
Mining File Histories:
Should We Consider Branches?

Vladimir Kovalenko
Delft University of Technology

Delft, The Netherlands
v.v.kovalenko@tudelft.nl

Fabio Palomba
University of Zurich
Zurich, Switzerland
palomba@ifi.uzh.ch

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT
Modern distributed version control systems, such as Git, offer sup-
port for branching — the possibility to develop parts of software
outside the master trunk. Consideration of the repository struc-
ture in Mining Software Repository (MSR) studies requires a thor-
ough approach to mining, but there is no well-documented, wide-
spread methodology regarding the handling of merge commits and
branches. Moreover, there is still a lack of knowledge of the extent
to which considering branches during MSR studies impacts the
results of the studies.

In this study, we set out to evaluate the importance of proper
handling of branches when calculating file modification histories.
We analyze over 1,400 Git repositories of four open source ecosys-
tems and compute modification histories for over two million files,
using two different algorithms. One algorithm only follows the first
parent of each commit when traversing the repository, the other
returns the full modification history of a file across all branches. We
show that the two algorithms consistently deliver different results,
but the scale of the difference varies across projects and ecosystems.
Further, we evaluate the importance of accurate mining of file histo-
ries by comparing the performance of common techniques that rely
on file modification history — reviewer recommendation, change
recommendation, and defect prediction — for two algorithms of file
history retrieval. We find that considering full file histories leads to
an increase in the techniques’ performance that is rather modest.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems;

KEYWORDS
Version Control Systems; Branches; Mining Software Repositories

ACM Reference Format:
Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli. 2018. Mining
File Histories: Should We Consider Branches?. In Proceedings of the 2018
33rd ACM/IEEE International Conference on Automated Software Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238169

(ASE ’18), September 3–7, 2018, Montpellier, France. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3238147.3238169

1 INTRODUCTION
The workflow of modern version control systems (VCS), such as
Git, extensively relies on branching. Branching support allows
developers to manage multiple isolated versions of the working tree,
which can be modified independently of each other. Branch-related
operations in Git are by design extremely lightweight compared
to older VCSs [27]. Low cost of branching allows branches to be
used for development of individual features, for experimenting
with design solutions, and for preparing releases [23]. In all these
examples use of branches allows teams to keep the main working
tree free of questionable code and reduces development overhead
related to version conflicts [46].

While being the most popular version control system today [14],
Git is quite unfriendly for data mining [27]. In particular, branching
features introduce issues for miners: branches can be removed and
overwritten, and synchronization with the remote repository can
introduce implicit branches with no logical meaning [27].

Despite the difficulties with analysis of Git history, mining of
historical data from VCS is still the basis for a variety of studies,
which quantitatively explore the development process and suggest
approaches to facilitate it [20, 26, 36, 40, 43, 52, 62–64].

History of individual files is a particularly important source
of information for prominent practical applications, like (i) de-
fect prediction algorithms, where metrics based on file history are
important features [25, 36, 41, 53], (ii) code ownership heuristics
[38, 42, 60], which are based on aggregation of individual contribu-
tions of all authors of the file, and (iii) code reviewer recommenda-
tion [22, 54, 59, 61], where history of prior changes to files serves
as a basis for automatic selection of the expert reviewers.

Pitfalls of Git from the data mining perspective pose common
threats to validity of every of such studies. Some of these threats,
such as mutability of history, are commonly acknowledged by re-
searchers (e.g., [18, 34, 45, 63, 65]). Nevertheless, there is no wide-
spread approach to handling of merge commits and branches during
mining. Moreover, MSR studies often do not provide a detailed de-
scription of mining algorithms, and handling of the branches in
particular, or explicitly focus the analyses on the main branch of
the repository [18].

In this study, we aim at making a first step toward the assessment
of the threats arising from not considering full information about
brenching in mining software repository studies. Specifically, we
focus on the impact of the branch handling strategy on extraction of
a file modification history. This task requires a traversal of a repos-
itory graph to collect individual commits affecting the file. We first

https://doi.org/10.1145/3238147.3238169
https://doi.org/10.1145/3238147.3238169

ASE ’18, September 3–7, 2018, Montpellier, France Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli

perform a preliminary analysis on how the mining of file histories
is impacted by branches, by measuring how much first-parent (i.e.,
history extractable when only considering the first parent of each
commit when traversing the repository) and full (i.e., the history
extractable when considering changes in all branches) file histo-
ries differ from each other. Then, we study how performance of
three MSR applications (code reviewer recommendation, change
recommendation, and defect prediction), that use file modification
histories as input data, varies when considering branches.

Our results show that the first-parent and full mining strategies
consistently result in different file histories, even though the scale
of the difference varies across software ecosystems and repositories
within each ecosystem. We find that considering the full file histo-
ries leads to an increase in the considered MSR-based techniques’
performance that is rather modest. This marginal increase indicates
that our findings do not raise any serious questions on the validity
of studies that simplify the mining approach. Nevertheless, in our
work we devised a method and a tool for efficient mining of full file
histories at scale, which we make publicly available [11].

2 BACKGROUND
Several prior studies focus on the use of branching and its added
value for developers. Combined, these studies provide strong evi-
dence of importance of branching in modern software development.
Appleton et al. [19] explore an extensive set of branching patterns
and propose a number of best practices and antipatterns. Buffen-
barger and Gruell [32] devise practices and patterns to facilitate effi-
cient parallel development, mitigating the complexity of branching
operations in early VCSs. Bird et al. [29] conclude that developers
working in a branch represent a virtual team. Barr et al. [23] claim
that lightweight branching support is the primary factor in rapid
adoption of modern distributed VCSs in OSS projects. Bird and Zim-
mermann [28] identify common problems from improper branch
usage and propose an analysis to assess more efficient alternative
branch structures. Shihab et al. [56] find that the excessive use of
branches is associated with a decrease in software quality.

Today’s most popular version control system — Git — was not
designed to preserve a precise history of modifications [10], which
implies difficulties with the analysis of these histories [27, 48]. Anal-
ysis of software version histories is not only used to study the
development practices, but also to facilitate development with data-
driven tools. Prominent examples of applications for tools heavily
relying on histories of changes of individual files are defect pre-
diction [35, 39, 47], code reviewer recommendation [22, 61], and
change prediction [67, 68]. Notably, the complexity of Git, the mu-
tability of its data structure, and the difficulty of figuring out the
parent relationships between revisions complicate the work of re-
searchers and prevent some practitioners from using it as their
version control system [16]. Being able to accurately retrieve his-
tories of prior changes is vital for efficient use of techniques that
are based on histories. Moreover, in some cases histories need to
be processed to achieve optimal performance of the techniques:
For instance, Kawrykow and Robillard [44] show that removing
non-essential changes from modification histories improves the
performance of co-change recommendation [68].

2.1 Motivation
Version control repositories are the key data source for a wide
variety of software engineering studies [34, 36, 41, 58, 63]. With
no widespread high-level mining tool in use, the common way
for the researchers to mine the histories of repositories is to use
homegrown tools based on low-level libraries, such as JGit [9].
While low-level operations provide greater flexibility of mining,
they also undermine the reproducibility of studies, as details of
mining are usually not elaborated on in the papers. Reproduction
packages, where available, commonly contain information obtained
after mining, but not the repository mining scripts.

Restoring the actual change history from a Git repository is
challenging and error-prone [27]. To come around the difficulties,
some studies (e.g. [18]) focus on the development activity in the
main branch, thus omitting part of the changes in the repository.
This approach may be sufficiently precise for some applications,
because (i) in some repositories most of development activity takes
place in the master branch, and (ii) the rebase operation is often
used to integrate changes from branches into the main branch.
However, consideration of branches and careful handling of merge
commits might be important for precise calculation of individual
file histories, which are the primary source of input data in some
contexts, such as code reviewer recommendation [22] and change
recommendation [68].

The difference in quality of data between different mining ap-
proaches, and the impact of the chosen mining approach on perfor-
mance of analysis methods driven by historical data, are not clear
and have not yet been explored. We conduct this study to quan-
tify the effect of considering the graph structure of the repository
(importance of such consideration is reported as one of the perils
of mining Git [27]) and to investigate how the difference in the
results from different mining approaches impacts performance of
MSR applications.

While the file histories are the main input data for a variety of
MSR-based techniques, there is no guarantee that more complex
and precise mining methods ensure an increase in performance of
the techniques notable enough to justify the extra mining effort.
With no prior research existing on this topic, with this study we
seek not only to identify the impact of branch handling strategy on
performance of file-history-based methods, but also to compare the
scale of this impact between different techniques. This knowledge
could help make a step towards ensuring that MSR studies and their
practical applications employ optimal mining strategies to get the
most value out of the repository data.

2.2 Challenges of mining the file histories
Mining of histories of individual files at large scale is a non-trivial
task. Git provides a toolkit for repository operations, including git
log, which facilitates retrieval of logs of commits. However, Git
was not designed to support careful storage and retrieval of history
of changes [10, 31, 49, 57], which implies several complications
with using git log for mining file histories. Specifically:
Performance With no specialized index for file histories in place,
retrieval of histories of changes for an individual file requires
traversal of the commit graph. Retrieval of histories for every file
in the repository tree is very expensive.

Mining File Histories:
Should We Consider Branches? ASE ’18, September 3–7, 2018, Montpellier, France

Handling of renames aGit repository does not contain any records
of renames and moves of files. Such events are detected based
on similarity of contents of consecutive versions of a file, with
thresholds defined by the settings of the Git client. As a result,
calculated history of the same file in the same repository might
appear different on different clients.

Handling of merge commits and branches The git log tool,
which is often used for analysis of software histories, supports
an overwhelming variety of settings, with over 100 argument
options [6]. Unless the tool is thoroughly set up, some potentially
interesting changes might be implicitly omitted: for example, by
default git log prunes some side branches. A default approach
might not be suitable for some applications.

Difficulty of use A wide variety of settings makes the user expe-
rience with git log quite complicated. Certain scenarios of re-
trieval of repository history are even harder: for example, travers-
ing the commits graph forward in time, which might be useful
in some contexts, is more difficult. For example, all descendants
of a commit can be retrieved with the following command:

git rev-list --all --parents | grep ".\{40\}.*SHA.*" |
awk '{print $1}'

This command [5], which only lists the commits without provid-
ing any information on the structure, is already not trivial.

2.3 Retrieval of file histories
History of commits in a Git repository can be represented as a
directed acyclic graph. Each commit logically represents a state
of the repository’s file tree. Each version of the state is based on
one or several prior (parent) version, and only the difference in
the state between the parent and the current version is actually
stored.1 In Figure 1 (left), which presents a hypothetical commit tree,
the commit parent relationships are represented by black arrows:
for example, commit 5 is the parent of commit 6. Merge commits,
which integrate changes from multiple branches, have more than
one parent. In Figure 1, commit 5 has two parents: 3 and 4. In a
merge commit with multiple parents, the list of parents is sorted:
if branch A is merged into branch B, the first parent of the merge
commit would be the one that branch B was pointing to before the
merge. In Figure 1, parent commits are sorted left to right: commit
4 is the first parent of commit 5.

Each commit affects a set of files2 and defines their new content
relative to their content in the parent commit. It is possible to say
that a commit affects a file, if its content in the revision which is
represented by the current commit is different from its content
in the parent commit, or if the file was created/removed in the
current commit. It is common to think of a commit as simply a set
of changes in one or multiple files. This simple model is convenient
and is used by Git itself, e.g., in the git diff command. In Figure 1,
affected files are shown in boxes next to nodes of the commit tree.

Retrieval of a a history of changes for a given file — i.e., list
of the commits that affect this file — one needs to traverse the
commit graph to identify such commits. A traversal and handling
of commits one by one is necessary because Git does not store any
auxiliary data that would allow to perform this operation faster.

1Described is a simplified scheme of the storage model of Git, which is in reality more
complex.
2The set can be empty, e.g., in most of merge commits without conflicts.

During the traversal, it is possible to either follow all parents of a
merge commit, which ensures visiting every transitive parent of
the starting point and including all of these commits in the history,
or only follow the first parent.

We refer to the traversal strategy that follows all parents and
to resulting histories as full. Considering the example repository
graph in Figure 1, full traversal starting from the latest commit in
the repository (12) would include all 12 commits in the repository.
A full history for the file f2 would contain all 9 of these commits
that affect f2. An alternative strategy is to only follow the first
parent of every merge commit during the traversal. We refer to this
strategy and resulting file histories as first-parent. For the example
in Figure 1, such traversal starting from commit (12) would only
include commits (12), (11), (9), (6), (5), (4), (2), and (1). A first-parent
history of f2 would only include 6 commits from this traversal that
affect f2. It is important to note that the first-parent strategy does
not omit merge commits that contain changes to the file relative to
its first parent: an example of such commit in Figure 1 is (5), and it
is included in the first-parent history as well.

The histories for the file f2, as retrieved with both strategies, are
presented in Figure 1 (right). As the first-parent history contains less
commits, some changes to the file are omitted. Thus, using the first-
parent strategy to calculate quantitative properties of file histories,
such as number of changes or number of contributors, leads to
incomplete results. The two cases represented by the two strategies
are rather extreme: the simplified strategy omits all changes that
were made outside the main branch and did not end up in the
main branch after a rebase. There are less radical ways of simplified
handling of branches than to omit traversing the branch completely.
For example, one way to see the summary of changes in a branch
is to inspect the output of git diff between two parents of a
merge commit. This approach is adopted by some GUI applications
on top of Git, such as Sourcetree3. While this approach allows to
retrieve a summary of changes in a branch, the individual changes,
possibly made by different authors, are presented together and are
not distinguishable, which makes the approach less applicable for
mining tasks: it is impossible to identify individual contributions
by count, sizes, or dates of changes per author.

We find the extreme case of comparing full and first-parent
histories an appropriate setting to study the impact of the mining
strategy on the results of mining and performance of the methods
based on these results. With the two extreme cases, we have the
highest chance of identifying effects not present in less extreme
settings. As this study is the first to explore such effects, we consider
this setting fruitful to highlight the directions for future work.

3 METHODOLOGY
3.1 Research questions
We center our investigation around two research questions. First, we
set out to quantify the importance of careful handling of branches
during mining. In particular, we (i) explore the repository structure
to calculate numbers of commits reachable with and without con-
sidering branches and (ii) analyze differences on a lower level of
history of individual files. Thus our first research question is:

3https://www.sourcetreeapp.com/

ASE ’18, September 3–7, 2018, Montpellier, France Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli

6

3

5

4

2

1 ADD f1
ADD f2

EDIT f1

EDIT f1
EDIT f2 EDIT f2

 (merge)
EDIT f2

EDIT f1
EDIT f2

9

12

10

11

EDIT f1
EDIT f2

EDIT f1
EDIT f2

 (merge)
no

changes

EDIT f1
EDIT f2

8

EDIT f1
EDIT f2

6

3

5

4

2

1 ADD f1
ADD f2

EDIT f1

EDIT f1
EDIT f2 EDIT f2

 (merge)
EDIT f2

EDIT f1
EDIT f2

9

12

10

11

EDIT f1
EDIT f2

EDIT f1
EDIT f2

 (merge)
no

changes

EDIT f1
EDIT f2

8

EDIT f1
EDIT f2

6

5

4

1

History of f2
(first-parent)

History of f2
(full)

9

12

6

5

4

1

9

12

10

8

3

Figure 1: Construction of file parent connections and resulting file histories

RQ1. How does the branch handling strategy impact the results of
mining?
Having identified the magnitude of the difference between min-

ing approaches that consider and do not consider branches, we
investigate the impact of branch handling strategy on the perfor-
mance of algorithms relying on history of files such as reviewer
recommendation, change recommendation, and defect prediction.
Thus, our second research question is:

RQ2. How important is the branch handling strategy for applica-
tions?

3.2 Mining histories at large scale
Traversal of the commit tree can take a significant amount of time:
in some repositories the tree contains hundreds of thousands of
commits. If this operation has to be repeated for many or even all
files in the repository — which is often the case during mining the
repository for file histories — it can take a lot of time for larger
repositories. Slowness of mining the file histories is a limitation of
the storage model of Git, which does not link individual versions of
a file to each other, and does not include indices of changes to indi-
vidual files. To overcome this limitation, we devised an alternative
representation of changes in Git, aimed at fast retrieval of file histo-
ries. We use a graph database engine4 to store a representation of
the commit graph. To keep the database compact, we only store the
commit nodes and records of affected files, excluding their content.

In addition to the commit parent relationship, which is the basis
of the commit graph in Git, we introduce the concept of parent file
versions. A parent version of a file can be defined as a change to
the same file in some other commit, which can be reached from
the current commit with a unique path over the commit parent
graph. In Figure 1 (center), the file parent connections are repre-
sented by gray arrows. By processing the repository, we build the
graph of parent relationships between file versions, and store it in
the graph database aside the commit graph. Once the file parent
4Neo4J: https://neo4j.com/

graph is built, retrieval of prior changes to the file is as simple as
retrieving all transitive parents of the current version, which only
requires traversing the file parent graph, which is much faster than
traversing the whole repository thanks to direct links to parent
file versions. For large-scale mining tasks this approach saves time:
after processing the repository and building the file parent connec-
tions, it is possible to retrieve full modification histories for several
thousand files per second. Figure 1 (right) presents the resulting
histories from traversal of the file parent graph.

3.3 Target systems
We take a number of steps to ensure diversity in our target sys-
tems [51]. Our dataset consists of 260 repositories from Github,
selected in a stratified manner to include projects of different scale.
Using GHTorrent [37], we randomly sample 100 repositories with
over 10,000 commits recorded in GHTorrent database for each, and
200 repositories with 1,000 to 10,000 commits. 40 of the 300 repos-
itories turned out not to be publicly available anymore; the rest
comprise our Github sample. Counts of commits as retrieved from
GHTorrent are not completely accurate, so actual distribution of
sizes of repositories in the sample is slighly more disperse. We have
attempted to download and mine all repositories from the Apache
open source ecosystem, of which we succeeded with 441 reposito-
ries of 532. The rest of the repositories were not available, empty,
or failed to process with our toolkit.

Finally, we include 395 and 309 repositories from Eclipse and
OpenStack respectively, which use Gerrit for code review. The
repositories in these two samples belong to the projects concerned
by the latest 100,000 reviews in each Gerrit instance, which we have
mined to evaluate the performance of a reviewer recommendation
algorithm (Section 5.1). We use smaller subsets of repositories for
parts of RQ2. For change recommendation and defect prediction,
we use samples of 10 repositories from each of Eclipse and Apache
ecosystems. These ecosystems were selected based on availability
of defect data (explained in Section 5.3.1). We use the same sample
for change recommendation (Section 5.2.1). To evaluate reviewer

Mining File Histories:
Should We Consider Branches? ASE ’18, September 3–7, 2018, Montpellier, France

recommendation performance, we use the repositories of the 20
most active projects from each of Eclipse andOpenStack ecosystems
(Section 5.1). For the quantitative analysis of repository structure
and file histories (RQ1), we use all 1,405 repositories from the four
samples. We report the entire list of repositories in our online
appendix [11].

4 RQ1: DIFFERENCE IN MINING RESULTS
Our first research question seeks to quantify the differences re-
sulting from the application of two different mining approaches to
retrieval of the history of files in Git.

4.1 Methodology
We devised a set of metrics that quantify the effect of strategy of
branch handling on the results of mining. Afterwards, we compared
two approaches in terms of these metrics, i.e., the first-parent one
(which extracts history only considering the first parent of each
commit when traversing the repository) and the full one (which
extracts all the commits by exploiting the approach described in
Section 2.3).

For each repository, we first compute descriptive measures of
its structure, such as number of commits that are reachable from
HEAD (the latest commit in the main branch), number of merge
commits (with more than one parent), number of files in the repos-
itory, and number of unique contributors to the repository. We
use these metrics to compare the ecosystems between each other,
and to explore the variation in branching activity within and be-
tween them, which is important for mining: for example, differences
between the numbers of commits reachable depending on the tra-
versal strategy denote the importance of the strategy for mining:
if only the first parent is considered and traversed, some commits
are left out, while still contributing to the state of the repository at
HEAD. Number of merge commits can be used as a proxy measure
of branching activity in the repository.

Beyond repository-wide metrics, the way in which branches
are handled also impacts the calculation of histories of individual
files: if only the main branch is considered, some changes from file
history are omitted. This effect might impact various applications
of file histories, ranging from identification of contributors to a file
to more complex scenarios such as reviewer recommendation.

To quantify this effect, we calculate histories of every file in the
repository, using both the first parent and the full approaches to
retrieve all commits that contribute to a given version of a file. For
every repository (all of which contain over 2 million files in total),
we calculate repository-wide average length of the history of a
file in its tree, when retrieved via first-parent and full method. We
compute the ratio of these averages, and fraction of files for which
the two methods deliver different histories among all files in the
repository. In addition, we calculate numbers of contributors to
each file for both methods of file history mining, and compare their
repository-wide averages.

4.2 Results
4.2.1 Descriptive metrics. To display the natural differences be-

tween the ecosystems, which are not associated with different min-
ing strategies, we first present the comparison of the ecosystems

in terms of natural activity metrics, such as sizes of repositories
and number of contributors. The top two rows of Figure 2 present
a comparison of descriptive metrics between the repositories in the
four subject ecosystems. The numbers of commits in the reposi-
tories within each ecosystem greatly vary. A median number of
commits in a repository ranges from 172 for Github to 1,039 for
OpenStack. An average repository contains several hundred files
in the file tree at HEAD and this number varies in all ecosystems,
with a lower variation for OpenStack. Projects from GitHub are
typically developed by only a few authors – the median number of
contributors for a Github repository is 4. This value for OpenStack
is 61, with Eclipse and Apache falling in the middle.

For measures of branching activities, repositories from three of
the four ecosystems display moderate values: The majority of com-
mits in a typical repository from every ecosystem except OpenStack
is reachable from HEAD. OpenStack also stands out in numbers
of merge commits. In a median project, almost 30% of commits in
the repository that are reachable from HEAD are merges (Figure 2).
Along with higher branching activity, OpenStack repositories show
the highest difference between numbers of commits reachable from
HEAD via the first parent and via all parents.

Notably, repositories from Github are much more diverse in
terms of branching activity metrics. We attribute this diversity to
the fact that projects in other ecosystems are logically connected,
with possibly common engineering guidelines and intersecting
development teams. In addition, the branching structure of the
repositories is possibly impacted by the strategy of integrating the
pull requests, which are a common part of the workflow at Github
and can be either merged or rebased.

4.2.2 File history metrics. Table 1 presents the statistics on the
four ecosystems with regard to difference in first-parent and full file
histories. Over the four ecosystems, 19% of files display difference in
histories retrieved via first parent and full methods. Ecosystem-wide
fractions vary from 14% in Eclipse to 55% in OpenStack. 71% of the
repositories in our samples contain at least one filewith difference in
the history. Fraction of such repositories varies between ecosystems
from 56% in Eclipse to 97% in OpenStack. 81% of all commits and
72% of all files belong to such repositories, which indicates that the
difference between first-parent and full histories is significant in
most of the repositories and cannot be ignored as a rare effect.

Distributions of the metrics related to difference in the results of
mining file histories are presented in the bottom row of Figure 2.
One metric that indicates the importance of the strategy of file
history mining for a given repository is number of files for which
histories retrieved via the first parent and via the full traversal have
different lengths. Such files exist in 305 of 441 repositories (69%)
from Apache, 173 out of 260 (67%) from the Github, 220 of 395 (56%)
in Eclipse, and in 301 of 309 (97%) OpenStack repositories.

Similarly to the merge activity metrics, fraction of files with
difference in history greatly varies within every ecosystem. Median
proportion of such files is 8% in Apache and Github, under 1% in
Eclipse, and 46% in OpenStack repositories. Distribution of ratio of
the length of the two histories across repositories that contain files
with the difference in histories (naturally, this metric is only defined
for such projects), displays a similar behaviour across ecosystems to
fraction of files with the difference in history. This ratio for Eclipse

ASE ’18, September 3–7, 2018, Montpellier, France Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli

Table 1: Overview of the target ecosystems

Ecosystem
Projects Commits Files

total with
difference total in projects with

difference total with difference in projects with
difference

Github 260 173 (67%) 872,833 257,156 (29%) 322,783 85,170 (26%) 225,861 (70%)
Apache 441 305 (69%) 998,910 938,032 (93%) 861,196 136,692 (16%) 525,997 (61%)
OpenStack 309 301 (97%) 1,317,165 1,317,004 (100%) 87,382 47,634 (55%) 87,166 (100%)
Eclipse 395 220 (56%) 1,000,997 883,318 (88%) 874,044 127,833 (14%) 712,315 (82%)
Total 1,405 999 (71%) 4,189,905 3,395,510 (81%) 2,145,405 397,329 (19%) 1,551,339 (72%)

●●

●
●
●

1

10

100

1,000

10,000

100,000

apache eclipse github openstack

to
ta

lC
om

m
its

Count of commits in the repository
●

●

●

●

●

1

10

100

1,000

10,000

100,000

apache eclipse github openstack

fil
es

In
Tr

ee

Files in tree at HEAD

●

●

●

●

●●●
●
●

●

●

●

●

●

●●●

1

10

100

1,000

apache eclipse github openstack

un
iq

ue
A

ut
ho

rs
In

R
ep

o

Unique authors of commits

●
●
●●

●

●

●
●●

●●

●●

●

●

●●●
●

●
●
●
●

●
●
●
●

●

●

●
●●
●

●

●
●●
●

●

●●
●●

●

●

●

●

●●

●●
●
●●

●●
●
●

●

●●

●

●●●●

●

●
●
●
●
●

●
●
●●
●

●●
●

●

●

●

●

●●●●

●

●

●
●●

●

●

●

● ●

●

0.0

0.2

0.4

0.6

0.8

apache eclipse github openstackm
er

ge
C

om
m

itF
ra

ct
io

n

Fraction of merge commits
(among commits reachable from HEAD)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

0.00

0.25

0.50

0.75

1.00

apache eclipse github openstackre
ac

ha
bl

eC
om

m
itF

ra
ct

io
n

Fraction of commits reachable from HEAD
(among all commits in the repository)

●
●●

●
●●
●
●●

●
●

●
●●
●

●

●
●

●

●

●

●●
●●●

●

●
●

●
●

●
●
●
●●
●
●●●

●●

●●●●

●

●●

●●
●
●

●

●
●●●
●
●
●

●

●●

●
●
●●●
●

0.00

0.25

0.50

0.75

1.00

apache eclipse github openstack
m

ai
nB

ra
nc

hR
ea

ch
ab

le
F

ra
ct

io
n Fraction of commits reachable

from HEAD via the first parent
(among commits reachable from HEAD)

●
●●
●
●
●
●
●●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●
●●
●●●●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●
●

0.00

0.25

0.50

0.75

1.00

apache eclipse github openstackfr
ac

tio
nO

fF
ile

sW
ith

D
iff

Fraction of files with different
sizes of history (first−parent/full)

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●
●
●●
●

●

●

●

●●

●

●

●
●●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●
●●

●
●

●

●

●

●

●
●
●●

0.25

0.50

0.75

1.00

apache eclipse github openstackhi
st

or
yL

en
gt

hR
at

io
To

ta
l

Average ratio of history lengths
(first−parent/full, all files)

●

●

●

●

●

●
●

●
●●

●●

●

●●

●

●●●

●

●●●

●

●

●

●
●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●
●

●

●
●
●

●●

●

●●●●●●

●

●

●●

●
●
●
●

●

●

●●●

●

●

●

●●●

●

●
●

●

●
●
●

●

●

●

●

●●

●
●●

●

●

●●

●●

●

●
●
●

●●

●

●

0.25

0.50

0.75

1.00

apache eclipse github openstackav
gC

on
tr

ib
ut

or
sR

at
io

To
ta

l

Average ratio of numbers of contributors
in first−parent/full histories (all files)

Figure 2: Comparison of descriptive metrics between repositories in different ecosystems

repositories is the highest of the four (the histories are the most
similar; median ratio is 0.997) and the lowest for OpenStack (0.63).
If we omit the files with identical first-parent and full histories
and only consider the files with the difference, an ecosystem-wide
median value for average ratio of history lengths in a repository
ranges from 0.54 to 0.82 for OpenStack and Eclipse, respectively.

The values for the aforementioned metrics indicate that—in most
of the repositories from all four ecosystems—the first-parent strat-
egy leaves out a significant number of changes. The proportion of
files affected by the difference and the scale of this difference are
the lowest for Eclipse and highest for OpenStack.

One straightforward practical application of file histories is re-
trieval of contributors to a file. Developer tools with code viewing
features, such as Github, display contributors to the current file in
the user interface of file content display. Figure 2 displays the ratios
of counts of version control user records in first-parent and full
histories. While the ratio is close to 1 for most of the repositories

in Eclipse, Github and Apache, there are quite a few repositories
with large difference in each of these ecosystems. For most of the
repositories in OpenStack, retrieval of histories via the first parent
of the commit leaves out over 25% of contributor records (median
value of the ratio is 0.74). Only considering the files with different
histories naturally leads to an even stronger effect.

4.2.3 Summary. The analysis of the results of mining across
over 1,400 repositories in the four subject ecosystems reveals that—
in most of the considered repositories—the two strategies of mining
file histories deliver different results (Figure 2, Table 1). The size
of the difference for a typical repository varies across the four
ecosystems and is the lowest for Eclipse and the highest for Open-
Stack. The size of the effect aligns with the proportion of the merge
commits in repositories and reachability of commits (Figure 2). The
difference between the histories does not only impact their quantita-
tive metrics, but also distorts the observed numbers of contributors

Mining File Histories:
Should We Consider Branches? ASE ’18, September 3–7, 2018, Montpellier, France

to a file. We explore the impact of the mining technique on the more
complex repository analysis techniques relying of file histories in
the next research question (RQ2, Section 5).

5 RQ2: IMPORTANCE FOR APPLICATIONS
To evaluate importance of the mining approach for practice, we
compare the performance of three prevalent techniques based on
histories of changes: (i) recommendation of code reviewers [22], (ii)
change recommendation [68], and (iii) defect prediction [41].

It is important to note that, while we compare the numbers of
performance of the techniques, we do not perform statistical tests
to assess the significance of the difference, because (i) we are merely
demonstrating the existence of the difference for individual projects
from our samples, rather than trying to generalize the results for
a broader population of projects, and (ii) statistical tests, such as
Mann-Whitney U, which are commonly used for this purpose, are
not applicable in our case, because measures of performance of
conceptually similar algorithms on related data from the same
projects cannot be considered independent samples [50].

5.1 Code reviewer recommendation
5.1.1 Methodology. Recommendation of reviewers for code re-

view has the goal of finding the most qualified reviewer for a new
code change committed on a repository [22]. Such recommendation
tools usually mine the change history information to identify the
developer that is more expert on the piece of code impacted by
the change under review. Thus, it represents a prominent example
of usage of file histories to assist developers in routine tasks. In
the last few years the reviewer recommendation algorithms have
been adopted by industrial code review tools, such as Github [7],
Gerrit [4] and Upsource [15].

We focus on two open source ecosystems that use Gerrit for
code review — Eclipse [2] and OpenStack [12]. For each of the
two Gerrit instances [3, 13], we extract the 100,000 most recent
code reviews. We choose this number to have a sufficiently large
dataset, which would, however, not include all of the reviews in the
corresponding instances, but only two sets, similar in size, of the
most recent reviews from each instance. We assess the impact of
the file history retrieval method on accuracy of recommendations
of code reviewers based on the history of changes. We perform the
evaluation to find out whether the accuracy of recommendations
changes depending on method of file history retrieval, but not to
achieve maximum possible accuracy. Thus, we resort to a trivial
reviewer recommendation algorithm, based on counts of develop-
ers’ prior contributions to the files under review. We evaluate the
recommendations by comparing a list of recommendations with
actual reviewers of a changeset, as recorded in Gerrit. To assess the
accuracy of recommendations, we use two commonwise metrics:
Mean Reciprocal Rank (MRR) and top-k precision [66].

5.1.2 Results. Table 2 presents the results of evaluation of re-
viewer recommendation algorithm based on authors of past changes
to files under review. We compare the accuracy of the algorithm
between the two variations of input data: first-parent and full file
histories. For each of the two ecosystems — Eclipse and OpenStack
— we compare the accuracy numbers for 20 projects in each ecosys-
tem. The selected projects are the most represented among 100,000

latest code reviews in the corresponding Gerrit instance. We re-
port values of mean reciprocal rank and top-k accuracy for k in
{1, 2, 3, 5, 10} (average for all reviews in the project) for the recom-
mendation lists based on both first-parent and full histories of files
under review, and explore the difference between these values. To
keep the table compact, we only report the 5 most active projects
from each ecosystem individually, and aggregated values for the top
5 and top 20 projects. To illustrate the scale of difference between
file histories, we also report average counts of commits in the union
of histories of files under review, for both methods of retrieval of
file histories, and the ratio of these numbers for the two methods.

For the Eclipse ecosystem, the difference in recommendation
accuracy is subtle: MRR and all 5 top-k precision values only vary
very slightly between first-parent and full histories consistently
across all projects. For the OpenStack ecosystem the difference is
slightly more pronounced. While MRR values only differ slightly,
top-k precision values differ increasingly for higher values of k .
This difference indicates that the full histories of files may include
changes, made by future reviewers of a file, that are not present
in the first-parent histories. The increase in the size of the effect
with the increase of k suggests that authors of such changes are
typically not the main contributors of the file, as they end up around
k-th position in the list of past contributors sorted by numbers of
contributions, thus starting to affect the top-k precision value for
the corresponding k and higher.

The difference in the size of the effect betwen the two ecosystems
can be explained by the fact that the difference between the full
and first-parent histories is much higher for OpenStack reposito-
ries than for Eclipse. In OpenStack, the full histories of commits
for all files under review, in union, contain on average 5.26 times
as many changes as the first-parent histories. In Eclipse, the aver-
age difference between sizes of histories is under 20%. Such a low
difference is unlikely to cause a large deviation of the two sorted
contributor lists, and is thus not critical for the accuracy of reviewer
recommendation based on history of changes. A large difference in
OpenStack, however, noticeably impacts the accuracy of reviewer
recommendation.

5.2 Change recommendation
5.2.1 Methodology. Another example of usage of historical data

to improve the user experience of development process is recom-
mendation of changes, based on mining of association rules for
changes to individual files. A practical application for this technique
was described by Zimmermann et al. [68]: in particular, given a new
code change as input, their technique suggests related changes that
the developer might want to apply based on the files that frequently
change with the modified file. We perform an experiment to assess
the effect of using full histories of changes to a file, compared to
using the first-parent histories.

The original design by Zimmermann [68] uses a set of changes
from version control to infer file association rules. To apply the
approach to our area of focus — difference in results of mining of
individual files — we adapt the design of the original tool. We use
two different approaches to infer the association rules from past
changes, and evaluate their performance in predicting a change of

ASE ’18, September 3–7, 2018, Montpellier, France Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli

Table 2: Results of reviewer recommendation evaluation on projects from Eclipse and OpenStack

MRR Top 1 precision Top 2 precision Top 3 precision Top 5 precision Top 10 precision Changes per review

Project (OpenStack) Reviews Reviews
w/ diff

first
parent full delta first

parent full delta first
parent full delta first

parent full delta first
parent full delta first

parent full delta first
parent full ratio

openstack/tripleo-heat-templates 2,588 2,477 0.16 0.19 0.03 0.13 0.10 -0.02 0.17 0.18 0.01 0.19 0.23 0.03 0.21 0.30 0.09 0.22 0.38 0.16 7.75 76.46 9.87

openstack/releases 2,107 1,990 0.16 0.21 0.05 0.10 0.10 0.00 0.19 0.28 0.09 0.22 0.32 0.11 0.24 0.35 0.11 0.24 0.36 0.12 9.81 26.56 2.71

openstack/cinder 2,073 2,049 0.02 0.02 0.00 0.01 0.01 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.03 0.01 0.03 0.04 0.02 17.41 157.62 9.05

openstack/requirements 1,786 1,771 0.05 0.07 0.03 0.01 0.01 0.01 0.02 0.02 0.00 0.02 0.04 0.02 0.08 0.12 0.04 0.14 0.29 0.15 255.40 1,534.32 6.01

openstack-infra/zuul 1,367 1,329 0.10 0.13 0.03 0.05 0.04 -0.01 0.08 0.10 0.02 0.11 0.14 0.03 0.15 0.23 0.08 0.24 0.35 0.12 65.85 178.63 2.71

Total (OpenStack top 5) 9,921 9,616 0.10 0.13 0.03 0.07 0.06 -0.01 0.10 0.13 0.03 0.12 0.16 0.04 0.15 0.21 0.06 0.17 0.29 0.11 62.79 359.34 5.72

Total (OpenStack top 20) 25,179 24,297 0.13 0.15 0.02 0.09 0.08 -0.01 0.14 0.15 0.01 0.16 0.19 0.03 0.19 0.24 0.05 0.21 0.31 0.10 40.05 210.50 5.26

Project (Eclipse) Reviews Reviews
w/ diff

first
parent full delta first

parent full delta first
parent full delta first

parent full delta first
parent full delta first

parent full delta first
parent full ratio

papyrus/org.eclipse.papyrus 4,884 3,775 0.26 0.26 0.00 0.18 0.18 0.00 0.27 0.26 0.00 0.31 0.31 0.00 0.35 0.36 0.00 0.41 0.42 0.02 48.10 68.46 1.42

jgit/jgit 4,842 4,197 0.42 0.42 0.01 0.30 0.31 0.00 0.43 0.43 0.00 0.50 0.51 0.00 0.58 0.59 0.01 0.64 0.67 0.03 44.74 78.38 1.75

linuxtools/org.eclipse.linuxtools 4,616 2,910 0.42 0.41 -0.01 0.29 0.28 -0.02 0.46 0.44 -0.02 0.55 0.53 -0.02 0.59 0.59 0.00 0.62 0.62 0.01 42.46 56.11 1.32

egit/egit 4,587 4,028 0.35 0.36 0.01 0.23 0.23 -0.01 0.33 0.33 0.00 0.40 0.41 0.01 0.51 0.56 0.05 0.64 0.67 0.03 98.74 140.66 1.42

platform/eclipse.platform.ui 4,083 2,486 0.26 0.23 -0.03 0.15 0.12 -0.03 0.25 0.21 -0.04 0.32 0.27 -0.04 0.40 0.36 -0.04 0.50 0.48 -0.02 117.53 145.60 1.24

Total (Eclipse top 5) 23,012 17,396 0.34 0.34 0.00 0.24 0.22 -0.01 0.35 0.43 -0.01 0.42 0.41 -0.01 0.49 0.50 0.01 0.56 0.57 0.01 68.67 96.15 1.40

Total (Eclipse top 20) 55,620 36,795 0.37 0.37 0.00 0.25 0.24 -0.01 0.38 0.37 0.00 0.46 0.46 0.00 0.55 0.55 0.01 0.62 0.63 0.01 103.37 122.57 1.19

Total (Eclipse top 20 +
OpenStack top 20) 80,799 61,092 0.30 0.30 0.01 0.20 0.19 -0.01 0.30 0.30 0.00 0.37 0.37 0.01 0.43 0.45 0.02 0.49 0.53 0.04 83.63 149.97 2.45

a given file in the commit. The common part of the two algorithms
is their context and input data.

Below we use the notation F ∈ C to denote that the commit C
affects the file F , i.e., the file is modified in it. Both algorithms try
to predict the change to the file Fcurrent in the current commit
Ccurrent .

In the first algorithm (“single-file”), we infer the association rules
from the commits that affected this file in the past: {C : Ci affects
Fcurrent }.

In the second algorithm (“other-files”) we infer the rules from
the commits that affected every of the other files in the commit C:
{C : Ci affects Fk , Fk ∈ {F : Fi ∈ Ccurrent } \ {Fcurrent }}

We evaluate both algorithms and compare their performance
depending on the type of file histories in use: first-parent or full.
Intuitively, a full history contains more information about past
changes, which allows one to infer more association rules, some
of which are more likely to match the current change. However,
since we are interested in difference between the two methods of
file history mining in terms of their capability to provide informa-
tion to infer the association rules from past changes (quantitative
difference is explored by RQ1), we make adjustments to account
for the difference in sizes of the two histories: (1) We only include
the predictions where the histories are different (otherwise they
perform equally); (2) We trim the full history to the size of the first-
parent history, taking the most recent commits into account (to
infer rules from the same number of commits); (3) We sort the rules
by support and trim the larger ruleset to match size with smaller
(to account for the possible difference in the number of rules).

In addition, to bring the algorithm closer to a practical approach,
we only generate the predictions when the following (empirically
derived) criteria are met: (i) We do not consider large commits with
more than 10 changes when infering the rules (they rarely represent
meaningful changes); (ii) We only execute the algorithm when the

smaller of two histories contains at least 5 commits (otherwise
the history is too trivial to learn meaningful rules from); (iii) We
use at most 100 most recent commits from the history to infer
the rules (to capture the current state of logical coupling between
files); (iv) We use at most 10 rules with the highest support values
(recommendation lists are finite and small in practical contexts). We
use an open source implementation [8] of the Apriori algorithm [17]
to infer the association rules. A formal definition of the concept of
an association rule is available in literature [68].

Imitating a real-life context of recommendation of changes, we
derive a recommendation set from the set of rules as a union of
all one-item sets of heads of the rules, bodies of which are fully
contained among the other files changed in the commit C .

We use a random sample of 10 projects from each of Apache and
Eclipse ecosystems for evaluation. We select these projects to align
the sample with the sample used for defect prediction (Section 5.3.1),
for which the choice of target systems is restricted by the issue
tracker in use.

5.2.2 Results. Table 3 presents the results of evaluation of change
recommendation. An “event” corresponds to a single case when
association rules have been successfully generated using both first-
parent and full histories. In some events, none of the rules match the
set of changes in the commit, so no recommendations can be pro-
duced. Rate of such events is presented in the last column of Table 3.
The setup and the algoritms are described in detail in Section 5.2.1.
In the context of this study, we are interested in comparing the
performance of full and first-parent histories as the input data for
each of the two algorithms.

The “other files” algorithm, which uses histories of the other
files in the commit to produce the association rules, produces more
events and generates more recommendations on sampled reposi-
tories from both Apache and Eclipse. However, only under 20% of

Mining File Histories:
Should We Consider Branches? ASE ’18, September 3–7, 2018, Montpellier, France

Table 3: Comparison of performancemetrics for change rec-
ommendation, by mining approach and ecosystem

Apache

Algorithm History
type

Events
count

Recommendations
(average)

Rules
(average)

Success
rate

Failure
rate

No
prediction

rate

Single file
Full 8780 0.908 8.848 0.496 0.029 0.474
First parent 8780 0.858 8.848 0.474 0.031 0.496

Other files
Full 19072 1.565 8.003 0.184 0.528 0.288
First parent 19072 1.485 8.003 0.170 0.527 0.303

Eclipse

Algorithm History
type

Events
count

Recommendations
(average)

Rules
(average)

Success
rate

Failure
rate

No
prediction

rate

Single file
Full 2721 0.772 7.922 0.491 0.016 0.493
First parent 2721 0.729 7.922 0.483 0.016 0.501

Other files
Full 6661 1.324 7.540 0.163 0.514 0.323
First parent 6661 1.299 7.540 0.152 0.526 0.322

�1

Table 4: Comparison of performance metrics for defect pre-
diction, by mining approach and ecosystem

Precision Recall F-Measure AUC-ROC

Project (Apache) %
Defects

first
parent full delta first

parent full delta first
parent full delta first

parent full delta

calcite 42 0.57 0.57 0.00 0.65 0.65 0.00 0.61 0.61 0.00 0.66 0.67 0.01
falcon 55 0.61 0.63 0.02 0.63 0.63 0.00 0.62 0.63 0.01 0.63 0.74 0.11
james 41 0.48 0.49 0.01 0.55 0.58 0.03 0.51 0.58 0.07 0.55 0.60 0.00
lens 63 0.64 0.68 0.04 0.69 0.69 0.00 0.66 0.68 0.02 0.72 0.76 0.02
lucy-clownfish 32 0.59 0.59 0.00 0.61 0.65 0.04 0.60 0.62 0.02 0.67 0.67 0.03
madlib 35 0.61 0.62 0.01 0.67 0.67 0.00 0.64 0.64 0.00 0.62 0.71 0.02
predictionio 44 0.37 0.44 0.07 0.48 0.56 0.08 0.42 0.49 0.07 0.51 0.59 0.02
qpid-proton 37 0.55 0.55 0.00 0.61 0.61 0.00 0.58 0.58 0.00 0.59 0.61 0.02
ranger 40 0.66 0.67 0.01 0.69 0.73 0.04 0.67 0.70 0.03 0.66 0.67 0.02
reef 33 0.60 0.61 0.01 0.62 0.62 0.00 0.61 0.61 0.00 0.72 0.74 0.01
Overall (Apache) - 0.58 0.60 0.02 0.64 0.67 0.03 0.62 0.65 0.03 0.64 0.66 0.02

Project (Eclipse) %
Defects

first
parent full delta first

parent full delta first
parent full delta first

parent full delta

acceleo 39 0.64 0.64 0.00 0.59 0.63 0.04 0.61 0.63 0.02 0.67 0.69 0.02
chemclipse 33 0.62 0.64 0.02 0.61 0.61 0.00 0.61 0.62 0.01 0.59 0.59 0.00
efxclipse 46 0.55 0.55 0.00 0.55 0.57 0.02 0.55 0.56 0.01 0.62 0.65 0.03
epp 53 0.72 0.74 0.02 0.57 0.62 0.05 0.64 0.67 0.03 0.67 0.68 0.01
hudson 44 0.61 0.64 0.03 0.73 0.73 0.00 0.66 0.68 0.02 0.63 0.68 0.05
platform.releng 32 0.66 0.66 0.00 0.58 0.58 0.00 0.62 0.62 0.00 0.64 0.64 0.00
recommenders 18 0.65 0.65 0.00 0.55 0.59 0.04 0.60 0.62 0.02 0.55 0.60 0.05
swtbot 24 0.60 0.60 0.00 0.58 0.59 0.01 0.60 0.60 0.00 0.60 0.60 0.00
tcf 31 0.68 0.69 0.01 0.72 0.72 0.00 0.70 0.70 0.00 0.70 0.75 0.05
downloads 35 0.73 0.76 0.03 0.55 0.58 0.03 0.63 0.66 0.03 0.69 0.74 0.05
Overall (Eclipse) - 0.66 0.69 0.03 0.59 0.63 0.04 0.63 0.66 0.03 0.64 0.67 0.03

Overall (Apache +
Eclipse) - 0.65 0.67 0.02 0.61 0.61 0.00 0.63 0.66 0.03 0.61 0.65 0.04

�1

these recommendations are successful. The “single file” algorithm,
using rules inferred from the history of a single file, generates
less recommendations, of which around a half are successful. The
full histories perform slightly better as the input data for both al-
gorithms in both ecosystems: depending on the ecosystem and
algorithm, they yield 5 – 8% more recommendations, which are 2 –
8% more likely to be successful (i.e., to match an actual change).

5.3 Defect prediction
5.3.1 Methodology. The last application aims at recommending

developers the files that are more likely to contain defects [39].
In our study, we take into account the Basic Code Change Model

(BCCM) prediction model devised by Hassan [41], which is based

on the entropy of changes applied by developers in a certain time
window and is computed exploiting the concept of Shannon entropy
[55]. We consider the model by Hassan [41] rather than more recent
ones (e.g., [36]) since (i) we are only interested in models relying on
change history information, thus we cannot consider models based
on product metrics [24] and (ii) BCCM performs similarly to others
proposed in literature, thus still being representative of the field
[39]. Our conjecture is that the quantification of the entropy may
be more precise when considering the full history of files rather
than the single-parent case.

We perform a replication of the study by Hassan [41], consid-
ering the BCCM. It splits the change history of a software project
into three-month time periods, and adopts a three-month sliding
window to train and test a Logistic Regression classifier (that is, the
one adopted in the original study by Hassan [41]). In other words,
starting from the beginning of the history, it computes the entropy
of changes on the files available in a time window and uses such
data to train a classifier that predicts the defectiveness of files in
the subsequent time window. The process is then repeated until the
end of the history. Given the nature of the model, we evaluate its
performance in the two scenarios, i.e., single-parent vs full, by con-
sidering the mean F-Measure and AUC-ROC [21] achieved when
run on each time window.

In this case, we run the experiment over 20 randomly sampled
systems belonging to the Apache and Eclipse ecosystems considered
in the study (their names are reported in the online appendix [11]).
We do so because, to extract actual defects composing the ground
truth on which compare the results of the model against, we rely on
a issue tracker mining tool based on BugZilla [1], and therefore we
limit this study to the ecosystems that use it. Our ground truth is
represented by post-release defects marked as solved by developers
on the issue tracker. As such, we consider as defective all those
files that have encountered a problem in a certain time window,
according to the timestamp of the bug report.

5.3.2 Results. Table 4 reports the results achieved when con-
sidering the problem of predicting defects using the BCCM model
defined by Hassan [41] in case of single-parent or full history con-
figuration. Overall, the delta between the two approaches is not
large for any of the evaluation metrics considered. For instance, the
F-Measure is only 3% higher in both Apache and Eclipse, respec-
tively. Thus, in a first glance we can claim that considering branches
does not improve the defect prediction performance. Nevertheless,
finer observations reveal two aspects that it is worth to highlight. In
the first place, the model built using the single-parent strategy has
always performance equal or lower than the one that considers the
full history: thus, taking into account the full set of changes is not
detrimental in the case of defect prediction. Conversely, the full his-
tory approach provides benefits in 65% and 80% of the cases when
considering F-Measure and AUC-ROC, respectively, meaning that
defect prediction performance can generally gain when considering
all the changes rather than a subset of them. It is interesting to note
the differences are higher when considering the AUC-ROC, i.e., the
evaluation metric suggested by previous work [30, 33] to evaluate
defect prediction models: specifically, it is up to 11% higher (on the
repository of the Apache Falcon project), showing that considering
the full history of files can provide strong improvements. Therefore,

ASE ’18, September 3–7, 2018, Montpellier, France Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli

based on our findings, we can finally claim that taking the whole
history into account when building history-based defect prediction
models might provide important benefits in terms of performance.

6 LIMITATIONS AND THREATS TO VALIDITY
A number of limitations affect the results of our study, and pose
potential threats to its validity.

(1) When designing the experiments to compare performance,
we tried to follow the original approaches as closely as pos-
sible, but it was not always possible completely (e.g. with
change prediction), thus results on the original approaches
may differ.

(2) While we used a diverse population of projects from four
independent ecosystems, it is not clear whether and how our
results can be generalized further.

(3) Our analysis included an extensive technical work, although
we tested it carefully and under several scenarios, we cannot
guarantee that code is bug-free. However, we make the code
available in the online appendix [11].

7 DISCUSSION AND IMPLICATIONS
7.1 Discussion
Our results highlight several important aspects regarding the choice
of the mining strategy.
The technical details of mining can significantly impact the
quantitative properties of the retrieved data. In case of our
study, such properties are the sizes of file histories and numbers of
contributors: In over 2 million files from our composite sample of
four ecosystems, the resulting histories differ for 19% of files.
The size of the difference varies across projects and ecosys-
tems. In OpenStack projects, the first-parent and full histories are
different for 55% of files, while in Eclipse projects we observe the
difference for only 14% of files.
The size of the difference is associated with other properties
of a repository. In our case, the ecosystem with the highest dif-
ference (i.e., OpenStack) also demonstrates the highest merging
activity, most of which can be attributed to code review: after a
successful code review in OpenStack, changes are merged back
into the trunk by a bot. Thus, high proportion of merges and their
impact on file histories can be considered a consequence of their
development workflow – namely, code review. Notably, while a
similar workflow with code reviews performed with Gerrit is also
present in Eclipse, this ecosystem displays the lowest degree of
difference: changes in Eclipse are typically rebased, but not merged,
after code review. The impact of this particular factor on the results
of repository mining deserves a deeper analysis in future work.
The difference in results of mining can influence the perfor-
mance of techniques based on file histories: reviewer recom-
mendation, change recommendation, and defect prediction.
For all of the tested approaches, full histories, when used as input
data, perform at least not worse than first-parent histories, in most
cases yielding a slight increase in performance.
Some applications aremore sensitive to quality of input data
than others. In our case, for reviewer recommendation in Open-
Stack full histories provide better accuracy, especially when longer

recommendation lists are evaluated (top-5 and top-10 accuracy).
OpenStack also happens to be the ecosystem where the difference
between the first-parent and full histories is the highest. At the
same time, Eclipse projects show the smallest difference between
the first-parent and full histories among all four target ecosystems,
and this small difference appears insufficient to influence accuracy
of reviewer recommendation.

7.2 Implications
Considering the points above, we see several important implications
of our results.

(1) Software engineering researchers should be aware of
the possible impact of themining technique on the re-
sults.Our study demonstrates that omitting changes outside
the main branch during mining of file histories significantly
impacts the results of mining, which often leads to a slight
decrease in performance of methods that use file histories
as input data.

(2) The choice of the mining technique should account
for the context of the mining task.While using full file
histories ensures a better performance, in most cases the dif-
ference is only marginal. In many contexts, a small increase
in performance may not justify dedicating the extra effort to
more precise mining. While we suggest using precise min-
ing methods where possible—and provide a tool for doing
that—in many contexts it is not essential.

(3) Researchers should report the technical details ofmin-
ing.We suggest that techniques of repository mining should
be described in more detail by authors of MSR studies, as
not providing details complicates reproducibility of stud-
ies, and oversimplifying the mining potentially undermines
performance of methods and validity of studies.

8 CONCLUSION
With the study presented in this paper, we make the following main
contributions:

• The first demonstration of the importance of careful handling
of merge commits and changes from outside the main branch
for calculation of file histories;

• Analysis of impact of a strategy of mining file histories on
performance of three techniques relying on them as input
data;

• A tool for efficient mining of precise file histories in Git [11].
Our results cover the underrepresented topic of technical details

of mining the repositories for file histories, and open opportunities
for deeper analysis of associated factors, such as topology of change
histories. We hope that this study will inspire other researchers
in MSR to apply a more detailed approach to mining, where it is
feasible, and to report the technical details of mining to ensure
clarity and reproducibility of the studies.

ACKNOWLEDGMENTS
A. Bacchelli and F. Palomba gratefully acknowledge the support of
the SNF Project No. PP00P2_170529.

Mining File Histories:
Should We Consider Branches? ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] Bugzilla. https://www.bugzilla.org/. Accessed: 2018-04-26.
[2] Eclipse - the eclipse foundation open source community website. https://www.

eclipse.org/. Accessed: 2018-04-16.
[3] Eclipse code review. https://git.eclipse.org/r/. Accessed: 2018-04-16.
[4] Gerrit code review. https://www.gerritcodereview.com/. Accessed: 2018-04-16.
[5] git - find all the direct descendants of a given commit. https://stackoverflow.

com/questions/27960605/find-all-the-direct-descendants-of-a-given-commit#
27962018. Accessed: 2018-04-24.

[6] git-log(1) manual page. https://mirrors.edge.kernel.org/pub/software/scm/git/
docs/git-log.html. Accessed: 2018-04-24.

[7] Github. https://github.com. Accessed: 2018-04-22.
[8] A java implementation of the apriori algorithm for finding frequent item sets

and (optionally) generating association rules. https://github.com/michael-rapp/
Apriori/. Accessed: 2018-04-22.

[9] Jgit. https://www.eclipse.org/jgit/. Accessed: 2018-04-09.
[10] Lkml: Linus torvalds: Re: git mv (was re: [git pull] acpi & suspend patches for

2.6.29-rc0). https://lkml.org/lkml/2009/1/9/323. Accessed: 2018-04-24.
[11] Mining File Histories: Should We Consider Branches? - Online Appendix. https:

//github.com/vovak/branches. Accessed: 2018-07-24.
[12] Open source software for creating private and public clouds. https://www.

openstack.org/. Accessed: 2018-04-16.
[13] Openstack code review. https://review.openstack.org/. Accessed: 2018-04-16.
[14] Quora Statistics. https://www.quora.com/

What-are-the-most-popular-distributed-version-control-systems. Accessed:
2018-04-22.

[15] Upsource. https://www.jetbrains.com/upsource/. Accessed: 2018-04-22.
[16] Why sqlite does not use git. https://sqlite.org/whynotgit.html. Accessed: 2018-

04-18.
[17] R. Agrawal et al. Fast algorithms for mining association rules.
[18] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen. Code smells

for model-view-controller architectures. Empirical Software Engineering, pages
1–37, 2017.

[19] B. Appleton, S. Berczuk, R. Cabrera, and R. Orenstein. Streamed lines: Branching
patterns for parallel software development. 1998.

[20] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and source code arti-
facts. In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 375–384. ACM, 2010.

[21] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume 463.
ACM press New York, 1999.

[22] V. Balachandran. Reducing human effort and improving quality in peer code re-
views using automatic static analysis and reviewer recommendation. In Software
Engineering (ICSE), 2013 35th International Conference on, pages 931–940. IEEE,
2013.

[23] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, and P. Devanbu. Co-
hesive and isolated development with branches. In International Conference on
Fundamental Approaches to Software Engineering, pages 316–331. Springer, 2012.

[24] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented de-
sign metrics as quality indicators. IEEE Transactions on software engineering,
22(10):751–761, 1996.

[25] R. M. Bell, T. J. Ostrand, and E. J. Weyuker. The limited impact of individual
developer data on software defect prediction. Empirical Software Engineering,
18(3):478–505, 2013.

[26] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern code reviews in
open-source projects: Which problems do they fix? In Proceedings of the 11th
working conference on mining software repositories, pages 202–211. ACM, 2014.

[27] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu. The
promises and perils of mining git. In Mining Software Repositories, 2009. MSR’09.
6th IEEE International Working Conference on, pages 1–10. IEEE, 2009.

[28] C. Bird and T. Zimmermann. Assessing the value of branches with what-if
analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, page 45. ACM, 2012.

[29] C. Bird, T. Zimmermann, and A. Teterev. A theory of branches as goals and
virtual teams. In Proceedings of the 4th International Workshop on Cooperative
and Human Aspects of Software Engineering, pages 53–56. ACM, 2011.

[30] D. Bowes, T. Hall, and D. Gray. Comparing the performance of fault prediction
models which report multiple performance measures: recomputing the confusion
matrix. In Proceedings of the 8th International Conference on Predictive Models in
Software Engineering, pages 109–118. ACM, 2012.

[31] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig. How do centralized and
distributed version control systems impact software changes? In Proceedings of
the 36th International Conference on Software Engineering, pages 322–333. ACM,
2014.

[32] J. Buffenbarger and K. Gruell. A branching/merging strtegy for parallel software
development. In International Symposium on Software Configuration Management,
pages 86–99. Springer, 1999.

[33] C. Catal. Performance evaluation metrics for software fault prediction studies.
Acta Polytechnica Hungarica, 9(4):193–206, 2012.

[34] G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, and A. Zaidman. Developer-
related factors in change prediction: an empirical assessment. In Proceedings
of the 25th International Conference on Program Comprehension, pages 186–195.
IEEE Press, 2017.

[35] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug predic-
tion approaches. In Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 31–41. IEEE, 2010.

[36] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and A. De Lucia.
A developer centered bug prediction model. IEEE Transactions on Software
Engineering, 44(1):5–24, 2018.

[37] G. Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, pages 233–236,
Piscataway, NJ, USA, 2013. IEEE Press.

[38] M. Greiler, K. Herzig, and J. Czerwonka. Code ownership and software quality:
a replication study. In Proceedings of the 12th Working Conference on Mining
Software Repositories, pages 2–12. IEEE Press, 2015.

[39] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic literature re-
view on fault prediction performance in software engineering. IEEE Transactions
on Software Engineering, 38(6):1276–1304, 2012.

[40] A. E. Hassan. The road ahead for mining software repositories. In Frontiers of
Software Maintenance, 2008. FoSM 2008., pages 48–57. IEEE, 2008.

[41] A. E. Hassan. Predicting faults using the complexity of code changes. In Software
Engineering, 2009. ICSE 2009. IEEE 31st International Conference on, pages 78–88.
IEEE, 2009.

[42] L. Hattori andM. Lanza. Mining the history of synchronous changes to refine code
ownership. In Mining Software Repositories, 2009. MSR’09. 6th IEEE International
Working Conference on, pages 141–150. IEEE, 2009.

[43] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of
Software: Evolution and Process, 19(2):77–131, 2007.

[44] D. Kawrykow and M. P. Robillard. Non-essential changes in version histories. In
Proceedings of the 33rd International Conference on Software Engineering, pages
351–360. ACM, 2011.

[45] E. Kocaguneli, T. Menzies, and J. W. Keung. On the value of ensemble effort
estimation. IEEE Transactions on Software Engineering, 38(6):1403–1416, 2012.

[46] J. Loeliger and M. McCullough. Version Control with Git: Powerful tools and
techniques for collaborative software development. " O’Reilly Media, Inc.", 2012.

[47] T.Menzies, Z.Milton, B. Turhan, B. Cukic, Y. Jiang, andA. Bener. Defect prediction
from static code features: current results, limitations, new approaches. Automated
Software Engineering, 17(4):375–407, 2010.

[48] H. M. Michaud, D. T. Guarnera, M. L. Collard, and J. I. Maletic. Recovering commit
branch of origin from github repositories. In Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on, pages 290–300. IEEE, 2016.

[49] A. Mockus. Amassing and indexing a large sample of version control systems:
Towards the census of public source code history. InMining Software Repositories,
2009. MSR’09. 6th IEEE International Working Conference on, pages 11–20. IEEE,
2009.

[50] N. Nachar et al. The mann-whitney u: A test for assessing whether two indepen-
dent samples come from the same distribution. Tutorials in Quantitative Methods
for Psychology, 4(1):13–20, 2008.

[51] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software engineering
research. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 466–476. ACM, 2013.

[52] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia. The scent of
a smell: An extensive comparison between textual and structural smells. IEEE
Transactions on Software Engineering, 2017.

[53] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto. Toward a
smell-aware bug prediction model. IEEE Transactions on Software Engineering,
2017.

[54] M. M. Rahman, C. K. Roy, and J. A. Collins. Correct: code reviewer recommen-
dation in github based on cross-project and technology experience. In Software
Engineering Companion (ICSE-C), IEEE/ACM International Conference on, pages
222–231. IEEE, 2016.

[55] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55, 2001.

[56] E. Shihab, C. Bird, and T. Zimmermann. The effect of branching strategies on
software quality. In Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement, pages 301–310. ACM, 2012.

[57] D. Spinellis. Git. IEEE software, 29(3):100–101, 2012.
[58] S. W. Thomas. Mining software repositories using topic models. In Proceedings

of the 33rd International Conference on Software Engineering, pages 1138–1139.
ACM, 2011.

[59] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and H. Iida. Improving
code review effectiveness through reviewer recommendations. In Proceedings
of the 7th International Workshop on Cooperative and Human Aspects of Software
Engineering, pages 119–122. ACM, 2014.

https://www.bugzilla.org/
https://www.eclipse.org/
https://www.eclipse.org/
https://git.eclipse.org/r/
https://www.gerritcodereview.com/
https://stackoverflow.com/questions/27960605/find-all-the-direct-descendants-of-a-given-commit#27962018
https://stackoverflow.com/questions/27960605/find-all-the-direct-descendants-of-a-given-commit#27962018
https://stackoverflow.com/questions/27960605/find-all-the-direct-descendants-of-a-given-commit#27962018
https://mirrors.edge.kernel.org/pub/software/scm/git/docs/git-log.html
https://mirrors.edge.kernel.org/pub/software/scm/git/docs/git-log.html
https://github.com
https://github.com/michael-rapp/Apriori/
https://github.com/michael-rapp/Apriori/
https://www.eclipse.org/jgit/
https://lkml.org/lkml/2009/1/9/323
https://github.com/vovak/branches
https://github.com/vovak/branches
https://www.openstack.org/
https://www.openstack.org/
https://review.openstack.org/
https://www.quora.com/What-are-the-most-popular-distributed-version-control-systems
https://www.quora.com/What-are-the-most-popular-distributed-version-control-systems
https://www.jetbrains.com/upsource/
https://sqlite.org/whynotgit.html

ASE ’18, September 3–7, 2018, Montpellier, France Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli

[60] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting code own-
ership and its relationship with software quality in the scope of modern code
review. In Proceedings of the 38th international conference on software engineering,
pages 1039–1050. ACM, 2016.

[61] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.-i.
Matsumoto. Who should review my code? a file location-based code-reviewer
recommendation approach for modern code review. In Software Analysis, Evo-
lution and Reengineering (SANER), 2015 IEEE 22nd International Conference on,
pages 141–150. IEEE, 2015.

[62] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk. An empirical investigation into the nature of test smells. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pages 4–15. ACM, 2016.

[63] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk. There and back again: Can you compile that snapshot? Journal
of Software: Evolution and Process, 29(4), 2017.

[64] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk. When and why your code starts to smell bad (and whether the
smells go away). IEEE Transactions on Software Engineering, 43(11):1063–1088,
2017.

[65] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. On the relative value
of cross-company and within-company data for defect prediction. Empirical
Software Engineering, 14(5):540–578, 2009.

[66] E. M. Voorhees et al. The trec-8 question answering track report. In Trec,
volume 99, pages 77–82, 1999.

[67] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source code
changes by mining change history. IEEE transactions on Software Engineering,
30(9):574–586, 2004.

[68] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version histories
to guide software changes. IEEE Transactions on Software Engineering, 31(6):429–
445, 2005.

	Abstract
	1 Introduction
	2 Background
	2.1 Motivation
	2.2 Challenges of mining the file histories
	2.3 Retrieval of file histories

	3 Methodology
	3.1 Research questions
	3.2 Mining histories at large scale
	3.3 Target systems

	4 RQ1: Difference in mining results
	4.1 Methodology
	4.2 Results

	5 RQ2: Importance for applications
	5.1 Code reviewer recommendation
	5.2 Change recommendation
	5.3 Defect prediction

	6 Limitations and threats to validity
	7 Discussion and implications
	7.1 Discussion
	7.2 Implications

	8 Conclusion
	Acknowledgments
	References

