
BECLoMA: Augmenting Stack Traces with User
Review Information

Lucas Pelloni, Giovanni Grano, Adelina Ciurumelea, Sebastiano Panichella, Fabio Palomba, Harald C. Gall
University of Zurich,

Department of Informatics, Switzerland
lucas.pelloni@uzh.ch, {grano,ciurumelea,panichella,palomba,gall}@ifi.uzh.ch

Abstract—Mobile devices such as smartphones, tablets and
wearables are changing the way we do things, radically modifying
our approach to technology. To sustain the high competition
characterizing the mobile market, developers need to deliver
high quality applications in a short release cycle. To reveal
and fix bugs as soon as possible, researchers and practitioners
proposed tools to automate the testing process. However, such
tools generate a high number of redundant inputs, lacking
of contextual information and generating reports difficult to
analyze. In this context, the content of user reviews represents
an unmatched source for developers seeking for defects in their
applications. However, no prior work explored the adoption of
information available in user reviews for testing purposes. In this
demo we present BECLOMA, a tool to enable the integration of
user feedback in the testing process of mobile apps. BECLOMA
links information from testing tools and user reviews, presenting
to developers an augmented testing report combining stack traces
with user reviews information referring to the same crash. We
show that BECLOMA facilitates not only the diagnosis and fix
of app bugs, but also presents additional benefits: it eases the
usage of testing tools and automates the analysis of user reviews
from the Google Play Store.

Index Terms—Automated Software Testing, Mobile Applica-
tions, User Reviews Analysis

I. INTRODUCTION

Mobile devices such as smartphones, tablets and wearables
are currently used in many aspects of our everyday life [14].
Indeed, we witnessed a gradual shift to the so called post-
pc era. Such a phenomenon caused the explosion of the app
industry in the last decade [20]. For this reason, the mobile
market is experiencing a high competition where developers,
to stay ahead with their competitors and continue to gain
and retain users, need to deliver high quality applications in
short release cycles. Thus, to maximize app market success
developers aim at attaining high quality software by revealing
and fixing potential software bugs as early as possible [14].
As a natural consequence, in last years both researchers and
pratictioners developed techniques and tools to automate the
testing of mobile applications [8], [12], [13], [21]. Such tools
aim to reveal unhandled exceptions while exercising the app
under test (AUT) with input and system events. Usually,
whether a crash occurs, they save the corresponding stack trace
together with the sequence of events that led to the crash.

Unfortunately, such tools suffer of some limitations: (i) they
are only able to detect bugs that cause unhandled exceptions,
potentially missing those not raising any and (ii) they fail

to generate input sequence that requires human intelligence
or domain knowledge [12]; thus, they might fail to reveal
particular buggy sequences that were encountered by the users.
[5]. Moreover, the sequence of events recorded by these tools
is often redundant, lacks of contextual information and is
difficult to analyze [4], [11]. Therefore, developers might
struggle to understand the root cause of the crashes highlighted
by automated tools [13].

In the context of mobile development, recent work proved
the usefulness of user review information for the planning of
maintenance tasks, providing tools for achieving this goal [4],
[15], [17], [19], [22]. Specifically, they show that feedback
posted on mobile app stores represents an unmatched source
for developers seeking for defects in their applications [6],
[17], [19]. Despite such a huge source of available knowledge,
no prior work explored the adoption of user review information
in the context of automated testing of mobile application.

In this paper, we present BECLOMA (Bug Extractor,
Classifier and Linker of Mobile Apps), a tool that enable the
integration of user feedback in the testing process of mobile
apps. BECLOMA automatically establishes links between
stack traces and user reviews related to crashes or bugs. Then,
it presents developers unique reports aiming at (i) augmenting
the stack traces’ information with the natural description of
crashes provided by users and (ii) easing the fixing of a bug.
Moreover, BECLOMA eases the setting and the execution of
two of the most well-known Android testing tools, namely
MONKEY and SAPIENZ. Such tools are used to reveal unhan-
dled exceptions and therefore collect the correspondent stack
traces. Further, BECLOMA incorporates a crawler able to
mine user reviews from the Google Play Store. Then, using
a Machine Learning (ML) classifier, it discerns only the user
reviews discussing about crashes and bugs (worth to be linked
to the stack traces).
Benefits for Developers. We envision BECLOMA to be
helpful for developers testing their mobile apps. Indeed, un-
derstanding of the steps that led to a failure might be often
troublesome with stack traces only. In this cases, user reviews
can be a human readable companion for such traces. For
instance, a review like “...the app crashes when I press the
messages button..” linked to a specific stack trace immediately
indicate developers where to investigate for the occurred fault.
Tool and Data Replication. The tool and the evaluation
dataset are available on the BECLOMA website [1].

II. BECLOMA, BUG EXTRACTOR, LINKED AND
CLASSIFIER OF MOBILE APPS

This section briefly describes the approach and technologies
we employed. BECLOMA is a tool built with a set of
different technologies: the core part is written in Java while the
Machine Learning classifier for the user reviews (as well as the
embedded SAPIENZ tool) is written in Python. The remaining
of this section reports the main characteristics of BECLOMA,
as well as details about its architecture and inner-working.

A. Design Goals

BECLOMA is designed with the main goal to link together
the stack traces extracted from testing tools with the user
reviews that describe with a high level language the occurred
crash. In addition, BECLOMA eases the execution of testing
tools (it supports at the moment MONKEY and SAPIENZ),
providing to the users a friendly interface for the parameters
tuning. Moreover, BECLOMA embeds a reviews miner and a
classifier able to discern only the crash-related reviews. Since
often developers might already have stack traces and reviews
from different sources, the tool offers the support to the import
of the two from external sources.

B. BECLOMA Architecture

The overall architecture of BECLOMA is depicted in Fig-
ure 1. Users interact with the tool through a Presentation layer
that exposes the main features. In particular, the UI is built
upon the Swing Java framework, being extremely portable on
every kind of machine. The Application Layer is the core of
BECLOMA. It contains the subsystems that implements the
various features of the tool. Logically, the architecture can
be divided into three main parts: (i) the Testing Subsystem
that handles the execution of the testing experiments for
the AUT on the physical or emulated devices; (ii) the The
Crawler Subsystem that allows to mine user reviews from the
Google Play Store and to discern the ones addressing bug
or crashes (the ones to be linked); (iii) the Linking package,
that implements the core feature of BECLOMA, i.e., the link
between the stack traces and the user reviews concerning
the correspondent problem. The upcoming sections will detail
such three components.

C. The Testing Subsystem

The aim of this subsystem is to facilitate the execution of
MONKEY and SAPIENZ to the user. The tool’s UI (Figure 2)
allows an user-friendly specification of all the customizable
parameters. The ExperimentLauncher class sets up the
entire execution of the testing experiment. It manages an
instance of AppTester; such class relies on the implemen-
tation of Emulator and Tablet in the devices package
to perform all the preliminary operations on the target device
(e.g., install the AUTs). Once the target is ready, AppTester
launches the execution of the desired testing tool (either
MONKEY or SAPIENZ). It is worth to notice that BECLOMA
supports also the multi-device testing execution. At the end of
the testing process, the CrashExtractor class extracts and

Fig. 1. BECLOMA’s architecture

Fig. 2. BECLOMA’s testing manager

combines all the accumulated crashes (composed by a stack
trace and a log with a sequence of events). It also discard
duplicates amongst such crashes. We define two crashes as
duplicated if the two stack traces are exactly the same.
Moreover, BECLOMA gives some statistics about the testing
phase, like the time spent in the process, the number of total
crashes collected and the number of not-duplicated ones.

D. The Crawler Subsystem

This subsystem basically fulfills two goals: (i) crawling the
user reviews for the AUT from the Google Play Store, and (ii)
discerning amongst them the ones concerning about crashes
and bugs. To do this, BECLOMA relies on two external
modules. The first one, (the crawler module in Figure 1)
is a Java-built scraper tool that relies on PhantomJS1 and
Selenium2 to navigate the Play Store and extract the reviews
from the HTML [10]. Such crawler is executed in a separate

1http://phantomjs.org
2http://www.seleniumhq.org

http://phantomjs.org
http://www.seleniumhq.org

Fig. 3. BECLOMA’s reviews and linking manager

process; this task is handled by the ReviewCrawler class
in the crawling package.

Once the reviews for the AUTs are mined, BECLOMA
uses a second external component (the classifier module
in Figure 1) to discern the useful ones for the linking,
addressing features-related and crash-related bugs (according
to the taxonomy presented in [9]). Such component is built
with Python and implemented with the scikit-learn [18]
library. It uses a Gradient Boosted Classifier algorithm trained
with a dataset of 6,600 user reviews manually labelled. As
features, it relies on the tf-idf scores of the 1-grams, 2-grams
and 3 gram-s computed on the terms for each reviews. It is
worth to underline that the classifier has showed a precision,
recall and F1 score of the 87%, the 88% and the 87%
respectively. Similarly to the crawler component, also the
classifier one is executed on a separate process; this
execution is handled by the PythonClassifierManager
class in the clawling package.

E. Linking

The linking between the stack traces and the user reviews
represents the core element of BECLOMA. To this aim,
BECLOMA preprocesses both the two sources; for the stack
traces it takes into account only the name and the cause of the
exception (e.g., it removes the list of native methods —part
of the Android SDK— in the exception). Therefore, the stack
trace is augmented with the source code methods included in
the stack trace itself. This step is needed to add contextual
details from source code in order to produce better results for
the linking.

Afterwards, both the user reviews and the stack traces
augmented as explained above are preprocessed; this task
involved the typical steps of correcting mistakes, expanding
contractions, filtering nouns and verbs, removing common
words, programming language keywords and stemming. Fi-
nally, the two resulting bag of words are compared using the
Dice similarity coefficient [7], defined as follow:

Dice (review j , crashi) =

∣∣Wreviewj
∩Wcrashi

∣∣
min

(∣∣Wreviewj

∣∣ , |Wcrashi
|
)

where Wreviewj
is the set of words composing a user review j

and Wcrashi
is the one contained in an augmented stack trace

i. The tool links stack traces and reviews having a Dice score
higher than 0.5 (in a range between [0, 1]).

The overall approach in implemented in the linking
package (see Figure 1). In detail, the CrashLog class takes

care of selecting the relevant part of the stack trace, i.e.,
the name, the cause of the exceptions and the signature of
the methods that will be used to augment the stack itself.
Therefore, the Augmenter class (i) parses the source code
(that need to be provided by the user), (ii) extracts the content
of the recorded methods, (iii) preprocesses the content of
such methods, applying all the preprocessing steps and (iv)
completes the whole bag of words representing the stack
trace. The same preprocessing step is done for the user
reviews by the Reviews class. At the end, BECLOMA
implements in the AsymmetricDiceIndex class of the
linking.metrics the calculation of the index.

F. BECLOMA at Work

To generate links, BECLOMA needs to have both stack
traces and user reviews for the AUT. Both the artifacts
can be mined by BECLOMA (with the testing and crawler
components described above) or imported. Figure 2 shows
the UI that manages such process. The user has to specify
some mandatory directories, like the one where the apks are
stored, the one that contains the source code for the AUT
(needed for the linking phase) and the Android directory in
the operative system. Then, it is possible to tune parameters
regarding the events to feed to the AUT as well parameters
about the SAPIENZ genetic algorithm. It is worth to notice
that BECLOMA works with both emulator and physical
devices. However, due to SAPIENZ constraints, the tool needs
an Android SDK: API 19 version. The tool allows also the
import of crash logs previously collected or gathered from
other sources.

BECLOMA offers the same import option as well for
the user reviews. In such a case, the user selects a csv file
and clicks on the Import Reviews button (see Figure 3). In
the alternative scenario, the user mines the reviews from the
Google Play Store using the BECLOMA’s built-in crawler.
He simply has to list in the text box of the Review Manager
section the ids of the apps he wants to mine the reviews for;
then, he needs to click on the Start Crawling button to start
the process.

When both the stack traces and the user reviews are avail-
able, the linking feature can be used (the Linking Process box
in Figure 3). BECLOMA generates an HTML report (depicted
in Figure 4) where, for each AUT, the stack traces are linked
to the correspondent user reviews.

III. EVALUATION

With the aim of evaluating the BECLOMA capabilities in
linking user review information and stack traces, we setup an
empirical study targeting the following research question:

• RQ1: What is the accuracy of BECLOMA in linking
crash-related user review and crash reports?

Our study involved 8 Android applications whose charac-
teristics are reported in Table I. It is important to note that we
needed to limit the number of apps considered because of the
amount of manual analysis requested to build a golden set of

Fig. 4. BECLOMA’s HTML report

TABLE I
SUBSET OF APPS SELECTED FOR THE STUDY

Application Category Cras. LOC Reviews
Total Crash

com.amaze.filemanager Tools 7 39K 1,438 28
com.danvelazco.fbwrapper Social 4 2.5K 1,900 252
com.eleybourn.bookcatalogue Productivity 1 16K 677 11
com.evancharlton.mileage Finance 2 9.8K 1,064 39
com.fsck.k9 Communication 1 52K 2,895 106
com.ringdroid Video P.& Ed. 4 3.9K 2,363 84
cri.sanity Communication 1 8K 695 11
org.liberty.android.fantastischmemo Education 4 30K 264 3

Total 24 162.2K 11,296 534

links to compare with the output of BECLOMA (more details
later in this section).

In the following subsections, we (i) report the data extrac-
tion and analysis process followed to answer our RQ1 and (ii)
discuss the results of our experiment.

A. Data Extraction and Analysis

To conduct the empirical evaluation of the proposed tool,
we needed to mine data about crash-related user reviews and
crashes. To this aim, we ran BECLOMA on each of the
considered app. The crawling mechanism extracted a total of
11, 296 user reviews; of them, 534 were classified as issues
likely related to crashes and were, therefore, used as basis for
the linking process. On the other hand, the testing component
of BECLOMA detected 24 unique crashes occurring in the
considered apps.

To properly assess the extent to which our tool correctly
retrieve links between the two sources of information, a golden
set of links to compare with the output of tool was required.
To avoid any bias, we asked to an external inspector having
2 years of experience in Android development to build such
a golden set. Specifically, we provide her with (i) the stack
traces arose from the execution of the testing tools, (ii) the
logs of the executed events that led to the crashes, (iii) the
apk and the source code of the apps in the dataset, and (iv)
the set of crash-related user reviews.

TABLE II
PERFORMANCE OF THE EXPERIMENTED LINKING APPROACHES (RECALL
AND F1 SCORE ARE COMPUTED ONLY FOR THREE OF THE SUBJECT APPS)

App Dice Linking
Precision Recall F1 Score

com.amaze.filemanager 67% 57% 62%
com.danvelazsco.fbwrapper 62% 68% 65%
com.ringdroid 64% 60% 62%
com.eleybourn.bookcatalogue 100% 66% 80%
com.evancharlton.mileage 100% 100% 100%
org.liberty.android.fantastischmemo 100% 100% 100%
cri.sanity - - -
com.fsck.k9 - - -

Average 82% 75% 78%

The golden set creation process was basically composed
of three phases. In the first, the inspector had to re-run the
stored sequences of events for the collected crashes in order to
reproduce them with the aim of understanding their dynamics.
She relied on a MONKEY feature to perform this task. Once
she had understood the issue leading to the crash, she inspected
the source code of a certain app trying to figure out its behavior
in proximity of the piece of code that threw the exception.
Finally, she analyzed the set of provided reviews, linking them,
whenever possible, to one of the stack traces. Once the golden
set was built, we evaluated BECLOMA’s performances using
two widely-adopted metrics, i.e., recall and precision [2].

recall = |Cor∩Det|
|Cor| % precision = |Cor∩Det|

|Det| %

where Cor and Det represent the set of actual links (those
belonging to the golden set) and the set of links detected
by BECLOMA, respectively. As an aggregate indicator of
precision and recall, we report the F1 Score, defined as the
harmonic mean of precision and recall:

F1-score = 2 ∗ precision ∗ recall
precision+ recall

%

B. Experimental Results

Table II reports the performance achieved by BECLOMA
on the set of mobile apps considered. It is worth noting that in
two cases, i.e., SANITY and K9, the golden set did not report
any link between user reviews and crashes; thus, we could
not compute precision and recall. Looking at the results, we
observed that our tool achieved an average precision of 82%
and a recall of 75% (F1 Score = 78%). This result confirms
previous findings in the field [15], which highlighted how
the Dice index represents one of the most suitable tools to
cope with texts composed of few words such as user reviews
and crashes. However, it is also interesting to note that the
recall value reports how almost 18% of the correct links
are not properly identified by BECLOMA. As part of our
future research agenda, we plan to establish the usefulness
of different approaches (e.g., textual-based techniques such ad

LDA [3], [16]) as additional/alternative to the Dice linking
currently exploited.

To show the potential of our tool, in the following we
discuss an example of link found by BECLOMA on the
com.amaze.filemanager app. Specifically, in the user
review reported below the user complained about a failure
happening immediately after releasing the keyboard - used for
searching files in the app.

“Crashing when I release the keyboard!!! Pls fix!”.

Our tool linked this review with the crash reports presented
below, which report a NullPointerException arising in
the DialogUtils class.

Long Msg: java.lang.NullPointerException

at com.afollestad.materialdialogs.util.DialogUtils.hideKeyboard(

DialogUtils.java:226)

at com.afollestad.materialdialogs.MaterialDialog.dismiss(

MaterialDialog.java:1810)

...

at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(

ZygoteInit.java:795)

at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:611)

at dalvik.system.NativeStart.main(Native Method)

... 3 more

This example clearly show how user review can be suc-
cessfully exploited to augment crash reports with contextual
information useful for developers to comprehend the cause of
a failure in a quicker and more efficient manner.

To conclude, the empirical experiment revealed preliminary
evidence that BECLOMA could be useful in assisting devel-
opers during the debugging and evolution of mobile apps.

IV. DEMO REMARKS

In this demo, we present BECLOMA, an automated tool
able to augment stack traces with contextual information
extracted from user review. We described the architecture and
inner-working of the tool; at the same time, we reported
its empirical evaluation conducted on 8 Android apps, that
showed how BECLOMA is highly accurate when linking
crash reports and crash-related user reviews. We plan to
integrate our tool in ANDROID STUDIO, i.e., the most common
Android’s Integrated Development Environment (IDE). More-
over, we want to extend its functionalities to cluster different
stack traces that might depend on the same bug or prioritize
the arose failures taking into account the user feedback.

ACKNOWLEDGEMENTS

Pelloni, Grano, Ciurumelea, Panichella, and Gall acknowl-
edge the Swiss National Science Foundation (SNSF) un-
der project named “SURF-MobileAppsData” (Project no.
200021 166275) and the Swiss Group for Software Engi-
neering (CHOOSE). Palomba acknowledges the support of
the SNSF Project named “Data-driven Contemporary Code
Review” (No. PP00P2 170529).

REFERENCES

[1] becloma-website. http://becloma.info/.

[2] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[4] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. Ar-miner: Mining
informative reviews for developers from mobile app marketplace. In Pro-
ceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 767–778, New York, NY, USA, 2014. ACM.

[5] W. Choi, G. Necula, and K. Sen. Guided gui testing of android apps with
minimal restart and approximate learning. SIGPLAN Not., 48(10):623–
640, Oct. 2013.

[6] A. Ciurumelea, A. Schaufelbuhl, S. Panichella, and H. C. Gall. Ana-
lyzing reviews and code of mobile apps for better release planning. In
SANER, pages 91–102. IEEE Computer Society, 2017.

[7] L. R. Dice. Measures of the amount of ecologic association between
species. Ecology, 26(3):297–302, 1945.

[8] Google. Android monkey. https://goo.gl/P7jFeF.
[9] G. Grano, A. Ciurumela, S. Panichella, F. Palomba, and H. C. Gall.

Exploring the integration of user feedback in automated testing of
android applications. In 2018 IEEE 25rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER).

[10] G. Grano, A. Di Sorbo, F. Mercaldo, C. A. Visaggio, G. Canfora, and
S. Panichella. Android apps and user feedback: A dataset for software
evolution and quality improvement. In Proceedings of the 2Nd ACM
SIGSOFT International Workshop on App Market Analytics, WAMA
2017, pages 8–11, New York, NY, USA, 2017. ACM.

[11] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile
app development. In 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 15–24, Oct
2013.

[12] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, pages 224–
234. ACM, 2013.

[13] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 94–
105, New York, NY, USA, 2016. ACM.

[14] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app
store analysis for software engineering. IEEE Transactions on Software
Engineering, PP(99):1–1, 2016.

[15] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia. Recommending and localizing change requests
for mobile apps based on user reviews. In Proceedings of the 39th
International Conference on Software Engineering, ICSE ’17, 2017.

[16] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia. How to effectively use topic models for software engineering
tasks? an approach based on genetic algorithms. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, pages 522–531, 2013.

[17] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall. How can i improve my app? classifying user reviews
for software maintenance and evolution. In Proceedings of the 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME), ICSME ’15, pages 281–290, Washington, DC, USA, 2015.

[18] Scikitlearn. Gradient boosting classifier. http://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.GradientBoostingClassifier.html.

[19] A. D. Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall. What would users change in my
app? summarizing app reviews for recommending software changes. In
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016.

[20] Statista. Number of available apps in the play store. https://goo.gl/
QSG43J, Mar. 2017.

[21] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su. Guided, stochastic model-based gui testing of android apps. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, pages 245–256, 2017.

[22] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta. Release
planning of mobile apps based on user reviews. In Proceedings of the
38th International Conference on Software Engineering, ICSE ’16, pages
14–24, New York, NY, USA, 2016. ACM.

http://becloma.info/
https://goo.gl/P7jFeF
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://goo.gl/QSG43J
https://goo.gl/QSG43J

	Introduction
	BECLoMA, Bug Extractor, Linked and Classifier of Mobile Apps
	Design Goals
	BECLoMA Architecture
	The Testing Subsystem
	The Crawler Subsystem
	Linking
	BECLoMA at Work

	Evaluation
	Data Extraction and Analysis
	Experimental Results

	Demo Remarks
	References

