,
which represent one of the most valid ways to comprehend and
analyze the development process [22]. As done in previous studies,
we tap into the commit messages left by Android developers in
GrTHUB repositories, as a way to study these self-reported activi-
ties. Past research has focused on specific aspects of Android apps
such as performance [8] and energy consumption [3, 28], here we
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continue on this line, but broaden the scope to any type of activity,
as done for open-source software [39].

Our research method follows that of an exploratory investiga-
tion, ie., we started without hypotheses about the contents of the
GrTHUB commit messages and made the types of development activ-
ities emerge from the extracted data [52]. To this purpose, we firstly
built a dataset of 8,280 Android apps (which are both open-source
in GrTHUB and distributed through the Google Play store) and ran-
domly selected 5,000 commits from their repositories. Then, we (i)
manually inspected and categorized all the commits by conduct-
ing independent content analysis sessions involving 5 researchers,
(ii) collaboratively merged the independently-identified categories
into a single taxonomy, (iii) validated the obtained taxonomy with
external mobile app developers, (iv) analyzed the frequency of each
category in the taxonomy across the 5,000 commits, and (v) investi-
gated how effectively these commits can be automatically classified
via standard machine learning techniques.

Our results show that Android developers reportedly perform a
wide variety of different activities at different levels of abstraction,
ranging from bug fixes, release management, access to sensors,
etc. The most prominent category of activities is app enhancement
(new and updated features), followed by bug fixing (mostly in an
app-specific manner) and project management (mostly by merg-
ing/branching of the repository and by preparing a new app release).
Those results confirm the importance of research related to fea-
ture management and release planning of Android apps, Android-
specific program analyses, and software repository mining. Finally,
the automated classification reaches promising initial results.

The main contributions of this study are the following:

(1) A taxonomy of self-reported activities performed by Android
developers when evolving their apps;

(2) An empirical analysis of the frequency of the self-reported
activities performed by Android developers aimed at under-
standing their main concerns when evolving their apps;

(3) An automated approach for classifying commit messages
according to the defined taxonomy:.

(4) A comprehensive replication package containing the raw
data, analysis scripts, and the automatic classifier produced
in our research.!

Uhttps://figshare.com/articles/Self-Reported_Activities_of Android_Developers/5802909
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2 METHODOLOGY

The goal of the study is to empirically investigate and classify the
activities performed by Android developers reported within commit
messages, with the purpose of understanding the typical actions they
perform and easing a variety of decision making mechanisms (e.g.,
code review triaging or monitoring of the development process).
The perspective is of both researchers and practitioners, interested
in an empirical understanding of the activities performed during
the development process.

The choice of considering self-reported activities is driven by
the recent advances in program comprehension [22], which demon-
strated that the analysis of commit messages represents one of
the most valid strategies to comprehend and analyze the devel-
opment process of a software system. Our study revolves around
three research questions and follows well-established guidelines
on empirical software engineering [46, 52].

In the first place, we aim at categorizing the developers’ self-
reported activities through the analysis of commit messages that
accompany the changes performed while evolving Android apps:

ROQ1. How can self-reported activities of Android developers be
categorized?

After having categorized the self-reported activities, we analyze
the frequency of each category to quantify the different developers’
concerns when developing Android apps:

RQ2. How often does each category of self-reported activities
occur?

Finally, we investigate how effectively self-reported activities
can be automatically classified from commits via standard machine
learning techniques, so that developers and project managers can
be automatically supported during their decision making processes:

RQ3. How effective is an automated approach, based on ma-
chine learning, in classifying self-reported activities?

In the following subsections, we detail the design choices that
allow us to answer our research questions.

2.1 Context Selection and Dataset Creation

We study self-reported activities based on commit messages au-
thored by developers, thus we need real-world Android applications
for which commit history is available. To ensure the analysis of a
proper set of mobile apps having different size and scope as well as
being published on the GooGLE PrAY store, we design and conduct
the selection process shown in Figure 1.

In step 1 we identify the GITHUB repositories containing the
source code of Android applications. Then, to properly link a GiTHuB
repository to its corresponding app in GOOGLE PrAy, we exploit
the Android manifest file (step 2). In fact, every Android app must
have an AndroidManifest.xml file that includes a package name
that identifies the application and serves as an identifier of the app
on GooGLE Pray. The data concerning all open-source repositories
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Figure 1: Dataset creation process

on GITHUB are available in databases on GooGLE BIGQUERY.? BiG-
QUERY list 378,610 AndroidManifest.xml files on GiTHUB with
112,153 unique package names. Duplication of package names may
occur because of forked projects, the frequent usage of example
names, or inclusion of manifest files from third-party code [17].
In step 3 we remove unpublished and non-existent apps by check-
ing the existence of the corresponding page on GOOGLE PLAy. As a
result, 9,478 package names are listed as apps in GooGLE Pray. For
some of these apps, one or more repositories contain a matching
AndroidManifest.xml file, as detailed above. In step 4 we match
the repositories to GOOGLE PLAY entries with an heuristic approach:

(1) if only one repository contains a manifest for a package
name, we assume it hosts the code for the app;

(2) if more than one repository with the manifest file exists,
we search for links from GooGLE PrLAay meta-data of the
app to any of the GITHUB repositories. If we find a distinct
repository the app entry linked to, we assume the repository
to be the canonical source for the app;

(3) if no such unique link exists, we select the most popular
repository based on number of (i) forks, (ii) watchers, and
(iii) subscribers, as listed by GiTHUB.

During step 4, we remove the apps (718) for which we cannot
determine a canonical repository, thus reducing the total number
of apps we investigate (8,432). In step 5, we exclude repositories
with fewer than 2 commits (152) to exclude unmaintained, toy, or
demo projects [17]. Our final dataset consists of a total 8,280 mobile
apps covering all 34 categories of the GOoGLE PLAY store, for a total
of 1,727,930 commits belonging to the main branch of these apps’
GrTHUB repositories (step 6).

In step 7, we randomly select a sample of 5,000 commits that
cover 30 categories of GOOGLE PrAy, since the manual analysis of
all the collected commits is infeasible. This sample represents a 99%
statistically significant sample with a 1% confidence interval of the
total number of commits belonging to the dataset.

2.2 RQL1. Self-reported activities categorization

To answer our first research question, we conduct three iterative
content analysis sessions [19] involving five software engineering
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researchers, all authors of this paper, (2 graduate students, 2 re-
search associates, and 1 faculty member) with at least five years
of programming experience. From now on, we refer to them as
inspectors. We describe the methodology for these three iterative
sessions, followed by the validation method.

Taxonomy Building. Starting from the set of 5,000 commits com-
posing our dataset, overall each inspector independently analyzes
1,000 commits.

Iteration 1: The inspectors analyze an initial set of 300 commit
messages. Then, they open a discussion on the labels assigned
so far and try to reach a consensus on the names and types
of the categories assigned. The output of this step is a draft
taxonomy that contains some obvious categories (e.g., changes
to the Graphical User Interface), while others remain undecided.

Iteration 2: The inspectors firstly re-categorize the 300 initial com-
mits according to the decisions taken during the discussion, then
use the draft taxonomy as basis for categorizing another set of
500. This phase is for both assessing the validity of the codes
coming from the first step—by confirming some of them and
redefining others—and for discovering new codes. After the com-
pletion, the inspectors open a new discussion aimed at refining
the draft taxonomy, merging overlapping categories or character-
izing better the existing codes. A second version of the taxonomy
is produced.

Iteration 3: The inspectors re-categorize the 800 commits previ-
ously analyzed. Afterwards, they complete the final draft of the
taxonomy verifying that each kind of commit message encoun-
tered in the final 200 commits is covered by the taxonomy.

Following this iterative process, we defined a hierarchical taxon-
omy composed of two layers. The top layer consists of 9 categories,
while the inner layer contains of 49 subcategories.

Taxonomy Validation. In addition to the iterative content analy-
sis process, we also externally validate the defined taxonomy. To
this aim, we involved 2 professional developers having 4 and 5 years
of Android programming experience, respectively. They were con-
tacted via e-mail by one of the authors of this paper, who selected
them from her personal contacts.

We provided them with a spreadsheet containing a list of 200
commit messages randomly selected from the total 5,000 in the
dataset and asked to categorize the commits according to the tax-
onomy we previously built. During this step, the developers were
allowed to either consult the taxonomy (provided in PDF format
and containing a description of the commit categories in our tax-
onomy similar to the one we discuss in Section 3.1) or assign new
codes if needed.

Once the task was completed, the developers sent back the
spreadsheet file annotated with their categorization. Moreover, we
gathered comments on the taxonomy and the classification task.
As a result, both the participants found the taxonomy clear and
complete: As a proof of that, the tags they assigned were exactly the
same as the ones assigned during the phase of taxonomy building.

2.3 RQ2. Frequency of self-reported activities

In this research question, we aim at analyzing how frequently each
category of our taxonomy appears. To this aim, we compute the
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frequency each category of activities was assigned to a commit
message during the iterative content analysis.

In this way, we can overview the main developers’ concerns
when evolving mobile apps and identify the most popular self-
reported activities. In Section 3 we present and discuss bar plots
showing the frequency of each category in the taxonomy.

2.4 RQ3. Automated classification of activities

With our final research question we test standard machine learning
techniques to automatically classify self-reported activities. As a
side effect, the output of this research question poses a baseline
against which future approaches aimed at more accurately classify-
ing commit messages can be tested.

While several techniques can classify text of self-reported activi-
ties (e.g., keyword-based approaches [49]), we use machine learning
since this type of approach can automatically learn the features
discriminating the a certain category, thus simulating the behav-
ior of a human expert [36]. Overall, machine learning is a method
(supervised, in our case) where a set of independent variables (the
predictors) are used to predict the value of a dependent variable
(in our case, the commit classification) using a machine learning
classifier (e.g., Logistic Regression [30]). The following subsections
detail the design decisions taken to build and validate our approach.

Independent Variables. Our goal is to classify the nature of
self-reported activities based on commit messages: the basic in-
formation for the classification is therefore given by the words
characterizing the commit message. However, not all the words
in a commit can be actually representative for the classification
of the self-reported activity. For this reason, we need to properly
preprocess them [6].

In the context of our work, we use the widespread Term Fre-
quency - Inverse Document Frequency (TF-IDF) model [42], which
is a weighting mechanism that determines the relative frequency
of words in a specific document (i.e., a commit message) compared
to the inverse proportion of that word over the entire document
corpus (i.e., the whole set of commit messages in our dataset). This
approach measures how characterizing a given word is in a com-
mit message: For instance, articles and prepositions tend to have a
lower TF-IDF since they generally appear in more documents than
words used to describe specific actions [42]. More formally, let C
be the collection of all the commit messages in our dataset, let w
be a word, and let ¢ € C be a single commit message, the TF-IDF
algorithm computes the relevance of w in c as:

relevance(w, ¢) = fi, ¢ - log(|C|/ fu,c) (1)

where fi, ¢ equals the number of times w appears in c, |C| is the
size of the corpus, and f,,, c is equal to the number of documents in
which w appears. The weighted words given as output from TF-IDF
represent the independent variables for the machine learner.

Dependent Variables. The category of a self-reported activity
is the variable to predict. We set the granularity of the dependent
variable to the top layer of the taxonomy, i.e., the one reporting the
9 main categories of self-reported activities in our taxonomy.

Machine Learners. In our context, a certain self-reported ac-
tivity might refer to more than one category: For instance, suppose
that in a commit a developer performs both an enhancement and a
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bug fix. This is a target for multi-label classifiers [50]. These can be
of two types: (i) problem transformation methods, which transform
the multi-label classification into a more single-label classifications,
and (ii) algorithm adaptation methods, which extend specific classi-
fiers in order to handle multi-label data [50].

Since the two types of multi-label algorithms have similar perfor-
mance [40], we adopt a problem transformation strategy and use the
ONEVSREST classifier [15]. Taking as input a standard single-label
algorithm, ONEVSREST wraps up the process of training a classifier
for each possible class. As a result, the input classifier assigns a
probability that a certain commit message belongs to each of the
categories of our top layer taxonomy: If the probability is higher
than 0.5, then the commit message is considered as belonging to it.

With the aim of providing a wider overview of the performance
achievable by different single-label classifiers when adopted in
combination with ONEVSREST, we consider (i) NAIVE BAYEs, (ii)
SuPPORT VECTOR MACHINES (SVM), (iii) Loc1sTiC REGRESSION, and
(iv) RanpoM ForesT. These classifiers make different assumptions
on the underlying data, as well as have different advantages and
drawbacks in terms of execution speed and overfitting [30]. Before
running the models, we identify their best configuration using the
GRID SEARCH algorithm [4].

Evaluation Strategy and Metrics. To assess the performance
of the proposed machine learning approach, we adopt the 10-Fold
Cross Validation [47]. This methodology randomly partitions the
data into 10 folds of equal size, applying a stratified sampling (i.e.,
each fold has the same proportion of self-reported activity cate-
gories). A single fold is used as test set, while the remaining ones
are used as training set. The process is repeated 10 times, using
each time a different fold as test set. Then, the model performance
is reported using the mean achieved over the ten runs.

The performance of the experimented models are reported using
widespread classification metrics such as precision, recall, and F-
Measure (the harmonic mean between precision and recall) [2].

2.5 Threats to Validity

We report possible threats to the validity of the study and how we
mitigated them.

Taxonomy validity. To ensure that the correctness and com-
pleteness of the categories of self-reported activities identified, we
iteratively built the taxonomy by merging and splitting categories
if needed. As an additional validation, we asked 2 professional de-
velopers to classify a set of 200 commits according to the proposed
taxonomy. They assigned to the sampled commits the same cate-
gories as the ones assigned during the phase of taxonomy building,
also reporting the completeness and clarity of the categories we
identified. We cannot exclude the missing analysis of specific com-
mit types out of the categories identified, however the validation
session gives us confidence of the reliability of the taxonomy.

Automated approach validity. To build a multi-label classifi-
cation technique, we exploited the ONEVSREST method [15], which
has been shown to have similar performance than other approaches
[40]. Problems like multi-collinearity [31] are mitigated by the pre-
processing and the TF-IDF modeling.
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To provide an overview of the performance achieved when using
ONEVSREST in combination with different single-label classifiers,
we tested four categories of machine learners.

External validity. As for the generalizability of the results, we
conducted this study on a statistically significant sample of 5,000
belonging to 8,280 open-source mobile apps that are published on
the GooGLE P1AY store. The proposed taxonomy may differ when
considering closed-source apps; at the same time, the performance
of the experimented automatic approach might be lower/higher
than the one reported herein.

3 RESULTS

We report the results of our study by research question.

3.1 RQ1. Categories of self-reported activities

The manual analysis of the 5,000 commits led to the creation of
the taxonomy of Android developers activities shown in Figure 2.
The taxonomy is composed of two layers: The top layer (9 items)
groups together activities with similar overall purpose (e.g., app en-
hancement, bug fixing), whereas the subcategories (49 items) in the
lower level provide a finer-grained categorization. In the following
we describe each category with the corresponding subcategories.

A. App enhancement. This category represents the activities
aimed at adding or improving existing features of the mobile app.
This is clearly at the core of mobile apps development and, as we
will see in Section 3.2, its related commits involve a large number
of changed source code files.

Example commit. "[Wear] Implemented Favourites feature for
wearable companion app." - thecosmicfrog/LuasataGlance (com-
mit: 57¢92a8784db5ac003af82b91aaee2135f41c3c4)

A.1- New feature: Implementation of new app features (e.g., a
new screen for sharing a content on social media). In the commit
messages developers mostly describe the newly added feature,
without implementation details.

A.2 - Feature changes: Activities referring to the change or en-
hancement of already existing features of the mobile app. By look-
ing at the commit messages, these are more related to changes in
the business logic of the mobile app, rather than about bug fixes
or code refactoring.

A.3 - Usability: Activities related to changes aimed at improving
the usability and user experience of the app. This category is
different from the category E since here developers are focusing
on the business logic (e.g., how to share a content with less taps),
whereas in E they are focusing on the presentation (e.g., colors).

A.4 - Language: Activities related to internationalization, trans-
lations of textual contents, etc.. Mostly, the commit messages
explicitly refer to the support of additional languages and the
refinement of existing translations.

A.5 - Android lifecycle: Activities about the management of An-
droid components lifecycle events and transitions. In the commit
messages developers refer to technical aspects related to the
Android programming model, such as the onCreate method.
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Self-reported activities
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Figure 2: Taxonomy of self-reported activities of Android developers

A.6 - Profitability: Developers add/improve profitability aspects
of the app. In the commit messages developers refer to activities
such as adding ways to receive donations and displaying ads.

A.7 - Utility: Developers mention utility classes or methods, po-
tentially used across the whole app, such as those for serializ-
ing/deserializing dates, strings manipulation, and app-specific
exception handlers.

B. Bug fixing. This category represents development activities
where app issues that appear in the mobile app are fixed.

Example commit. "v2.2 Testing new fix for massive bat-
tery usage caused by GPS not being disabled during ap-
plication pause.” - GrahamBlanshard/WiseRadar (commit:
7¢35abb8512bb89b65750175e4ab07¢26a813677)

B.1 - App specific: Bux fixing specific to the domain of the app.
Commits belonging to these category do not relate to generic
software qualities (e.g., performance), yet they have been marked
as bug fixes.

B.2 - Performance: Activities aiming at improving the perfor-
mance. Examples of commits in this category are Android wake
locks, memory leaks and optimization of string operations.

B.3 - Security: Fixing security issues in the app. Example commits
belonging to this category include sanitizing the input provided
by users and removal of unused permissions.

B.4 - Crash: Fixing crash problems. Commits in this category are
at different levels of abstraction, ranging from fixing null pointer
exceptions to correcting issues for specific Android devices.

B.5 - Energy: Optimizing battery consumption optimization and
managing potential energy leaks. Commits included in this cat-
egory mostly include refactoring of the code in terms of better
use of sensors (e.g., GPS) and WiFi as well as Bluetooth scanning.

C. Project management. In this category developers manage app
releases, documentation, the build process, the GitHub repository

itself (e.g., merges), IDE-related issues (e.g., Android Lint configura-
tion).

Example commit. "Merge pull request #4 from RyDroid/readme,
Update of README" - uberspot/AnagramSolver (commit:
322¢a43654065ca00d1a8757059154cd1¢5d1155)

C.1 - GitHub-related: GitHub-specific aspects of the project. The
commits in this category mostly mention the creation/merging of
branches and the execution of the first commit in the repository.

C.2 - Release management: Activities to prepare a new app re-
lease. The commit messages deal, for example, with changing the
app version number and preparing a new entry in the changelog.

C.3 - TODO: Activities on future actions to be done as potential
enhancements or fixes. In this cases, commit messages deal both
with low-level items (e.g., removal of a code smell) and higher-
level concerns (e.g., implementation of a new feature).

C.4 - Documentation: Activities on the documentation of the
app. Commit messages in this category mainly deal with adding/re-
fining comments in the source code and the documentation of the
app (e.g., description of the app functionalities, its requirements,
UI mockups).

C.5 - Build: Activities on improving project compilation. Commit
messages related to these activities usually relate to the creation
of the app binaries (i.e., its APK file), rules for building the app,
and migration to/from building systems.

C.6 - Manifest: Changes in the Android manifest of the app. Usu-
ally, commits belonging to this category concern updating the
target SDK of the app, cleanup of default unused tags in the
manifest,and adding/changing views definitions in the manifest.

C.7 - IDE: Activities related to the configuration of the IDE (e.g.,
Android Studio, Eclipse). Mainly commit messages include the
definition of a new Eclipse project for the app and upgrade of
the latest version of the IDE.
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D. Code re-organization. These activities are aimed at improving
the structure, size, and readability of the code (e.g., refactoring,
cleaning, improvement of the code) or of the project organization,
without changing behavior of the app.

Example commit. "Refactored the PlayerService by moving parts
of the code into smaller classes” - bottiger/SoundWaves (commit:
a1911b5229ce1d1c3b5cal1066¢8c32e14c5cf68)

D.1 - Refactoring: Refactoring of the source code. Messages usu-
ally refer to moving code to specific methods of the lifecycle of
Android activities, import statements reorganization and extract-
ing methods from classes.

D.2 - Code cleanup: Source code cleaning activities (lighter weight
than refactoring). Commits include the removal of unused API
keys or unused string resources and deletion of dummy objects.

D.3 - Feature removal: Activities in which some features of the
app are removed. Messages are mostly about what has been
removed, not about why.

D.4 - Reduce app size: Activities aimed at reducing the app size
to make it a more lightweight download. Commit messages be-
longing to this category mostly regard the removal of unused
files or media resources.

D.5 - Dead code elimination: Elimination of source code never
executed at run-time. Commit messages refer mostly to removing
legacy Android activities, unused layouts and variable assign-
ments, as well as redundant initialization code.

E. User experience improvement. This category represents the
activities related to the user experience of the app, including screen
layouts, elements colors and padding, text boxes appearance, but-
tons, messages shown to the user, as well as gestures support.

Example commit. ‘“Increase the opacity of the show-
case background to 96% (in line with material guide-
lines)" -  ccomeaux/boardgamegeek4android  (commit:
016ealee32dea3351be49c12bcc215£231039380)

E.1- GUI: Changes to the graphical user interface aimed at im-
proving the user experience. Commit messages in this category
are mostly about color schemes, buttons and UI layout.

E.2 - Strings: Activities related to the management of strings in
the app. In the commit messages in this category usually devel-
opers discuss about static strings shown to the user.

E.3 - Images: Activities related to graphic elements such as icons,
images, and graphics shown to the user. Commit messages are
usually about changes of icon sets, addition or change of fixed
images shown to the user, and logos.

E.4 - Gesture: Management of gestures of the users. Messages
are mostly about features such as scroll to refresh, swipe for
performing some action, and disabling scroll in some specific
parts of the app.

E.5 - Orientation: Management of device orientation. Messages
are mostly about the detection of orientation change (e.g., for
playing a video), the creation of a dedicated layout for landscape
orientation, and the margins when in landscape mode.

E.6 - Dialog: Activities related to dialogs, toasts, and pop-ups used
to show notifications to the user. Messages usually concern
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adding/removing confirmation dialogs, adding toasts for giving
feedback to the user, and fixing the style of pop-ups.

E.7 - Menu: Activities related to menus and navigation bars in
the UL Commit messages usually regard adding/removing menu
items, reordering items in navigation bars as well as menus, and
adding contextual menus where needed.

F. Storage management. This category of activities concerns
changes involving archives, access to the file system, files storage,
local settings, and persisting data via local database.

Example commit. "Don’t overwrite DB Status LOCAL_CREATED
with LOCAL_EDITED. To prevent errors on synchronization (create
-> edit -> sync)" - stefan-niedermann/nextcloud-notes (commit:
eb6e2b0d74e7¢283d6£7921f8ceeled4191193d7)

F.1 - Settings: Activities on locally-stored user settings and prefer-
ences. Commits related to this category are mostly about adding/re-
moving specific items in user preferences and the integration
with the Android system settings or with its Preference APL3

F.2 - Local database: Activities related to data management via
local databases (e.g., SQLite). Commit messages are usually about
improving the queries to a SQLite database defined locally in the
app and the addition of a local SQLite database in the app.

F.3 - File system: Activities related to the management of files in
the local file system of the mobile device. Messages are usually
about storing files in the SD card, cleaning up old temporary files,
and checking if some locally stored configuration files exist.

G. Sensing & Communication Activities belonging to this cat-
egory are related to (i) access to the device sensors (e.g., camera),
recording and playing media streams (e.g., making a video), and (ii)
communication features of the device (e.g., access to the WiFi/4G
networks, making calls, messaging).

Example commit. "Flip gray image as well, so the image is not ro-
tated when the phone is rotated. This caused a bug when switching
between front and back camera” - Lauszus/FaceRecognitionApp
(commit: 71210a870755e384d35b66e1272abd2c44480b05)

G.1 - Network: Activities related to the usage of the network.
Commit messages usually include management of different levels
of available bandwidth, switching to secure protocols, manage-
ment of network errors, and management of TCP sockets leaks.

G.2 - Audio: Activities related to audio playback. Commit mes-
sages are usually about the management of the Android audio
focus for playing sounds when in background,* and the manage-
ment of audio playback sessions.

G.3 - Image: Activities about the management of images in the
app. Commit messages in this category are usually about backup,
elaboration, and download of images.

G.4 - Sensor: Activities aimed at accessing device sensors. Com-
mit messages regard mostly the interaction with the GPS sensor,
the accelerometer, and the gyroscope.

G.5 - Camera: Activities related to the usage of the device camera.
Commit messages in this category are usually about taking a

Shttps://developer.android.com/guide/topics/ui/settings.html
*http://developer.android.com/guide/topics/media-apps/audio-focus.html

639

640

641

642

643

644

645

647
648

649

660

662

663

664

665

666

667

668

669

670

671

672

683

684

686

687

688

689

690

691

692

693

694

695

696


https://developer.android.com/guide/topics/ui/settings.html
http://developer.android.com/guide/topics/media-apps/audio-focus.html

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

749

Self-Reported Activities of Android Developers

picture when using the app, when and how to show the preview
of a taken picture, usage of the flash light, switching between
front and rear camera.

G.6 - Messaging: Activities related to SMS/MMS messages. Com-
mit messages in this category are usually about sending/receiving
messages and developing fallbacks when SMS/MMS messages
cannot be handled.

G.7 - Call: Activities related to making and receiving phone calls.
Messages usually regard making a call to a specific phone number,
receiving calls, and silencing calls.

G.8 - Microphone: Activities related to the usage of the device mi-
crophone. Commit messages in this category are about recording
audio and controlling the microphone settings.

H. API management This category regards the activities related
to the interaction of the app with external APIs. In this context,
by external API we mean the software used by the app, but not
owned/developed by the app developers themselves (e.g., the APIs
of the Android platform or REST APIs).

Example commit. "Upgrade to  broken-out
Play Services v8.4.0" - zulip/zulip-android
2e2992f67dfec003e11cd1073b6e1£71849fd235)

Google
(commit:

H.1 - Library: Activities related to used Android libraries. Commit
messages in this category are mostly about library substitution
and usage of a new library.

H.2 - Android API: Activities related to the interaction of the app
with the Android platform APIs. Messages refer to code changes
for supporting new Android versions, retrofitting the code for
supporting older Android versions, and fallbacks for fixing bugs
manifesting only when the app is running on one specific version
of the Android platform.

H.3 - REST API: Activities related to the interaction with REST
APIs. Commit messages in this category regard changing URLs
and ports of REST endpoints, adapting to new formats of the
payloads of HTTP responses produced by REST endpoints, and
management of authentication as well as sessions.

H.4 - Deprecation: Activities regarding reaction to deprecation,
e.g., by moving to supported versions. Commit messages are
about removing or changing calls to deprecated code.

I. Testing & Debugging. This category covers the activities related
to logging information about the app at run-time, testing (e.g., test
cases implementation, tests execution), and debugging.

Example commit. "test: ensure tests for retrieval of all persons in
local database and repository passes” - chikecodes/Debt-Manager
(commit: a4bc070540c2b2726f42a78d0ata86d13d6c333f)

I.1 - Testing: Activities related to testing. Commit messages in
this category are about adding, fixing, or updating test cases, and
ensuring that all tests are passing.

1.2 - Logging: Activities related to logging information at run-
time and to reporting crashes. Commit messages in this cate-
gory mention removing logging messages before publishing the
app, adding logging statements for inspecting app behaviour at
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development time, logging errors in the IDE console, and inte-
grating third-party logging as well as crash reporting libraries
(e.g. Crashlytics,5 Timber6).

1.3 - Debugging: Activities related to the debugging of the app.
Commit messages refer to finding not-yet-localized bugs, manu-
ally checking test results, and raising the need for debugging a
specific feature.

Discarded commits. During our manual analysis, we identified
115 commits with non-informative commit messages, which we
discarded when building the taxonomy. There are three types of
discarded commits: (i) 105 commits without any informative com-
mit message (e.g., just one single character, three dots, one generic
word), (ii) 9 commits with funny but non-informative commit mes-
sage, and (iii) 1 commit reporting about an easter egg in the app.
This low number of discarded commits (i.e., 2% over the total) gives
more credibility to the completeness of the proposed taxonomy.

Result 1: Our taxonomy comprises 9 top layer and 49 subcat-
egories reporting a large variety of developers’ self-reported
activities.

3.2 RQ2. Frequency of self-reported activities

After having categorized and described the diversity of activities
that Android app developers report to do while evolving their apps,
we now focus on determining how each of these activities is preva-
lent in our dataset.

Figure 3 shows the distribution of the commit messages across
the categories of self-reported development activities. Each block
in the figure reports the cumulative value for its corresponding
top level category (e.g., 1,690 commits are in the category A - App
enhancement) and the absolute value for its subcategories (e.g., of
the 1,690 commits belonging to category A, 623 belong to the A.1 -
New feature category and 581 to the A.2 - Feature changes category).

App enhancement is the most frequent among the high-level
self-reported activities. This result can be explained by the highly
dynamic ecosystem like the GOOGLE PLAY store, where developers
are involved in very rapid release cycles [24], which are mainly
driven by user ratings and reviews [14, 23, 34, 45]. In fact, the two
most frequent subcategories are the development of new features
(New feature) and their improvement (Feature changes). Other quite
recurring types of app enhancement include the improvement of
usability and internationalization of the apps. Specially the latter
is a likely consequence of the global nature of the GooGLE PrLAY
store, which imposes to take the language spoken by the app users
in consideration.

Bug fixing is the second most frequent category of self-reported
activities of Android developers. We conjecture that this high fre-
quency is linked to how the app quality can have a dramatic impact
on the success of an Android app [32], thus forcing developers to
pay special attention to continuously correct bugs [20, 24]. Also,
this frequency may be explained by Android bug reports being
of high quality [5], thus easing the bug fixing process, mainly via
long textual descriptions of the bug, the steps to reproduce the bug,

Shttp://fabric.io/kits/android/crashlytics
®http://github.com/JakeWharton/timber
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A - App enhancement | /690
A.1 - New feature _ 623
A.2 - Feature changes - || NN 581
A.3 - Usability - [l 238
A.4 - Language - 174
A.5 - Android lifecycle | | 44
A.6 — Monetization | 19

A7 - Utility | 11

B - Bug fixing - | 1 196
B.1 - App specific | | NG 051
B.2 - Performance . 106
B.3 - Security I 62
B.4—Crash- || 35

B.5 - Energy 12

C - Project management - || NN 010
C.1 - GitHub—related | [N 414
C.2 - Release management - [JIIl 254
C.3-Todoitem [l 94
C.4 - Documentation- | 56
C.5-Build | 47
C.6 — Manifest- | 24
C.7-1DE- | 21
D - Code re—organization - [ 560
D.1 - Refactoring [ 294
D.2 - Code cleanup - [l 175
D.3 - Feature removal - || 37
D.4 - Reduce app size- || 33
D.5 — Dead code elimination- | 21
E - User experience improvement - | 512
Ed-GUI- [ 244
E.2 - Strings l 86
E.3 - Images l 81
E.4 — Gesture I 30
E.5 — Orientation I 26
E.6 - Dialog | 24
E.7 — Menu | 21
F - Storage management | [JJi] 205
F1-Settings [l 87
F2 - Local database  [Jj 82
F.3 - File system || 36
G - Sensing & communication - 148
G.1 - Network I 56
G2 - Audio- | 26
G.3-Image- | 21
G.4-Sensor | 15
G5 - Camera | 12
G.6 — Messaging- | 10
G7-Cal | 6
G.8 — Microphone 2
H - API management - [Jli] 140
H.1 - Library- [} 69
H.2 - Android API- | 45
H.3 - RESTAPI- | 22
H.4 — Deprecation | | 4
| - Testing & debugging - [l 124
1.1 - Testing- J] 58
1.2 - Logging- | 43
1.3 - Debugging | 23
0 500 1000 1500

Figure 3: Frequencies of self-reported activities.

and explanations of the difference between expected and the actual
outputs. In the majority of the cases, fixed bugs are about aspects
specific to the app domain (e.g., fixing the value shown in a specific
card), whereas in other cases they are related to well-known key
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dimensions of the quality of a mobile app, such as performance [38],
security [26], presence of crashes [12], and energy efficiency [11].

Project management aspects of the app covers almost a fifth
of all self-reported activities. In those cases, developers are mostly
referring to GitHub-related activities (e.g., merging a branch) or
about a new releases of the app (e.g., changing the app version
number, changing app-store-related metadata). Developers also use
GrTHus for leaving todo items for keeping note of what should be
done/fixed in future iterations. Interestingly, documentation seems
to be not really a prominent activity of Android developers (only
56 activities reported in our study). This result may be due to the
fact that developers do not use GITHUB for storing and managing
the documentation of their apps, maybe in favour of more flexible,
easy-to-use, and designer-friendly document sharing platforms.

Code re-organization activities are reported in 560 cases (11%
on the total) by developers, with a strong predominance of refac-
toring and code cleanup. Those activities seem to be regarded as
important by developers, despite the noticeable lack of refactoring
approaches working in the context of Android applications [25].
This may also be a result of the need for quick release cycles for
Android apps, where it may be the case that maintainability-related
activities like code refactoring and cleanup might overlap with
more functional evolutions of the app [29]. Other less-recurrent
activities are feature removal, app size reduction, and dead code
elimination. All of them aim at making the app more lightweight
both at run-time and during the initial download of the app binary
(i.e., the APK file) from the GOOGLE PLAY store.

User experience improvement activities are almost as preva-
lent as code re-organization and this is aligned with previous re-
search findings. In fact, past research has provided evidence that
Android developers are aware of the importance of the user expe-
rience they are providing with their apps and are putting a huge
emphasis on it [16]. In this area, according to our study, developers
activities are mostly dedicated to the GUI of the app (e.g., layout,
animations, views), followed by a proper formatting and phrasing
of textual feedback shown to the user (i.e., strings), and the proper
management of images (e.g., images size, asynchronous loading).
Other less recurrent activities are about users gestures, the the
device orientation, dialogs and toasts, and (navigation) menus. The
difference of the frequencies of the above described activities may
be due to the fact that the GUI, strings, and images are in the vast
majority of Android apps and can strongly vary across apps and
projects. Differently, (i) gestures, dialogs and menus are quite stan-
dard today, both from a design and Android APIs perspectives, and
(ii) the explicit management of device orientation is not widespread.

Developers store and manage their data locally in the app, mainly
for keeping app’s functionalities reliable and responsive even when
the mobile device does not have a reliable connection [21]. Android
settings and access to local databases (e.g., SQLite) are the most
recurrent subcategories, followed by access to the file system. This
result is quite surprising since the Android settings system is based
on a single class, Preference, that provides a relatively basic API
to developers. Intuitively, Android developers can store settings as
key-value pairs, where (i) the value of each setting can be only a
primitive type (e.g., boolean, integer, string) and (ii) the graphical
representation of each setting is managed by the Android platform.
It will be interesting to (empirically) assess how Android developers
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interact with the Android settings system and why such a relatively
high number of settings-related activities are performed.

Sensing & communication activities are reported in 148 cases.
Among them, developers mostly interact with the network (e.g.,
by making HTTP requests, managing cached results, or managing
situations where the device does not have an Internet connection).
Other less common activities are related to multimedia features of
mobile devices (e.g., audio recording, camera) and other sensors (e.g.,
GPS, accelerometer). Sending and receiving messages and making
phone calls are in the lower part of our ranking of activities, sug-
gesting that they are becoming less and less used by developers in
favour of their Internet-based alternatives (e.g., VoIP, push notifica-
tions, etc.). Surprisingly, the usage of the microphone is reported in
only 2 cases and this is in contrast with the current trend of voice-
operated apps, such as AMAZON ALEXA, APPLE SIRI, and various
GooGLE products (e.g., GOOGLE TRANSLATE, GOOGLE MaP).”

API management activities are predominated by access to
third-party libraries and the interaction with official Android APIs.
This results is a confirmation that using third-party libraries is a
common practice for Android developers [18, 27]; moreover, it is
reasonable to find a non-negligible number of commit messages re-
ferring to the interaction with the Android API, since Android apps
are by their nature tightly integrated with the Android platform
(e.g., for managing activities’ lifecycle events, accessing sensors,
and showing views in the device display). The interaction with
REST APIs is less prominent as it is the management of deprecated
methods. The latter shows that app developers are little influenced
by deprecation, similarly to developers of other systems [43, 44].

Testing and debugging are the least reported activities (only
124). Among them, testing is leading with 58 activities, followed
by logging (43) and debugging (23). We suspect that those activi-
ties are so infrequent in our dataset, because developers may have
embedded them into other self-reported activities (that is, when a
developer implements a new feature, testing and debugging may
also be present, but are not referred to). Future studies can investi-
gate whether this is confirmed and it has an impact on developers’
perception of the importance of these tasks.

Result 2: Enhancement and bug fixing operations are the most
popular self-reported activities, followed by project manage-
ment and code re-organization ones. Interestingly, the least
reported activity is related to testing and debugging.

3.3 RQ3. Automated classification of activities

Our third research question seeks to understand to what extent
it is possible to use traditional machine learning approaches to
automatically classify commit messages into our taxonomy.

Table 1 reports the results achieved by the four different multi-
label classification approaches we experimented. The models re-
lying on SVM and LogGisTic REGRESSION provide the best balance
between precision and recall (on average, the F-Measure is 68%).
This is possibly due to the use of GRID SEARCH as technique for
setting the parameters of the classifiers: as shown by recent work

http://info.localytics.com/blog/voice-activated-apps-are-changing- everything.-heres-
how
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[9, 48], a proper configuration of these algorithms strongly improve
their performance. The other classifiers, i.e., NAIVE BAYEs and RAN-
DpoM FOREST, have a lower ability to correctly classify self-reported
activities. Their average F-Measure is 13 and 7 percentage points
lower than SVM, respectively. Thus, in our scenario, the choice of
the machine learning algorithm has an impact on the classification
performance.

Considering the classification for the single categories, self-
reported activities related to Bug Fixing are better classified by
all the classifiers. A possible explanation is related to the char-
acteristics words used by developers when reporting this type of
activities. In fact, in the commit messages in our dataset, we often
found the use of specific words like ‘fix’ and ‘bug’, or references
to issue reports (e.g., ‘#19823’), which give a strong signal that the
classifiers are able to capture.

Similarly, the Project Management and Enhancement categories
are classified with a similar accuracy by SVM and LoGisTic REGRES-
SION, possibly because of the specificity of the activities performed
by developers during these tasks.

Other categories have a higher variability, thus showing that
there is no set of words that can be easily used as features to discrim-
inate them. For instance, considering the cases of Storage, API Man-
agement, SVM is 14 and 26 percentage points more effective than
LoGISTIC REGRESSION, respectively. At the same time, in the classi-
fication of UI activities, LoGisTiC REGRESSION has an F-Measure 19
percentage points higher than SVM. This indicates that for some
particular categories the underlying classification algorithm makes
some difference and allows an improved categorization of self-
reported activities. As part of our future research agenda, we aim at
further investigating how the classifiers can be used as an ensemble
to improve the results [35] (e.g., by means of a dynamic switching
based on the characteristics of the commit messages [10]).

Finally, the investigated classifiers are not able to identify any
of the commit messages related to Sensing & Communication. We
further looked at the prediction results to investigate the reasons
behind this result: we found that the misclassification is mainly due
to the overlap between the terms used in Sensing & Communication
and Enhancement. In other words, discriminating the two categories
represents an arduous task for a machine learning algorithm since
it cannot properly learn the words characterizing the two types
of self-reported activities. This final result highlights a limitation
of our approach. The machine learning algorithm is based on the
implicit assumption that commit messages are representative of
the action performed by developers, because as humans we have
been able to classify them. However, a human analysis—as the one
conducted in RQ1—may often be able to correctly characterize
commits because of external factors that are often implicit (e.g.,
experience or information contextualization [13]); these external
implicit factors are not available to the machine learning approach,
hence it may fail in cases where the overlap between terms in two
categories is high [1, 33, 34, 37].
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Table 1: Performance of the Experimented Machine Learning Approaches when combined with ONEVSREsT

Category SVM Logistic Regression Naive Bayes Random Forest
Precision Recall F-M Precision Recall F-M Precision Recall F-M Precision Recall F-M
Project Management 81% 76%  78% 80% 72%  76% 87% 64%  74% 85% 72%  78%
Storage 71% 50% 59% 50% 42% 45% 67% 25% 36% 86% 38% 52%
Ul 41% 35% 38% 39% 54% 46% 42% 15% 22% 61% 20% 30%
Debug 58% 54% 56% 55% 61% 58% 71% 18% 29% 67% 7% 13%
Code Re-Organization 70% 69%  69% 68% 68%  68% 75% 47%  58% 79% 50% 61%
Bug Fixing 87% 74%  80% 87% 73%  79% 71% 47%  57% 87% 1%  78%
Enhancement 70% 66% 68% 66% 77% 71% 65% 52% 58% 72% 54% 62%
API Management 72% 74% 73% 44% 52% 48% 55% 19% 29% 33% 3% 6%
Sensing & Communication 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Average 71% 66% 68% 69% 68% 68% 69% 46%  55% 75% 55% 61%

Result 3: While for categories like Bug Fixing and Project Man-
agement the classification performance is up to 80%, machine
learning approaches can classify developers’ self-reported activ-
ities with an average F-Measure of 68%. However, our analysis
revealed some possible points of improvement (e.g., exploiting
the complementarity among classifiers).

4 RELATED WORK

The analysis of self-reported activities represents one of the most
valid ways to comprehend and analyze the development process of
a software system [22]. Despite this, so far self-reported developers’
activities have been investigated only by targeting different type
of systems, e.g., generic open-source software [39], or by focusing
on specific aspect of Android apps, such as performance [8] and
energy consumption [3, 28].

Ray et al. [39] analyzed a large dataset from GitHub to under-
stand the effect of programming languages on software quality.
Analyzing different aspects, including commit messages, and con-
trolling confounding effects, they found that language design has
modest effect on software quality.

Das et al. [8] investigate to what extent developers take care
of performance issue analyzing commit messages. The analysis,
conducted on 2,443 open source Android apps, showed that most
of the commits that lead to performance issue are related to GUI,
code smell fixing, network related code, and memory management.
Moura et al. [28] conducted a study similar to ours on an initial
sample of 2,189 commits from the Github repository to analyze
energy-aware commits. Analyzing a final dataset of 371 commits
from 317 real world apps, they found that software developers
heavily rely on low-level energy management approaches, such as
frequency scaling and multiple levels of idleness. Moreover, energy
saving techniques can impact the application correctness. With
the same aim, Bao et al. [3] extended Moura et al. by analyzing
468 commits from 154 Android apps. They discovered six power
management activities for Android apps and discovered that power
management activities vary with respect to the Android store cate-
gory of the app. With respect to these works, we analyzed commits
related not only on performance issues and energy management.

5 CONCLUSIONS AND IMPLICATIONS

Our work aimed at understanding and classifying self-reported
activities of Android developers. Analyzing 5,000 commit messages

from 8,280 apps, we defined a taxonomy of self-reporting activi-
ties, studied their frequency, and investigated the feasibility of an
automated approach for categorizing them.

Our results showed that changes applied by developers are
mostly related to enhancement or bug fixing operations: these
categories are clearly the ones for which more automatic support
would be needed. A very few commits are instead related to the
management of APIs and testing, possibly highlighting the lack
of specific tools supporting developers during these operations.
Finally, a machine learning approach can correctly classify self-
reported activities with an average F-Measure of 68%.

Our findings have a number of implications for both Android
developers and researchers. Android developers can use our taxon-
omy of development activities for taking more informed decisions
when assigning code reviews to team members. For example, com-
mits related to the Rest API category may be assigned to those
members who are also involved in the development of the back-end
of the mobile app (who potentially are more knowledgeable of the
interaction between the app and its back-end). Also, categorized
commits can be used (i) for getting a clear idea about which activi-
ties are being performed by developers during the whole project
lifecycle, (ii) for identifying potential blocking activities where
developers are spending the majority of their working time, or
(iii) as decision support system when allocating resources to the
project. Finally, developers can use our classifier for automatically
categorizing code commits according to our taxonomy of activities.

We support researchers by increasing our empirical understand-
ing of the types of (self-reported) activities performed by Android
developers in real projects. This is a key step to guide future re-
search in the area. Specifically, the most recurrent activities may be
a good indicator for future research on Android apps development.
Moreover, both the taxonomy and our automatic classifier have the
potential to strengthen the reliability of other mining approaches
that use commit messages as input (e.g., [3, 7, 8, 28, 32]). It is our
hope that our results and the shared dataset will help and guide
future research on support the engineering of Android apps.
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