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Abstract—Test smells are sub-optimal design choices in the
implementation of test code. As reported by recent studies, their
presence might not only negatively affect the comprehension of
test suites, but can also lead to test cases being less effective
in finding bugs in production code. Although important steps
toward understanding test smells, there is still a notable absence
of studies assessing their association with software quality.

In this paper, we investigate the relationship between the
presence of test smells and the change- and defect-proneness
of test code, as well as the defect-proneness of the production
code being tested. To this aim, we collect data pertaining to 221
releases of ten software systems and we analyze more than a
million test cases to investigate the association of six test smells
and their co-occurrence with software quality. Key results of
our study include: (i) tests with smells are more change- and
defect-prone, (ii) ‘Indirect Testing’, ‘Eager Test’, and ‘Assertion
Roulette’ are the most significant smells for change-proneness
and, (iii) production code is more defect-prone when tested by
smelly tests.

I. INTRODUCTION

Automated testing (hereafter referred to as just ‘testing’)
has become an essential process for improving the quality of
software systems [12], [47]. In fact, testing can help to point
out defects and to ensure that production code is robust under
many usage conditions [12], [16]. Writing tests, however, is as
challenging as writing production code and test code should be
maintained with the same care given to production code [11].

Nevertheless, recent studies found that developers perceive
and treat production code as more important than test code,
thus generating quality problems in the tests [9], [10], [57],
[82]. This finding is in line with the experience reported by van
Deursen et al. [74], who described how the quality of test code
was “not as high as the production code [because] test code
was not refactored as mercilessly as our production code” [74].
In the same work, van Deursen et al. introduced the concept of
test smells, inspired by Fowler et al. ’s code smells [23]. These
smells were recurrent problems that van Deursen et al. found
when refactoring their troublesome tests [45].

Since its inception, the concept of test smells has gained
significant traction both among practitioners [18], [42] and
the software engineering research community [7], [26], [74],
[76]. The earliest and most significant results advancing our
empirical knowledge on the effects of test smells was pre-
sented by Bavota et al. [7]. They conducted the first controlled
laboratory experiment to establish the impact of test smells
on program comprehension during maintenance activities and

found evidence of a negative impact of test smells on both
comprehensibility and maintainability of test code [7].

Although the study by Bavota et al. [7] made a first,
important step toward the understanding of maintainability
aspects of test smells, our empirical knowledge on whether
and how test smells are associated with software quality
aspects is still limited. Indeed, van Deursen et al. [74] based
their definition of test smells on their anecdotal experience,
without extensive evidence on whether and how such smells
are negatively associated with the overall system quality.

To fill this gap, in this paper we quantitatively investigate
the relationship between the presence of smells in test methods
and the change- and defect-proneness of both these test
methods and the production code they intend to test. Similar
to several previous studies on software quality [24], [62], we
employ the proxy metrics change-proneness (i.e., number of
times a method changes between two releases) and defect-
proneness (i.e., number of defects the method had between
two releases). We conduct a large observational study [15],
collecting data from 221 releases pertaining to ten open source
software systems, analyze more than a million test cases, and
investigate the association between six test smell types and the
aforementioned proxy metrics.

Based on the experience and reasoning reported by van
Deursen et al. [74], we expect to find tests affected by smells
to be associated with more changes and defects, i.e., higher
maintenance efforts and lower software quality. Furthermore,
since test smells indicate poor design choices [74] and previ-
ous studies showed that better test code quality leads to better
productivity when writing production code [4], we expect to
find production code tested by smelly tests to be associated
with more defects.

Our results show that these expectations are met: Tests
with smells are more change- and defect-prone than tests
without smells and production code is more defect-prone
when tested by smelly tests. Among the studied test smells,
‘Indirect testing’, ‘Eager Test’ and ‘Assertion Roulette’ are
those associated with highest change-proneness; moreover,
the first two are also related to a higher defect-proneness of
the exercised production code. Overall, our results provide
empirical evidence that detecting test smells is important to
signal underlying software issues as well as studying the
interplay between test design quality and effectiveness on
detecting defects is of a paramount importance for the research
community.



II. RELATED WORK

Over the last decade the research community spent a con-
siderable effort in studying (e.g., [1], [3], [32], [39], [51], [55],
[59], [61], [66], [72], [78]–[80]) and detecting (e.g., [33], [36],
[41], [43], [46], [49], [52], [54], [70]) design flaws occurring
in production code, also known as code smells [23]. At the
same time, problems concerning the design of test code have
only been partially explored and our literature survey showed
us that our empirical knowledge is still limited.

In this section, we firstly discuss the literature related to
test smells, then we discuss previous work that analyzed the
change- and defect-proneness of code smells, as it can shed
light on why test smells can also be problematic.

A. Test Smells

The importance of having well-designed test code was
originally put forward by Beck [8]. Beck argued that test cases
respecting good design principles are desirable since they are
easier to comprehend, maintain, and can be successfully ex-
ploited to diagnose problems in the production code. Inspired
by these arguments, van Deursen et al. [74] coined the term
test smells and defined the first catalog of 11 poor design
choices to write tests, together with refactoring operations
aimed at removing them. Such a catalog has been then
extended more recently by practitioners, such as Meszaros [42]
who defined 18 new test smells.

On the basis of these catalogs, Greiler et al. [25], [26]
showed that test smells affecting test fixtures frequently occur
in industry. Motivated by this prominence, Greiler et al. pre-
sented TESTHOUND, a tool able to identify fixture-related test
smells such as ‘General Fixture’ or ‘Vague Header Setup’
[25]. Van Rompaey et al. [76] devised a heuristic code
metric-based technique that can identify two test smell types,
i.e., ‘General Fixture’ and ‘Eager Test’. However, the empirical
study conducted to assess the performance of the technique
showed that it often misses instances of the two smells.

Turning the attention to the empirical studies that had test
smells as object, Bavota et al. [7] studied (i) the diffusion
of test smells in 18 software projects, and (ii) their effects
on software maintenance. They found that 82% of JUnit
classes are affected by at least one test smell and that the
presence of test smells has a strong negative impact on the
comprehensibility of the affected classes. The high diffuseness
of test smells was also confirmed in the context of the test
cases automatically generated by testing tools [53].

Tufano et al. [71] conducted an empirical study aimed at
measuring the perceived importance of test smells and their
lifespan during the software life cycle. Key results of the study
indicated that test smells are usually introduced during the
first commit involving the affected test classes, and in almost
80% of the cases they are never removed, essentially because
of poor awareness of developers. This study strengthened the
case for having tools able to automatically detect test smells
in order to raise developers’ awareness about these issues.

Finally, Palomba and Zaidman [56] investigated the extent
to which test smells can be exploited to locate flaky tests,

i.e., test cases having a non-deterministic behavior [40]. The
main findings of the work showed that (i) almost 54% of flaky
tests contain a test smell that can cause the flakiness and (ii)
the refactoring of test smells removed both the design flaws
and test code flakiness [56].

The work we present in this paper is complementary with
respect to the ones discussed so far: We aim at making a
further step ahead by investigating the change- and defect-
proneness of test smells, as well as the defect-proneness of
production code tested by smelly tests.

B. Change- and Defect-proneness of Code Smells

Extensive work has been done by the software engineering
research community in the context of code smells in pro-
duction code. More specifically, Khomh et al. [31] showed
that the presence of code smells increases the code’s change-
proneness. Later on, they also showed that code components
affected by code smells are more fault-prone than non-smelly
components [32]. Their results were confirmed by Palomba
et al. [50], who found that code smells make classes more
change- and defect-prone; in addition, they also found that the
class’ change-proneness can benefit from code smell removal,
while the presence of code smells in many cases is not
necessarily the direct cause of the class defect-proneness, but
rather a co-occurring phenomenon [50].

Gatrell and Counsell [24] conducted an empirical study
aimed at quantifying the effect of refactoring on class change-
and defect-proneness. In particular, they monitored a com-
mercial project for eight months and identified the refactoring
operations applied by developers during the first four months.
Then, they examined the same classes for the second four
months in order to investigate whether the refactoring results
in a decrease of change- and defect-proneness. They compared
against classes of the system that were not refactored during
the same period. Results revealed that classes subject to
refactoring have a lower change- and defect-proneness.

Li and Shatnawi [38] empirically evaluated the correlation
between the presence of code smells and the probability that
the class contains errors. They studied the post-release evo-
lution process showing that many code smells are positively
correlated with class errors. Olbrich et al. [48] studied the
maintainability of two specific code smell types, i.e., ‘God
Class’ and ‘Brain Class’, reporting that classes affected by
such smells change less frequently and have a fewer number
of defects than non-smelly classes. D’Ambros et al. [20]
studied how ‘Feature Envy’ and ‘Shotgun Surgery’ instances
are related to software defects, reporting no consistent corre-
lation between them. Finally, Saboury et al. [63] empirically
investigated the impact of code smells on the defect-proneness
of JAVASCRIPT modules, confirming the negative effect of
smells on source code maintainability.

III. RESEARCH METHODOLOGY

The goal of our study is to increase our empirical knowledge
on whether and how test methods affected by smells are
associated with higher change- and defect- proneness of the



test code itself, as well as to assess whether and to what
extent test methods affected by test smells are associated with
the defect-proneness of the production code they test. The
perspective is that of both researchers and practitioners who
are interested in understanding the possible negative effects
of test smells on test and production code. We structured our
study around the two overarching research questions that we
describe in the following.

The first research question investigates the relationship
between the presence of test smells in test code and its
change/defect proneness:

RQ1. Are test smells associated with change/defect prone-
ness of test code?

We, thus, structure RQ1 in three sub-research questions.
First, we aim at providing a wide overview of the relationship
of test smells and their co-occurrence with change- and defect-
proneness of test code:

RQ1.1: To what extent are test smells associated with the
change- and defect- proneness of test code?

RQ1.2: Is the co-occurrence of test smells associated with the
change- and defect-proneness of test code?

Then, we aim at verifying whether some particular test
smells have a stronger association with change- and defect-
proneness of test code:

RQ1.3: Are certain test smell types more associated with the
change- and defect-proneness of test code?

Considering that defect-proneness as been widely used in
previous literature as a proxy metric for software quality
(e.g., [20], [24], [32], [50]), in the second research question,
we aim at making a complementary analysis into the associa-
tion of test smells with the defect-proneness of the exercised
production code. In fact, if the production code exercised by
tests with test smells is more defect-prone this would be an
even stronger signal on the relevance of test smells. This leads
to our second research question:

RQ2. Is the production code tested by tests affected by test
smells more defect-prone?

The expectation is that test code affected by test smells
might be less effective in detecting defects [4], thus being
associated with more defect-prone production code. We struc-
tured RQ2 in three sub-research questions:
RQ2.1: Are test smells associated with the defect-proneness
of the tested production code?

RQ2.2: Is the co-occurrence of test smell associated with the
defect-proneness of the tested production code?

RQ2.3: Are certain test smell types more associated with the
defect-proneness of production code?

TABLE I
SUBJECT SYSTEMS’ DETAILS

System #Releases #Classes #Methods KLOC

Apache Ant 10 9-282 74-2,541 1-25
Apache Cassandra 25 61-437 237-4,804 2-59
Apache Hadoop 35 470-1,895 3,400-19,445 71-344
Apache Wicket 44 102-585 587-3,351 8-46
Eclipse JDT 17 11-56 68-4,068 1-49
ElasticSearch 36 25-698 324-6,755 5-118
Hibernate 8 823-1,508 5,461-9,027 92-144
Sonarqube 36 492-2,072 2,256-18,028 18-134
Spring Framework 7 980-1,662 10,576-18,049 136-212
VRaptor4 3 122-125 1,046-1,102 8-9

Total 221 9-2,072 68-19,445 1-344

Similarly to RQ1, we aim at providing an overview of the
role of test smells in the defect-proneness of production code,
by investigating single test smells and their co-occurrence.

A. Subjects of the Study

In our study we have to select two types of subjects:
software systems and test smells.

Software systems. As subject systems for our study we
consider ten OSS projects and their 221 major releases. Specif-
ically, Table I reports the characteristics of the analyzed sys-
tems with respect to (i) the number of the considered releases
and (ii) size, in terms of number of classes, methods, and
KLOCs. The selection is driven by two main factors: firstly,
since we have to run static analysis tools to detect test smells
and compute maintainability metrics, we focus on projects
whose source code is publicly available (i.e., OSS); secondly,
we analyze systems having different sizes and scopes. After
filtering on these criteria, we randomly select ten OSS projects
from the list available on GITHUB1 having different size,
scope, and with a number of JUnit test cases higher than 1,000
in all the releases.

For each system, we only consider their major releases. In
fact, (i) detecting test smells at commit-level is prohibitively
expensive in terms of computational time and (ii) minor
releases are too close to each other (in some cases there is more
than one minor release per week), hence very few changes are
made in the source and test code. We mine these major releases
directly from the systems’ GITHUB repositories.

Test smells. As subject test smells for our study, we consider
those described in Table II. While other test smell types have
been defined in literature [42], [74], we select the smells in
Table II because: (1) Identifying test smells in 221 project
releases through manual detection is prohibitively expensive,
thus a reliable and accurate automatic detection mechanism
must be available; (2) the selected test smells have the greatest
diffusion in industrial and OSS projects [7]; and (3) the
selected ones compose a fairly diverse catalog of test smells,
which are related to different characteristics of test code.

1https://github.com



TABLE II
SUBJECT TEST SMELLS

Test smell Description Problem
‘Mystery Guest’ A test that uses external resources (e.g., file containing test data) Lack of information makes it hard to understand. Moreover,

using external resources introduces hidden dependencies: if
someone deletes such a resource, tests start failing.

‘Resource Optimism’ A test that makes optimistic assumptions about the
state/existence of external resources

It can cause non-deterministic behavior in test outcomes. The
situation where tests run fine at one time and fail miserably the
other time.

‘Eager Test’ A test method exercising more methods of the tested object It is hard to read and understand, and therefore more difficult to
use as documentation. Moreover, it makes tests more dependent
on each other and harder to maintain.

‘Assertion Roulette’ A test that contains several assertions with no explanation If one of the assertions fails, you do not know which one it is.
‘Indirect Testing’ A test that interacts with the object under test indirectly via

another object
This smell indicates that there might be problems with data
hiding in the production code.

‘Sensitive Equality’ A test using the ‘toString’ method directly in assert statements It may depend on many irrelevant details such as commas,
quotes, spaces, etc. Whenever the toString method for an object
is changed, tests start failing.

B. Data Extraction

To answer RQ1 we extract data about (i) the test smells
affecting the test methods in each system release and (ii) the
change/defect proneness of these test cases. To answer RQ2,
we extract data about the defect proneness of the production
code exercised by the test code. The extracted data and the
R script used to analyze the results are both available in our
online appendix [14].

Detecting test smells. We adopt the test smell detector by
Bavota et al. [7] (widely adopted in previous research [7],
[53], [56], [71]), which is able to reliably identify the six
smells considered in our study with a precision close to 88%
and a recall of 100%, by relying on code metrics-based rules.

Defining the change-proneness of test code. To com-
pute change- and defect-proneness of test code, we mine
the change history information of the subject systems using
REPODRILLER [2], a Java framework that allows the extraction
of information such as commits, modifications, diffs, and
source code. Specifically, for each test method Ti of a specific
release rj we compute its change-proneness as follows:

change proneness(Ti, rj) = #commits(Ti)rj−1→rj

where #commits(Ti)rj−1→rj
represents the number of

changes performed by developers on the test method Ti

between the releases rj−1 and rj . Given the granularity of
our analyses (i.e., release-level), we only compute the change-
proneness of test methods that were actually present in a
release rj ; if a new method was added and removed between
rj−1 and rj , it does not appear in our result set. To identify
which test method changed within a commit, we implement
the following algorithm:

1) We first identify all test classes modified in the commit.
In line with past literature [71], [81], we consider a class
to be a test when its name ends with ‘Test’ or ‘Tests’.

2) For each test class, we obtain the source code of the class
in both the current commit and in the previous one.

3) We parse the source code of the test class to identify
the test methods contained in the current and in the
previous commit. Then, we compare the source code of

each test method from the current commit against all the
test methods from the previous version:

a) if we find the same method, it means that it is not
changed (i.e., both signature and content of the method
in rj are exactly the same as rj−1);

b) if we find a different method, it means that it is changed
(i.e., the signature of the method is the same, but the
source code in rj is not equal to rj−1);

c) if we do not find the method (i.e., the signature of the
method does not exist in the previous version of the
file), it means that it has been added or renamed. To
capture the latter, we adopt a technique similar to the
one proposed by Biegel et al. [13], which is based on
the use of textual analysis to detect rename refactoring
operations. Specifically, if the cosine similarity [5]
between the current method and that of the methods
in the previous version is higher than 95%, then we
consider a method as renamed (hence, it inherited all
the information of the old test case).

Defining the defect-proneness of test code. To compute
the defect-proneness of each test case, we follow a similar
procedure to the one for change-proneness, with the exception
that to calculate the buggy commits we relied on SZZ [67]. In
particular, we first determine whether a commit fixed a defect
employing the technique proposed by Fischer et al. [22], which
is based on the analysis of commit messages. If a commit
message matches an issue ID present in the issue tracker or it
contains keywords such as ‘bug’, ‘fix’, or ‘defect’, we consider
it as a bug fixing activity. This approach has been extensively
used in the past to determine bug fixing changes [29], [34] and
it has an accuracy close to 80% [22], [55], thus we deem it as
being accurate enough for our study. Once we have detected
all the bug fixing commits involving a test method, we employ
SZZ to obtain the commits where the bug was introduced.

To estimate the moment when a bug was likely introduced,
the SZZ algorithm relies on the annotation/blame feature of
versioning systems [67]. In short, given a bug-fix activity
identified by the bug ID k, the approach works as follows:

• For each file fi, i = 1 . . .mk involved in the bug-fix



k (mk is the number of files changed in the bug-fix k)
and fixed in its revision rel-fixi,k, we extracted the file
revision just before the bug fixing (rel-fixi,k − 1).

• Starting from the revision rel-fixi,k − 1, for each source
line in fi changed to fix the bug k, we identified the
production method Mj to which the changed line changed
belongs. Furthermore, the blame feature of Git is used
to identify the revision where the last change to that line
occurred. In doing that, blank lines and lines that only
contain comments are identified using an island grammar
parser [44]. This produces, for each production method
Mj , a set of ni,k bug-inducing revisions rel-bugi,j,k, j =
1 . . . ni,k. Thus, more than one commit can be indicated
by the SZZ algorithm as responsible for inducing a bug.

With the list of bug inducing commits involving every test
method, we compute its defect-proneness in a release rj as
the number of bug inducing activities involving the method in
the period of time between the releases rj−1 and rj .

Defining the defect-proneness of production code. For
each test method in the considered projects, we firstly need to
retrieve what is the production method it exercises. For this, we
exploit a traceability technique based on naming convention,
i.e., it identifies the methods under test by removing the string
‘Test’ from the method name of the JUnit test method. This
technique has been previously evaluated by Sneed [68] and by
Van Rompaey and Demeyer [75], demonstrating the highest
performance (both in terms of accuracy and scalability) with
respect to other traceability approaches (e.g., slicing-based
approaches [60]).

Once we detect the links between test and production meth-
ods, we can compute the defect-proneness of such production
methods. Since we compute test smells at the release level
(i.e., we only have information regarding which test is smelly
at the specific commit of the release), we have to detect
how many defects production methods have in that specific
release. To this aim, we rely again on the SZZ algorithm.
To detect defects of production code in a specific release, we
only consider bug fixing activities related to bugs introduced
before the release date. More formally, we compute the fault-
proneness of a production method Mi in a release rj as the
number of changes to Mi aimed at fixing a bug in the period
between rj and rj+1, where the bug was introduced before the
release date, in the period between rj−1 and rj . The obtained
list of bugs are the ones that were present in the system when
it was released, hence not captured using tests.

By employing SZZ we are able to approximate the time
periods in which each production method was affected by
one or more bugs. We exclude from our analysis all the bugs
occurring in a production method Mi after the system was
released, because in this case the test smell could have been
solved before the introduction of the bug. We also exclude
bug-introducing changes that were recorded after the bug was
reported, since they represent false positives [19].

C. Data Analysis
To answer RQ1, we analyze the previously extracted infor-

mation regarding test smells and change- and defect- prone-
ness of test code. In particular, in the context of RQ1.1 we test
whether JUnit test methods that contain a test smell are more
likely to be change- or defect-prone. To this aim, we compute
the Relative Risk (RR) [37], an index reporting the likelihood
that a certain cause (in our case, the presence/absence of a
test smell) leads to an increase in the amount a test case is
subject to a certain property (in our case, number of changes
or defects) [30], [58]. The RR is defined as the ratio of
the probability of an event occurring in an exposed group
(e.g., the probability of smelly tests being defective), to the
probability of the event occurring in a non-exposed group
(e.g., the probability of non-smelly tests being defective) and
it is computed using the following equation:

RR =
pevent when exposed

pevent when not exposed

A relative risk of 1 indicates that the event is equally likely
in both samples. A RR greater than 1 indicates that the event
is more likely in the first sample (e.g., when the test is smelly),
while a RR of less than 1 points out it is more likely in
the second sample (e.g., when the test is not smelly). We
prefer using this technique rather than alternative statistical
tests adopted in previous work (e.g., analysis of box plots
[50] or Odds Ratios [6], [32]) because of the findings reported
in the statistic field that showed how this method (i) should
be preferred when performing exploratory studies such as the
one conducted herein [21], [83] and (ii) is equivalent to Odds
Ratios analysis [64].

Change- and defect-proneness of JUnit test methods might
also be due to other factors rather than the presence of a test
smell. Indeed, Kitchenham et al. [35] found that both size and
number of previous changes might influence the observations
on the defect-proneness of source code; additionally, Zhou et
al. [84], reported the role of size as possible confounding effect
when studying the change-proneness of code elements. Based
on the aforementioned evidence, we control our findings for
change-proneness by computing the RR achieved considering
the size of the test method in terms of lines of code (LOC).
Moreover, we control the phenomenon of defect-proneness by
considering LOC of test methods and number of times the
method changed from the last release (i.e., prior changes).
More specifically, the aim is to understand whether the likeli-
hood of a test case being smelly and more change- or defect-
prone varies when controlling for size and number of changes.
In other words, if smelly tests are consistently more prone to
changes and defects than non-smelly tests, independently from
their size or number of times they changed in the past, we have
a higher confidence that the phenomena observed are actually
associated with test smells.

To answer RQ1.2 and analyze the role of test smell co-
occurrences, we split the previously extracted dataset into 7
groups, each one containing test methods affected by exactly
i smells, where 0 ≤ i ≤ 6. Then, we compare change- and



defect-proneness of each group using (i) the Wilcoxon rank
sum test [77] (with confidence level 95%) and (ii) Cohen’s
d [65] to estimate the magnitude of the observed difference.
We choose the Wilcoxon test since it is a non-parametric
test (it does not have any assumption on the underlying
data distribution), while we interpret the results of Cohen’s
d relying on widely adopted guidelines [65]: The effect size
is considered small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d <
0.8, and large for d ≥ 0.8.

To answer RQ1.3, we adopt the same procedure as for
RQ1.2, but we consider each smell type separately, i.e., we
compare change- and defect-proneness of different smell types
by means of Wilcoxon rank sum test [77] and Cohen’s d [65],
controlling for size and number of previous changes (only in
case of defect-proneness). It is important to note that, as done
in previous work [32], [50], in this analysis we consider test
cases affected only by a single test smell, e.g., only Eager test,
with the aim of understanding the effect of single test smells
on change- and fault-proneness of test code.

For RQ2 we adopt a process similar to that of RQ1. In
particular, for RQ2.1 we compute the RR: in this case, we
aim to investigate the likelihood that the presence/absence of
a test smell is associated with the defect-proneness of the
production code being tested. Similarly to RQ1, we control
for size and number of changes. Analogously, in RQ2.2 we
use (i) the Wilcoxon rank sum test [77] and (ii) Cohen’s
d [28] to assess the association of test smell co-occurrences
to the defect-proneness of production code. Finally, to answer
RQ2.3, we compare the distribution of the number of defects
related to the production code tested by different test smell
types (considering single test smell types).

D. Threats to Validity

Our research method poses some threats to the validity of
the results we obtain.

Construct validity. Threats to construct validity concern
our research instruments. To obtain information regarding test
smells we use the test smell detector devised by Bavota et
al. [7]. Even though this tool has been assessed in previous
studies [7], [56] as being extremely reliable, some false
positives can still be present in our dataset.

Another threat is related to how we detected which pro-
duction method is exercised by a test method: specifically, we
exploited a traceability technique based on naming convention,
that has been heavily adopted in the past [6], [53], [71], [81].
This technique has also been evaluated by Sneed [68] and by
Van Rompaey and Demeyer [75], and the results reported an
average precision of 100% and a recall of 70%.

Internal validity. Threats to internal validity concern fac-
tors that could affect the variables and the relations being in-
vestigated. When we look into the relation between test smells
and test defects, many factors can influence the results. For
example, a test could contain more defects than others because
more complex, bigger, or more coupled, while the studied vari-
able (test smells) could be insignificant. To mitigate this, we
control for some of these metrics, namely size of the method
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Fig. 1. Relative risk of being change prone in smelly tests vs non-smelly
tests, controlling by size. The p-value for all RRs is < 0.0001.

(LOC) and number of changes, which have been reported to
correlate with code complexity [17]. As shown in the results
section, the results generally do not change when controlling
for other metrics. Furthermore, at the beginning of this study
we also built a Logistic Regression Model to detect whether
our explanatory variable was (not) statistically significant in
the model. Similarly to Thongtanunam et al. [69], we built a
logistic regression model to determine the likelihood of a test
being defective (or change prone) using LOC, prior changes,
production changes as control variables and being smelly (our
new variable) as a binary explanatory variable. We used R
scripts provided by Thongtanunam et al. [69] to build the
model, and we discovered that test code smelliness was indeed
statistically significant for the model. However, we preferred
to proceed with RR instead of the model, for better readability
of the results.

External validity. Threats to external validity concern the
generalization of results. We conducted our study taking into
account 221 releases of 10 Java systems having different scope
and characteristics to strengthen the generalizability of our
results. However, a study investigating different projects and
programming languages may lead to differing results.

IV. RQ1 RESULTS: TEST SMELLS AND TEST CODE

This section describes the results to RQ1.

RQ1.1: To what extent are test smells associated with the
change- and defect- proneness of test code?

Figure 1 depicts the Relative Risk of test smells to be
associated with higher change-proneness of test cases (label
“Overall”) as well as how the risk is connected with the
control factor analyzed, i.e., size. In particular, we show
how RR varies when the test method has (i) small size
(LOC < 30), (ii) average size (30 < LOC < 60), and (iii)
large size (LOC > 60). The thresholds used to identify small,
medium, and large test methods were identified by applying
the Maintainability Model proposed by Heitlager et al. [27],
which cuts the distribution of all the method LOCs at the 70th,
80th and 90th percentiles. We also represent the p-value and
the confidence interval for each category.
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Fig. 2. Relative risk of being defect prone in smelly tests vs non-smelly tests,
controlling by size and change proneness. For all RRs, p-value < 0.0001.

We make two main observations from the results in Figure 1.
On the one hand, test methods affected by at least one smell
are more change-prone than non-smelly methods, with a RR
of 1.47; from a practical perspective, this means that a smelly
test has the risk of being 47% more change-prone than a non-
smelly test. On the other hand, we can notice that smelly
tests with higher size are more change prone: this is intuitive,
since bigger methods are more difficult to maintain (hence
more change prone) and they are more likely to contain
smells. An important result to notice is that smelly large tests
(LOC > 60) are more than 2 times more likely of being
change prone than non smelly large tests. This is a good
incentive for practitioners and developers to write small and
concise tests, as recommended by Beck [8].

Turning our attention to defect-proneness, Figure 2 shows
how the RR varies when considering (i) the presence of test
smells (“Overall”), (ii) the size of test cases—split in the
same way as done for change-proneness, and (iii) the number
of previous changes applied to test cases (we discriminated
between methods that change frequently vs. methods that
change infrequently, by adopting the heuristic proposed by
Romano and Pinzger [62], i.e., we considered frequently
changing methods to have a number of changes higher than
the median of the distribution of all the changes that occurred
in test cases — 2, in our case).

From Figure 2, we observe that the presence of test smells
is associated with the defect-proneness of test cases. Indeed,
methods affected by at least one design flaw have the risk
of being 81% more defect-prone than non-smelly ones. Addi-
tionally, we can notice that the result does not change when
controlling for size and number of changes. Indeed, we see that
the difference is even bigger for large tests: the smelly ones
are 3.5 times more defect prone than the non smelly. Instead,
change proneness seems not relevant when discriminating the
defect-proneness of test cases. In both cases, the RR of smelly
tests of being more defect prone is 50% higher.

Overall, the results of this first analysis provide empirical
evidence that test smells—defined with the aim of describ-
ing a set of bad patterns influencing test code maintain-
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ability [74]—are indeed associated with higher change- and
defect-proneness of the affected test cases.

Finding 1. Tests affected by test smells are associated
with higher change- and defect-proneness than tests
not affected by smells, also when controlling for both
the test size and the number of previous changes.

RQ1.2 Is the co-occurrence of test smells associated with the
change- and defect-proneness of test code?

While in the previous research question we did not discrim-
inate on the number of test smells a test method contained,
the goal of this analysis is to assess whether test smell
co-occurrences is associated with the change- and defect-
proneness of test cases. Figures 3 and 4 report box plots
showing change- and defect-proneness of test cases affected
by a different number of test smells.



For change-proneness, the median of the different groups
is zero for all test cases: to some extent, this is in line with
the findings by Zaidman et al. [82], who found that test cases
are generally not changed as soon as new modifications to
the corresponding production code are implemented. At the
same time, Figure 3 shows that the higher the number of
test smells, the more dispersed the distribution of changes
is, thus indicating that test cases affected by more design
problems tend to be changed more often by developers. This
observation is supported by the results of the statistical tests,
where we found that the difference between all groups was
statistically significant (p− value < 2e−16), with a negligible
effect size between the first 5 groups (d ≤ 0.2) and a medium
one between the first 5 and the last 2 groups (0.5 ≤ d ≤ 0.8).

When considering defect-proneness in Figure 4, we notice
that test methods having up to four test smells do not show
significant differences with respect to methods affected by five
or six design flaws. Indeed, the median of the distribution is al-
most identical in all the groups, and even though the difference
is considered statistically significant by the Wilcoxon rank sum
test, it has a small effect size (d < 0.2). Thus, these findings
seem to confirm that the co-occurrence of more test smells
is not directly associated with higher defect-proneness; we
hypothesize that they are instead a co-existing phenomenon,
similarly to what was reported for code smells in production
code [50].

In the context of this research question, we controlled for
the size of the test method and for the number of its changes,
finding that they are not associated with the investigated
outcome. For sake of space limitation, we included a report
of this additional analysis in our on-line appendix [14].

Finding 2. Test methods affected by more smells are
associated with a slightly higher change-proneness
than methods with less smells. Conversely, the co-
presence of more test smells in a test method is not
associated with higher defect-proneness.

RQ1.3 Are certain test smell types more associated with the
change- and defect-proneness of test code?

The final step of the first research question investigates the
association to change- and defect-proneness of different test
smell types. Figure 5 shows two box plots for each type,
depicting its change- and defect-proneness. When analyzing
the change-proneness, we observe that almost all the test
smells have a similar trend and indeed the magnitude of
their differences is negligible, as reported by Cohen d. The
only exception regard the Indirect testing smell: while the
median change-proneness is similar to other smells, its box
plot shows several outliers going up to 55 changes. In this
case, the magnitude of the differences with all the other smell
types is medium. This result is due to the characteristics of
the smell. By definition, an Indirect testing smell is present
when a method performs tests on other objects (e.g., because
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Fig. 5. Change- and fault- proneness of test methods affected by different
types of smells.

of external references in the production code tested) [74]:
as a consequence, it naturally triggers more changes since
developers may need to modify the test code more often due to
changes occurring in the exercised external production classes.

In the case of defect-proneness the discussion is similar.
Indeed, the number of defects affecting the different test
smell types is similar: even though the differences between
them are statistically significant (p-value < 2e−16), they are
mostly negligible. However, also in this case we can see
some exceptions. The box plots show that the distribution of
‘Indirect Testing’, ‘Eager Test’ and ‘Assertion Roulette’ smells
slightly differ from the others, and indeed these are the smells
having the highest number of outliers. This result is due to the
fact that these test smells tend to test more than required [74]
(i.e., a test method suffering from ‘Indirect Testing’ exercises
other objects indirectly, an ‘Eager Test’ test method checks
several methods of the object to be tested, while an ‘Assertion
Roulette’ contains several assertions checking different behav-
ior of the exercised production code). Their nature makes them
intrinsically more complex to understand [7], likely leading
developers to be more prone to introduce faults.

Finding 3. Test methods affected by ‘Indirect Testing’,
‘Eager Test’, and ‘Assertion Roulette’ are more change
and defect prone than those affected by other smells.

V. RQ2 RESULTS: TEST SMELLS AND PRODUCTION CODE

This section describes the results to our second research
question.

RQ2.1 Are test smells associated with the defect-proneness of
the tested production code?

Figure 6 reports the RR that a smelly test case is exercising a
more defect-prone production method (label ‘Overall’), along
with the RR obtained when considering size as a control factor.
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Fig. 6. Relative risk of the production code being more defect prone when
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In the first place, Figure 6 shows that smelly tests have a
higher likelihood to test defective code than non-smelly tests
(i.e., the RR = 1.71 states that production code executed by
smelly tests has 71% higher chances of being defective than
production code executed by non-smelly tests). Zooming in
on this result, Figure 7 depicts the box plots reporting the
distribution of the number of production code bugs, when
exercised by smelly test methods vs. non-smelly ones. The
difference between the two distributions is statistically signif-
icant (p-value < 2.2e−16) with a large effect size (d = 1.40).

The results still hold when controlling for size: Size does not
impact the RR concerning the defect-proneness of production
code exercised by smelly tests vs. non-smelly ones, actually,
as shown in the previous RQ, it makes it worst. For instance,
methods having a large amount of lines of code have a RR =
2.17. This result can be explained by two main factors: on the
one hand, we suppose that a large size of the test implies a
large size of the production code, and size is widely recognized
as a valid proxy measure for software quality [35]; on the other
hand, our results seem to confirm previous findings reported by
Palomba et al. [50], who showed that large methods (e.g., the
ones affected by a Long Method code smell [23]) are strongly
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Fig. 8. Number of smells and number of production defects.

associated with the defect-proneness of production code.
Thus, from our analysis we have empirical evidence that the

presence of test smells contributes to the explanation of the
defect-proneness of production code. Given our experimental
setting, we cannot speculate on the motivations behind the
results achieved so far: indeed, our RQ2.1 meant to be a
coarse-grained investigation aimed at understanding whether
the presence of design flaws in test code might somehow be
associated with the defectiveness of production code. Thus, in
this research question we did not focus on the reasons behind
the relationship, i.e., if it holds because the production code is
bad (hence difficult to test) or because the tests are bad (hence
they do not capture enough defects). Our RQ2.3 makes a first
step in providing additional insights on such a relationship.

Finding 4. Production code that is exercised by test
code affected by test smells is more defect-prone, also
when controlling for size.

RQ2.2 Is the co-occurrence of test smell associated with the
defect-proneness of the tested production code?

Figure 8 presents the results concerning the association of
test smell co-occurrences to the defectiveness of the exercised
production code. In this case, the defect-proneness of produc-
tion code remains almost constant among the different groups,
meaning that having more design issues in test code is not
associated with a higher number of defects in production.

This result led to two main observations: as observed in
RQ2.1, test smells are associated with the defect-proneness
of the exercised production code, but do not fully explain
this phenomenon. Secondly, while the specific number of test
smells is not associated with the defectiveness of production
code, the overall presence of test smells is. It is reasonable
to think that some specific test smells could contribute more
to the found association to defect-proneness; this reasoning
represented the input for RQ2.3.



0.0

2.5

5.0

7.5

10.0

Assertion Roulette Eager Test Indirect Testing Mystery Guest Sensitive Equality

Smell Type

N
um

be
r 

of
 b

ug
s 

in
 th

e 
pr

od
uc

tio
n 

m
et

ho
ds

Fig. 9. Number of defects for different types of smells.

In this research question we controlled the findings for size
and number of changes, finding that none of them influence
the outcome. For sake of space limitation, we included a report
of this additional analysis in our on-line appendix [14].

Finding 5. The co-occurrence of more test smells in a
test case is not strongly associated with higher defect-
proneness of the exercised production code.

RQ2.3 Are certain test smell types more associated with the
defect-proneness of production code?

Figure 9 depicts the box plots reporting the association of
different test smell types to the defect-proneness of production
code. We observed that the ‘Indirect Testing’ and ‘Eager Test’
smells are associated with the production code being more
defect-prone with respect to the other test smell types. The
differences observed between the ‘Indirect testing’ and ‘Eager
Test’ and the other distributions are all statistically significant
(p − value < 2e−16) with a medium effect size, while we
found the other smells to be not statistically associated with
more production code defect-proneness.

As also explained in the context of RQ1.3, the ‘Indirect
Testing’ and ‘Eager Test’ smells lead to test cases that are (i)
less cohesive and (ii) poorly focused on the target production
code [74]. The former implies the testing of other objects
indirectly, the latter checks several production methods of
the class under test. The lack of focus of such smells may
explain why the corresponding production code is associated
with defect-proneness: It seems reasonable to consider that the
greedy nature of these two smells makes them less able to find
defects in the exercised production code.

From a practical point of view, our results provide evidence
that developers should carefully monitor test and production

code involved with Indirect Testing and Eager Test. In fact,
these are the smells that not only are associated with more
change- and defect-prone test code, but also to more defect-
prone production code.

Finding 6. ‘Indirect Testing’ and ‘Eager Test’ smells
are associated with higher defect-proneness in the
exercised production code. A likely motivation is the
lack of focus of the tests on the target production code.

VI. CONCLUSION

Automated testing is nowadays considered to be an essential
process for improving the quality of software systems [12],
[47]. Unfortunately, past literature showed that test code can
often be of low quality and may contain design flaws, also
known as test smells [7], [73], [74]. In this paper, we presented
an investigation on the relation between six test smell types
and test code change/defect proneness on a dataset of more
than a million test cases. Furthermore, we delved into the
relation between smelly tests and defect-proneness of the
exercised production code.

The results we obtained provide evidence toward a number
of findings, including the following two lessons:

Lesson 1. Test smells and their relation with test code quality.
Corroborating what van Deursen et al. [74] conjectured in their
study, we bring empirical evidence that test smells are nega-
tively associated with test code quality. Specifically, we found
that a smelly test has a 81% higher risk of being defective
than a non-smelly test. Similarly, the risk of being change-
prone is 47% higher in tests affected by smells. This result
is complementary to the findings by Bavota et al. [7], who
found that test smells can have a negative impact on program
comprehension during maintenance activities. Moreover, we
found that test methods with more, co-occurring smells tend to
be more change-prone than methods having fewer smells and
that ‘Indirect Testing’, ‘Eager Test’, and ‘Assertion Roulette’
are those associated with the most change-prone test code.

Lesson 2. Test smells and their relation with software quality.
With our study, we provided empirical evidence that the
presence of design flaws in test code is associated with the
defect-proneness of the exercised production code; indeed the
production code is 71% more likely to contain defects when
tested by smelly tests. ‘Indirect Testing’ and ‘Eager Tests’ are
related to a higher defect-proneness in production code.

This paper provides initial evidence on the relation between
test smells and both change/defect proneness of test code and
defect-proneness of exercised production code. As such, it
represents a call to arms to researchers and tool vendors. We
call upon researchers and tool vendors to develop practically
usable automatic test smell detection tools. We call upon
the research community to further investigate the interplay
between test design quality and the effectiveness of test code
in detecting defects.
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