
Information Needs in Contemporary Code Review

LUCA PASCARELLA, Delft University of Technology, The Netherlands
DAVIDE SPADINI, Delft University of Technology, The Netherlands
FABIO PALOMBA, University of Zurich, Switzerland
MAGIEL BRUNTINK, Software Improvement Group, The Netherlands
ALBERTO BACCHELLI, University of Zurich, Switzerland

Contemporary code review is a widespread practice used by software engineers to maintain high software
quality and share project knowledge. However, conducting proper code review takes time and developers
often have limited time for review. In this paper, we aim at investigating the information that reviewers need
to conduct a proper code review, to better understand this process and how research and tool support can
make developers become more effective and efficient reviewers.

Previous work has provided evidence that a successful code review process is one in which reviewers and
authors actively participate and collaborate. In these cases, the threads of discussions that are saved by code
review tools are a precious source of information that can be later exploited for research and practice. In this
paper, we focus on this source of information as a way to gather reliable data on the aforementioned reviewers’
needs. We manually analyze 900 code review comments from three large open-source projects and organize
them in categories by means of a card sort. Our results highlight the presence of seven high-level information
needs, such as knowing the uses of methods and variables declared/modified in the code under review. Based
on these results we suggest ways in which future code review tools can better support collaboration and the
reviewing task. Preprint [http://todo]. Data and Materials [http://todo].

CCS Concepts: • Software and its engineering→ Software maintenance tools;

Additional Key Words and Phrases: code review, information needs, mining software repositories

ACM Reference Format:
Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli. 2018. Information
Needs in Contemporary Code Review. 1, 1 (August 2018), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Peer code review is a well-established software engineering practice aimed at maintaining and
promoting source code quality, as well as sustaining development community by means of knowl-
edge transfer of design and implementation solutions applied by others [2]. Contemporary code
review, also known as Modern Code Review (MCR) [2, 17], represents a lightweight process that is
(1) informal, (2) tool-based, (3) asynchronous, and (4) focused on inspecting new proposed code
changes rather than the whole codebase [49]. In a typical code review process, developers (the
reviewers) other than the code change author manually inspect new committed changes to find
as many issues as possible and provide feedback that needs to be addressed by the author of the
change before the code is accepted and put into production [6].
Modern code review is a collaborative process in which reviewers and authors conduct an

asynchronous online discussion to ensure that the proposed code changes are of sufficiently high

Authors’ addresses: Luca Pascarella, Delft University of Technology, Delft, The Netherlands, l.pascarella@tudelft.nl; Davide
Spadini, Delft University of Technology, Delft, The Netherlands, d.spadini@tudelft.nl; Fabio Palomba, University of Zurich,
Zurich, Switzerland, palomba@ifi.uzh.ch; Magiel Bruntink, Software Improvement Group, Amsterdam, The Netherlands,
m.bruntink@sig.eu; Alberto Bacchelli, University of Zurich, Zurich, Switzerland, bacchelli@ifi.uzh.ch.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in , https://doi.org/10.1145/nnnnnnn.nnnnnnn.

, Vol. 1, No. 1, Article . Publication date: August 2018.

http://todo
http://todo
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

quality [2] and fit the project’s direction [26] before they are accepted. In code reviews, discussions
range from low-level concerns (e.g., variable naming and code style) up to high-level considerations
(e.g., fit within the scope of the project and future planning) and encompass both functional defects
and evolutionary aspects [10]. For example a reviewer may ask questions regarding the structure
of the changed code [57] or clarifications about the rationale behind some design decisions [55],
another reviewer may respond or continue the thread of questions, and the author can answer the
questions (e.g., explaining the motivation that led to a change) and implement changes to the code
to address the reviewers’ remark.

Even though studies have shown that modern code review has the potential to support software
quality and dependability [17, 39, 41], researchers have also provided strong empirical evidence
that the outcome of this process is rather erratic and often unsatisfying or misaligned with the
expectations of participants [2, 10, 37]. This erratic outcome is caused by the cognitive-demanding
nature of reviewing [7], whose outcome mostly depends on the time and zeal of the involved
reviewers [17].

Based on this, a large portion of the research efforts on tools and processes to help code reviewing
is explicitly or implicitly based on the assumption that reducing the cognitive load of reviewers
improves their code review performance [7]. In the current study, we continue on this line of better
supporting the code review process through the reduction of reviewers’ cognitive load. Specifically,
our goal is to investigate the information that reviewers need to conduct a proper code review. We argue
that—if this information would be available at hand—reviewers could focus their efforts and time
on correctly evaluating and improving the code under review, rather than spending cognitive effort
and time on collecting the missing information. By investigating reviewers’ information needs, we
can better understand the code review process, guide future research efforts, and envision how
tool support can make developers become more effective and efficient reviewers.
To gather data about reviewers’ information needs we turn to one of the collaborative aspects

of code review, namely the discussions among participants that happen during this process. In
fact, past research has shown that code review is more successful when there is a functioning
collaboration among all the participants. For example, Rigby et al. reported that the efficiency
and effectiveness of code reviews are most affected by the amount of review participation [50];
Kononenko et al. [34] showed that review participation metrics are associated with the quality of
the code review process; McIntosh et al. found that a lack of review participation can have a negative
impact on long-term software quality [39, 60]; and Spadini et al. studied review participation in
production and test files, presenting a set of identified obstacles limiting the review of code [54].
For this reason, from code review communication, we expect to gather evidence of reviewers’
information needs that are solved through the collaborative discussion among the participants.
To that end, we consider three large open-source software projects and manually analyze 900

code review discussion threads that started from a reviewer’s question. We focus on what kind
of questions are asked in these comments and their answers. As shown in previous research
[12, 14, 33, 56], such questions can implicitly represent the information needs of code reviewers. In
addition, we conduct four semi-structured interviews with developers from the considered systems
and one focus group with developers from a software quality consultancy firm, both to challenge our
outcome and to discuss developers’ perceptions. Better understanding what reviewers’ information
needs are can lead to reduced cognitive load for the reviewers, thus leading, in turn, to better and
shorter reviews. Furthermore, knowing these needs helps driving the research community toward
the definition of methodologies and tools able to properly support code reviewers when verifying
newly submitted code changes.
Our analysis led to seven high-level information needs, such as knowing the uses of methods

and variables declared/modified in the code under review, and their analysis in the code review

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 3

Change 107871 - Merged

Implement EDP for a Spark standalone cluster

This change adds an EDP engine for a Spark standalone cluster.
The engine uses the spark-submit script and various linux
commands via ssh to run, monitor, and terminate Spark jobs.

Currently, the Spark engine can launch "Java" job types (this is
the same type used to submit Oozie Java action on Hadoop clusters)

A directory is created for each Spark job on the master node which
contains jar files, the script used to launch the job, the
job's stderr and stdout, and a result file containing the exit
status of spark-submit. The directory is named after the Sahara
job and the job execution id so it is easy to locate. Preserving
these files is a big help in debugging jobs.

A few general improvements are included:
* engine.cancel_job() may return updated job status
* engine.run_job() may return job status and fields for
job_execution.extra
in addition to job id

Still to do:
* create a proper Spark job type (new CR)
* make the job dir location on the master node configurable (new CR)
* add something to clean up job directories on the master node (new CR)
* allows users to pass some general options to spark-submit itself (new
CR)

Partial implements: blueprint edp-spark-standalone

Change-Id: I2c84e9cdb75e846754896d7c435e94bc6cc397ff

Author Alice <alice@redhat.com>

Committer Alice <alice@redhat.com>
5698799ee3642a28797c6022dd35f228616764e1

e23efe5471ed3e3ef3356918f80d91838f1c6585

I2c84e9cdb75e846754896d7c435e94bc6cc397ff

Commit
Parent(s)
Change-id

Owner Trevor McKay

Reviewers

5698799ee3642a28797c6022dd35f228616764e1

e23efe5471ed3e3ef3356918f80d91838f1c6585
Project
Branch

Bob Alice John Rob

Edward Sam Ryan Alex

Enzo Frank

Files Comments

sahara/service/edp/job_utils.py 46
sahara/service/edp/oozie/engine.py 46
sahara/service/edp/job_utils.py 18
sahara/service/edp/oozie/oozie.py 7
sahara/service/edp/resources/launch_command.py 66
sahara/service/edp/spark/engine.py 161
sahara/tests/unit/service/edp/spark/__init__.py 0
sahara/tests/unit/service/edp/spark/test_spark.py 383
sahara/tests/unit/service/edp/test_job_manager.py 10

sahara/plugins/spark/plugin.py 33

Alice
Patch Set 4:

The patch LGTM, apart from the small comment on the commit message.
One important question, though, is about the data sources. How is input and output specified for each jon submitted through Spark EDP?
Spark does not support Swift for now, so I would expect only HDFS to be available.

Bob
Patch Set 1:

sahara/service/edp/job_manager.py
 Line 68: should this be guarded with:
 if job_info.get('status') in job_utils.terminated_job_states:
 just in case 'status' doesn't exist?

…………..

Alice Uploaded patch set 1

History

1

2

3

4

5

Fig. 1. Example of code review mined from Gerrit.

lifecycle. Among our results, we found that the needs to know (1) whether a proposed alternative
solution is valid and (2) whether the understanding of the reviewer about the code under review is
correct are the most prominent ones. Moreover, all the reviewers’ information needs are replied to
within a median time of seven hours, thus pointing to the large time savings that can be achieved
by addressing these needs through automated tools. Based on these results, we discuss how future
code review tools can better support collaboration and the reviewing task.

2 BACKGROUND AND RELATEDWORK
This section describes the basic components that form a modern code review as well as the literature
related to information needs and code review participation.

, Vol. 1, No. 1, Article . Publication date: August 2018.

4 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

26
27
28
29
30
31
32
33
34
35
36
37
38
39

class FormPostTest(ObjectStorageFixture):

 @classmethod
 def setUpClass(cls):
 super(FormPostTest, cls).setUpClass()
 cls.key_cache_time = (
 cls.objectstorage_api_config.tempurl_key_cache_time)

 cls.object_name = cls.behaviors.VALID_OBJECT_NAME
 cls.object_data = cls.behaviors.VALID_OBJECT_DATA
 cls.content_length = str(len(cls.behaviors.VALID_OBJECT_DATA))
 cls.http_client = HTTPClient()
 cls.redirect_url = "http://example.com/form_post_test"

 cls.tempurl_key = cls.behaviors.VALID_TEMPURL_KEY

26
27
28
29
30
31
32

33
34
35
36
37
38
39

class FormPostTest(ObjectStorageFixture):

 @classmethod
 def setUpClass(cls):
 super(FormPostTest, cls).setUpClass()
 cls.key_cache_time = (
 cls.objectstorage_api_config.tempurl_key_cache_time)

 cls.object_name = cls.behaviors.VALID_OBJECT_NAME
 cls.object_data = cls.behaviors.VALID_OBJECT_DATA
 cls.content_length = str(len(cls.behaviors.VALID_OBJECT_DATA))
 cls.http_client = HTTPClient()
 cls.redirect_url = "http://example.com/form_post_test"

40
41
42
43

 keys_set = cls.behaviors.check_account_tempurl_keys()
 if keys_set:
 metadata_response = cls.client.get_account_metadata()
 cls.tempurl_key = \
 metadata_response.headers.get("X-Account-Meta-Temp-Url-Key")

 @ObjectStorageFixture.required_features('formpost')
 def test_object_formpost_redirect(self):
 """

40
41
42

44
45
46
47

 @ObjectStorageFixture.required_features('formpost')
 def test_object_formpost_redirect(self):
 """

Alice
Should there be a default value for the cls.tempurl_key, or should the fixture assert if keys_set is empty?
All of the tests depend on the attribute, but for whatever reason, if the X-Account-Meta-Temp-Url-Key is not
present in the headers, the attribute will not exist, and the tests will error out in a ungraceful manner.

Apr 22, 2015

Reply Quote Done

Bob
So the check_account_tempurl_keys method will first check to see if the account keys are set and if they
aren't, it will set them to some defaults. If, for some reason, it fails to set them properly, keys_set should be
False instead of True. So, what I will do is have an else statement here which will raise an Exception but in
all likelihood it would fail in the behaviors beforehand.

Apr 22, 2015

Reply Quote Done

Fig. 2. Example of code review comments mined from Gerrit.

2.1 Background: The code review process
Figure 1 depicts a code review (pertaining to the OpenStack project) done with a typical code
review tool. Although this is one of the many available review tools, their functionalities are largely
the same [65]. In the following we briefly describe each of the components of a review as provided
by code review tools.
Code review tools provide an ID and a status (part 1 in Figure 1) for each code review, which

are used to track the code change and know whether it has been merged (i.e., put into production)
or abandoned (i.e., it has been evaluated as not suitable for the project). Code review tools also
allow the change author to include a textual description of the code change, with the aim to
provide reviewers with more information on the rationale and behavior of the change. However,
past research has provided evidence that the quality and level of detail of the descriptions that
accompany code changes are often suboptimal [57], thus making it harder for reviewers to properly
understand the code change through this support. The fact that the change description is often not
optimal strengthens the importance of the goal of our study: An improved analysis of developers’
needs in code review can provide benefits in terms of review quality [34].

The second component of a typical code review tool is a view on the technical meta-information
on the change under review (part 2 in Figure 1). This meta-information include author and
committer of the code change, commit ID, parent commit ID, and change ID, which can be used to
track the submitted change over the history of the project.
Part 3 of the tool in Figure 1 reports, instead, more information on who are the reviewers

assigned for the inspection of the submitted code change, while part 4 lists the source code files
modified in the commit (i.e., the files on which the review will be focused).
Finally, part 5 is the core component of a code review tool and the one that involves most

collaborative aspects. It reports the discussion that author and reviewers are having on the submitted
code change. In particular, reviewers can ask clarifications or recommend improvements to the
author, who can instead reply to the comments and propose alternative solutions. This mechanism
is often accompanied by the upload of new versions of the code change (i.e., revised patches or
iterations), which lead to an iterative process until all the reviewers are satisfied with the change or

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 5

decide to not include it into production. Figure 2 shows a different view that contains both reviews
and authors comments. In this case, the involved developers discuss about a specific line of code,
as opposed to Alice from the previous example who commented on the entire code change (Figure
1, end of part 5).

2.2 Related Work
Over the last decade the research community spent a considerable effort in studying code reviews
(e.g., [3, 10, 11, 17, 20, 32, 54]). In this section, we compare and contrast our work to previous
research in two areas: first, we consider studies that investigate the information needs of developers
in various contexts, then we analyze previous research that focused on code review discussion,
participation, and time.

2.2.1 Information needs. Breu et al. [12] conducted a study—which has been a great inspiration
to the current study we present here—on developers’ information needs based on the analysis of
collaboration among users of a software egineering tool (i.e., issue tracking system). In their study,
the authors have quantitatively and qualitatively analyzed the questions asked in a sample of 600
bug reports from two open-source projects, deriving a set of information needs in bug reports. The
authors showed that active and ongoing participation were important factors needed for making
progress on the bugs reported by users and they suggested a number of actions to be performed by
the researchers and tool vendors in order to improve bug tracking systems.
Ko et al. [33] studied information needs of developers in collocated development teams. The

authors observed the daily work of developers and noted the types of information desired. They
identified 21 different information types in the collected data and discussed the implications of their
findings for software designers and engineers. Buse and Zimmermann [14] analyzed developers’
needs for software development analytics: to that end, they surveyed 110 developers and project
managers. With the collected responses, the authors proposed several guidelines for analytics tools
in software development.
Sillito et al. [53] conducted a qualitative study on the questions that programmers ask when

performing change tasks. Their aim was to understand what information a programmer needs to
know about a code base while performing a change task and also how they go about discovering
that information. The authors categorized and described 44 different kinds of questions asked by
the participants. Finally, Herbsleb et al. [29] analyzed the types of questions that get asked during
design meetings in three organizations. They found that most questions concerned the project
requirements, particularly what the software was supposed to do and, somewhat less frequently,
scenarios of use. Moreover, they also discussed the implications of the study for design tools and
methods.
The work we present in this paper is complementary with respect to the ones discussed so far:

indeed, we aim at making a further step ahead investigating the information needs of developers
that review code changes with the aim of deepening our understanding of the code review process
and of leading to future research and tools to better support reviewers in conducting their tasks.

2.2.2 Code Review Participation and Time. Extensive work has been done by the software engineer-
ing research community in the context of code review participation. Abelein et al. [1] investigated
the effects of user participation and involvement on system success and explored which methods
are available in literature, showing that it can have a significant correlation with system quality.
Thongtanunam et al. [62] showed that reviewing expertise (which is approximated based on review
participation) can reverse the association between authoring expertise and defect-proneness. Even
more importantly, Rigby et al. [50] reported that the level of review participation is the most influ-
ential factor in the code review efficiency. Furthermore, several studies have suggested that patches

, Vol. 1, No. 1, Article . Publication date: August 2018.

6 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

should be reviewed by at least two developers to maximize the number of defects found during the
review, while minimizing the reviewing workload on the development team [47, 49, 52, 61].

Thongtanunam et al. [60] showed that the number of participants that are involved with a review
has a large relationship with the subsequent defect proneness of files in the Qt system: A file that
is examined by more reviewers is less likely to have post-release defects. Bavota et al. [8] also
found that the patches with low number of reviewers tend to have a higher chance of inducing new
bug fixes. Moreover, McIntosh et al. [38, 39] measured review investment (i.e., the proportion of
patches that are reviewed and the amount of participation) in a module and examined the impact
that review coverage has on software quality. They found that patches with low review investment
are undesirable and have a negative impact on code quality. In a study of code review practices at
Google, Sadowski et al. [51] found that Google has refined its code review process over several
years into an extremely lightweight one, which–in part–seems to contradict the aforementioned
findings. In fact, although the majority of changes at Google are small (a practice supported by
most related work [48]), these changes mostly have one reviewer and have no comments other
than the authorization to commit. Ebert et al. [23] made the first step in identifying the factors that
may confuse reviewers, since confusion is likely impacts the efficiency and effectiveness of code
review. In particular, they manually analyzed 800 comments of code review of Android projects
to identify those where the reviewers expressed confusion. Ebert et al. found that humans can
reasonably identify confusion in code review comments and proposed the first binary classifier
able to automatically perform the same task; they also observed that identifying confusion factors
in inline comments is more challenging than general comments. Finally, Spadini et al. [54] analyzed
more than 300,000 code reviews and interviewed 12 developers about their best practices when
reviewing test files. As a result, they presented an overview of current code review practices, a set
of identified obstacles limiting the review of test code, and a set of issues that developers would
like to see improved in code review tools. Based on their findings, the authors proposed a series of
recommendations and suggestions for the design of tools and future research.

Furthermore, previous research investigated how to make a code review shorter, hence making
patches be accepted at a faster rate. For example, Jiang et al. [31] showed that patches developed
by more experienced developers are more easily accepted, reviewed faster, and integrated more
quickly. Additionally, authors stated that reviewing time is mainly impacted by submission time,
the number of affected subsystems by the patch and the number of requested reviewers. Baysal et
al. [9] showed that size of the patch or the part of the code base being modified are important
factors that influenced the time required to review a patch, and are likely related to the technical
complexity of a given change.

Recently, Chatley and Jones have proposed an approach aimed at enhancing the performance of
code review [16]. The authors built Diggit to automatically generate code review comments about
potentially missing changes and worrisome trends in the growth of size and complexity of the files
under review. By deploying Diggit at a company, the authors found that the developers considered
Diggit’s comments as actionable and fixed them with an overall rate of 51%, thus indicating the
potential of this approach in supporting code review performance.

Despite many studies showing that code review participation has a positive impact on the overall
software development process (i.e., number of post-release defects and time spent in reviewing),
none of these studies focused on what are the developers needs when performing code review.
To fill this gap, our study aims at increasing our empirical knowledge on this field by mean of
quantitative and qualitative research, with the potential of reducing the cognitive load of reviewers
and the time needed for the review.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 7

3 METHODOLOGY
The goal of our study is to increase our empirical knowledge on the reviewers’ needs when
performing code review tasks, with the purpose of identifying promising paths for future research on
code review and the next generation of software engineering tools required to improve collaboration
and coordination between source code authors and reviewers. The perspective is of researchers,
who are interested in understanding what are the developers’ needs in code review, therefore, they
can more effectively devise new methodologies and techniques helping practitioners in promoting
a collaborative environment in code review and reduce discussion overheads, thus improving the
overall code review process.

Starting from a set of discussion threads between authors and reviewers, we start our investigation
by eliciting the actual needs that reviewers have when performing code review:

• RQ1:What reviewers’ needs can be captured from code review discussions?

Specifically, we analyze the types of information that reviewers may need when reviewing, we
compute the frequency of each need, and we challenge our outcome with developers from the
analyzed systems and from an external company. Thus, we have three sub-questions:

• RQ1.1:What are the kinds of information code reviewers require?
• RQ1.2: How often does each category of reviewers’ needs occur?
• RQ1.3: How do developers’ perceive the identified needs?

Once investigated reviewers’ needs from the reviewer perspective, we further explore the collab-
orative aspects of code review by asking:

• RQ2:What is the role of reviewers’ needs in the lifecycle of a code review?

Specifically, we first analyze how much each reviewers’ need is accompanied by a reply from the
author of the code change: in other words, we aim at measuring how much authors of the code
under review interact with reviewers to make the applied code change more comprehensible and
ease the reviewing process. To complement this analysis, we evaluate the time required by authors
to address a reviewer’s need; also in this case, the goal is to measure the degree of collaboration
between authors and reviewers. Finally, we aim at understanding whether and how the reviewers’
information needs vary at different iterations of the code review process. For instance, we want to
assess whether some specific needs arise at the beginning of the process (e.g., because the reviewer
does not have enough initial context to understand the code change) or, similarly, if clarification
questions only appear at a later stage (e.g., when only the last details are missing and the context is
clear). Accordingly, we structure our second research question into three sub-questions:

• RQ2.1:What are the reviewers’ information needs that attract more discussion?
• RQ2.2: How long does it take to get a response to each reviewers’ information need?
• RQ2.3: How do the reviewers’ information needs change over the code review process?

The following subsections describe the method we use to answer our research questions.

3.1 Subject Systems
The first step leading to address our research goals is the selection of a set of code reviews that might
be representative for understanding the reviewers’ needs when reviewing source code changes.
We rely on the well-known Gerrit platform,1 which is a code review tool used by several major
software projects. Specifically, Gerrit provides a simplified web based code review interface and
1https://www.gerritcodereview.com/

, Vol. 1, No. 1, Article . Publication date: August 2018.

8 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

a repository manager for Git.2 From the open-source software systems using Gerrit, we select
three: OpenStack,3 Android,4 and QT.5 The selection was driven by two criteria: (i) These systems
have been extensively studied in the context of code review research and have been shown to be
highly representative of the types of code review done over open-source projects et al. [8, 38, 39];
(ii) these systems have a large number of active authors and reviewers over a long development
history.

3.2 Gathering Code Review Threads
We automatically mine Gerrit data by relying on the publicly available APIs it provides. For the
considered projects, the number of code reviews is over one million: this makes the manual analysis
of all of them practically impossible. Thus, as done by Breu et al. [12], we select a random subset
composed of 300 code reviews per project, for which we identify up to 1, 800 messages (i.e., we
extract a total of 900 code review threads). Since we are interested in discussions, we take into
account only closed code reviews by considering both merged and abandoned patches, while we
do not consider recently opened or pending requests.
We detect reviewers’ questions (considering the presence of a ‘?’ sign) that start a discussion

thread and we extract all the subsequent comments (made by the author, the reviewer, or other
developers) in the whole thread.
The considered threads refer to both patch sets and inline discussions. To better illustrate the

mining process of general discussions, Figure 1 reports a code review extracted from OpenStack.
As shown in the bottom of the figure (part 5), author and reviewers opened a discussion on the
performed change. Figure 2 shows a thread of discussion started at line level. In both cases, all the
comments among the participants represent the types of discussion threads that we use to detect
the information needs of reviewers.

For each identified thread, we store the following information:
• the Gerrit id of the code review;
• the revision id that identifies the patch set of a code review;
• the opening question, the answers, and the source code URL identifier of the change;
• the practitioner role e.g., author or reviewer;
• the code review status, i.e., whether it is merged or abandoned;
• the size of the thread counting the number of comments present into discussion;
• the creation and the update time.

We use the aforementioned pieces of information to answer our research questions as detailed
in the following.

3.3 RQ1 - Identifying the Reviewers’ Needs from Code Review Discussions
To answer RQ1.1, we manually identify the reviewers’ needs in code review by following a similar
strategy as done in previous work on information needs [12, 14, 29, 33, 53]. Specifically, we perform
a card sorting method [42] that involves all the authors of this paper (2 graduate students, 1 research
associate, and 1 faculty member - who have at least seven years of programming experience). From
now on, we refer to them as the inspectors. This method represents a well-established sorting
technique that is used in information architecture with the aim of creating mental models and
allowing the definition of taxonomies from input data [42]. In our case, it is used to organize code

2https://git-scm.com/
3https://review.openstack.org/
4https://android-review.googlesource.com/
5https://codereview.qt-project.org

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 9

Information needs
in code review

N1.
Suitability of an

alternative solution

N1.A. Suggest
changes

N1.B. Ask
changes

N1.C. Request
actions

N2.
Correct

understanding

N2.A. Request
confirmations

N2.B. Doubts &
clarification

N2.C. Opinions

N3.
Rationale

N3.A. Missing
information

N3.B. Justifi-
cations

N4.
Code

context

N4.A. Context
clarification

N4.B. Code
clarification

N5.
Necessity

N5.A. Usefulness

N5.B. Obvious
prechecks

N5.C. Redundant

N6.
Specialize
expertise

N6.A. Request
solutions

N6.B. Need
help

N6.C. Involve
other
reviewers

N7.
Splittable

N7.A. Postpone
changes

N7.B. Unrelated
changes

Fig. 3. The taxonomy of reviewers’ information needs that emerged from our analysis

review threads into hierarchies and identify common themes. We rely on code review threads (i.e.,
questions and answers) to better understand the meaning behind reviewers’ questions that may
implicitly define the reviewers’ need. Finally, we apply an open card sorting: We have no predefined
groups of reviewers’ information needs, rather the needs emerge and evolve during the procedure.
In our case, the process consists of the three iterative sessions described as follow.

Iteration 1: Initially, two inspectors (the first two authors of this paper) independently analyze
an initial set of 100 OpenStack code review threads each. Then, they open a discussion on the
reviewers’ needs identified so far and try to reach a consensus on the names and types of the
assigned categories. During the discussion, also the other two inspectors participate with the
aim of validating the operations done in this iteration and suggesting possible improvements. As
an output, this step provides a draft categorization of reviewers’ needs.

Iteration 2: The first two inspectors re-categorize the 100 initial reviewers’ needs according to
the decisions taken during the discussion; then, they use the draft categorization as a basis for
categorizing the remaining set of 200 code review threads belonging to OpenStack. This phase
is used for both assessing the validity of the categories emerging from the first iteration (by
confirming some of them and redefining others) and for discovering new categories. Once this
iteration is completed, all the four inspectors open a new discussion aimed at refining the draft
taxonomy, merging overlapping categories or better characterizing the existing ones. A second
version of the taxonomy is produced.

Iteration 3: The first two inspectors re-categorize the 300 code review threads previously analyzed.
Afterwards, the first inspector classifies the reviewers’ needs concerning the two remaining
considered systems. In doing so, the inspector tries to apply the defined categories on the set of
code review threads of Android and QT. However, in cases where the inspector cannot directly
apply the categories defined so far, the inspector reports such cases to the other inspectors so
that a new discussion is opened. Unexpectedly this event did not eventually happen in practice;
in fact, the inspector could fit all the needs in the previously defined taxonomy, even when
considering new systems. This result suggests that the categorization emerging from the first
iterations reached a saturation [24], valid at least within the considered sample of threads.
Additional validation. To further check and confirm the operations performed by the first
inspector, the third author of this paper—whowas only involved in the discussion of the categories,
but not in the assignment of the threads into categories—independently analyzed all the code
review threads belonging to the three considered projects. The inspector classified all the 900
threads according to the second version of the taxonomy, as defined through iteration 2. The

, Vol. 1, No. 1, Article . Publication date: August 2018.

10 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

inspector did not need to define any further categories (thus suggesting that the taxonomy was
exhaustive for the considered sample), however in six cases there were a disagreement between
the category he assigned and the one assigned by the first author: as a consequence, the two
authors opened a discussion in order to reach an agreement on the actual category to assign to
those code review threads. Overall, the inter-rater agreement between this inspector and the first
one, computed using the Krippendorff’s k [35], was 98%.
Following this iterative process, we defined a hierarchical categorization composed of two layers.

The top layer consists of seven categories, while the inner layer consists of 18 subcategories. Figure
3 depicts the identified top- and sub-categories. During the iterative sessions, ≈4% of the analyzed
code review threads are discarded from our analysis since they do not contain useful information to
understand the reviewers’ needs. We assign these comments to four temporary sub-categories that
indicate the reasons why they are discarded (e.g., they are noise or sarcastic comments), successively,
we gathered these comments, in an additional top-category Discarded.

To answer RQ1.1, we report the reviewers’ needs belonging to the categories identified in the
top layer.
Subsequently, to answer RQ1.2 and understand how frequently each category of our needs

appears, we verify how many information needs are assigned to each category. In this way, we can
overview the most popular reviewers’ needs when performing code review tasks. We answer this
research question by presenting and discussing bar plots showing the frequency of each identified
category.

To answer RQ1.3, we discuss the outcome of the previous sub-RQs with developers of the three
considered systems and an external company. This gives us the opportunity to challenge our
findings, triangulate our results, and complement our vision on the problem.

Table 1. Interviewees’ experience (in years) and their working context.

ID Years as developer Years as reviewer Working context
P1 15 10 OpenStack
P2 20 10 OpenStack
P3 25 20 Qt
P4 10 10 Android

FG1 8 7 Company A
FG2 10 10 Company A
FG3 7 5 Company A

Interviews with reviewers from the subject systems. To organize the discussion with the
developers of Android, OpenStack, and Qt, we use semi-structured interviews–a format that is
often used in exploratory investigations to understand phenomena and seek new insights [68]. A
crucial step in this analysis is represented by the recruitment strategy, i.e., the way we select and
recruit participants for the semi-structured interviews. With the aim of gathering feedback and
opinions from developers having a solid experience with the code review practices of the considered
projects, we select only developers who had conducted at least 100 reviews6 in their respective
systems. Then, we randomly select 10 per system and invite them via email to participate in an
online, video interview. Four experienced code reviewers accepted to be interviewed: two from
OpenStack, one from Qt, and one from Android. The response rate achieved (17%) is in line with
6This minimum number of reviews to ensure an appropriate experience of the interviewees is aligned with the numbers
used in previous studies on code review (e.g., [2]).

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 11

the one achieved by many previous works involving developers [43, 44, 66]. Table 1 summarizes
the interviewees’ demographic.
The interviews are conducted by the first two authors of this work via Skype. With the partici-

pants’ consent all the interviews are recorded and transcribed for analysis. Each interview starts
with general questions about programming and code reviews experience. In addition, we discuss
whether the interviewees consider code reviews important, which tool they prefer, and generally
how they conduct reviews. Overall, we organize the interview structure around five sections:

(1) General information regarding the developer;
(2) General perceptions on and experience with code review;
(3) Specific information needs during code review;
(4) Ranking of information needs during code review;
(5) Summary.

The main focus regarding the information needs is centered around points 3 and 4: We iteratively
discuss each of the categories emerged from our analysis (also showing small examples where
needed). Afterwards, we discuss the following main questions with each interviewee:

(1) What is your experience with <category>?
(2) Do you think <category> is important to successfully perform a code review? Why?
(3) Do you think current code review tools support this need?
(4) How would you improve current tools?

Our goal with these questions is to allow us to better understand the relevance of each developer’s
need and whether developers feel it is somehow incorporated in current code review tools or, if
not, how they would envision this need incorporated. Successively, we ask developers to rank the
categories according to their perceived importance. Our goal is to understand what the interviewees
perceive as the most important needs and why. To conclude the interview, the first two authors
of this paper summarize the interview, and before finalizing the meeting, these summaries are
presented to the interviewee to validate our interpretation of their opinions.

Focus group with an external commercial company.While the original developers provide
an overview of the information needs identified in the context of the systems analyzed in this
study, our findings may not provide enough diversity. To improve this aspect, we complement
the aforementioned semi-structured interviews with an additional analysis targeting experts in
assessing the source code quality of systems. In particular, we recruited three employees from a
firm in Europe specialized in software quality assessments for their customers. The mission of
the firm is the definition of techniques and tools able to diagnose design problems in the clients’
source code, with the purpose of providing consultancy on how to improve the productivity of
their clients’ industrial developers. Our decision to involve these quality experts is driven by the
willingness to receive authoritative opinions from professionals who are used to perform code
reviews for their customers. The three participants have more than 15 years in assess code quality
and more than 10 years of experience in code review.

In this case we proceed with a focus group [36, 40] because it better fits our methodology. Indeed,
this technique is particularly useful when a small number of people is available for discussing
about a certain problem [36, 40] and consists of the organization of a meeting that involves the
participants and a moderator. The moderator starts the discussion by asking general questions on
the topic of interest and then leaves the participants to openly discuss about it with the aim of
gathering additional qualitative data useful for the analysis of the results. In the context of this
paper, the first two authors of the paper are the moderators in a meeting directly organized in the
consultancy firm. The focus group is one hour long and the participants reflected on and discuss

, Vol. 1, No. 1, Article . Publication date: August 2018.

12 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

the information needs we identified and what are the factors influencing their importance. From
this analysis, our aim is also to better understand the external validity of our taxonomy.

3.4 RQ2 - On the role of reviewers’ needs in the lifecycle of a code review
In the context of the second research question we perform a fine-grained investigation of the role of
reviewers’ needs in code review. We analyze which of them capture more replies, what is the time
required for getting an answer, and whether reviewers’ needs change throughout the iterations.

Specifically, we consider code review threads related to the same reviewer’s need independently.
Then, to answer RQ2.1 we computed the number of replies that each group received: this is a metric
that represents how much in deep reviewers and authors should interact to be able to exchange the
information necessary to address the code review. We do not assess the quality of the responses,
since we aim at reporting quantitative observations on the number of answers provided by authors
to a reviewer’s need.
As for RQ2.2, this represents a follow-up of the previously considered aspect. Indeed, besides

assessing the number of replies for each reviewers’ need, we also measure the time (in terms of
minutes) needed to get a response. This complementary analysis can possibly provide insights on
whether certain needs require authors to spend more time to make their change understandable,
thus providing information on the relative importance of each needwhichmight be further exploited
to prioritize software engineering research effort when devising and developing new techniques to
assist code reviewers.

Finally, to answer RQ2.3 and understand how the reviewers’ needs change over the code review
iterations, we measure the number of times a certain need appears in each iteration of a code
review. This analysis may possibly lead to observations needed by the research community to
promptly provide developers with appropriate feedback during the different phases of the code
review process.
As a final step of our methodology, we compute pairwise statistical tests aimed at verifying

whether the observations of each sub-research question are statistically significant. We apply the
Mann-Whitney test [18]. This is a non-parametric test used to evaluate the null hypothesis stating
that it is equally likely that a randomly selected value from one sample will be less than or greater
than a randomly selected value from a second sample. The results are intended as statistically
significant at α=0.05. We also estimate the magnitude of the measured differences by using the
Cliff’s Delta (or d), a non-parametric effect size measure for ordinal data [27]. We follow well-
established guidelines to interpret the effect size values: negligible for |d |<0.10, small for 0.10≤ |d | <
0.33, medium for 0.33 ≤ |d | < 0.474, and large for |d | ≥ 0.474 [27].

4 RESULTS
In this section, we present and analyze the results of our study by research question.

4.1 RQ1 - A Catalog of Reviewers’ Information Needs
We report the results of our first research questions, which aimed at cataloging reviewers’ infor-
mation needs in code review and assessing their diffusion. For the sake of comprehensibility, we
answer each sub-research question independently.

RQ1.1:What are the kinds of information code reviewers require?

Following the methodology previously described (Section 3.3), we obtained 22 groups of re-
viewers’ information needs. They were then clustered according to their intention into seven
high-level categories that represent the classes of information needs associated with the discussion

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 13

threads considered in our study. We describe each high-level category also including representative
examples.
N1. Suitability of An Alternative Solution

This category emerged by grouping threads in which the reviewer poses a question to discuss
options and alternative solutions to the implementation proposed by the author in the first
place. The purpose is not only to evaluate alternatives but also to trigger a discussion on
potential improvements. The example reported in the following reports a case where the
reviewer starts reasoning on how much an alternative solution is suitable for the proposed
code change.

R: “. . . Since the change owner is always admin, this code might be able to move out of
the loop? The following should be enough for this? [lines of code]"

N2. Correct understanding
In this category, we group questions in which the reviewers try to ensure to have captured the
real meaning of the changes under review; in other words, this category refers to questions
asked to get a consensus of reviewers’ interpretation and to clarify doubts. This is more
frequent when code comments or related documentation is missing. as reported in the
example shown in the following.

R: “This is now an empty heading . . .Or do you feel it is important to point out that these
are C++ classes?”
A: “The entire page is split up into [more artifacts]. The following sections only refer to
[one artifact]. I added a sentence introducing the section."

N3. Rationale
This category refers to questions asked to get missing information that may be relevant to
justify why the project needs the submitted change set or why a specific change part was
implemented/designed in a certain way. For example, a reviewer may request more details
about the issue that the patch is trying to address. These details help the reviewer in better
understanding whether the change fits with the project scope and style. For instance, in the
example reported below the reviewer (R) asks why the author replaced a piece of code.

R: “Can you explain why you replaced [that] with [this] and where exactly was failing?”

N4. Code Context
In this category, we grouped questions asked to retrieve information aimed at clarifying
the context of a given implementation. During a code review, a reviewer has access to the
entire codebase and, in this way, may reconstruct the invocation path of a given function
to understand the impact of the proposed change. However, we observed that the reviewer
needs contextual information to clarify a particular choice made by authors. These questions
range from very specific (i.e., aimed at understanding the code behavior) to more generic (i.e.,
aimed at clarifying the context in which such code is executed). The author replies to such
questions by providing additional explanations on the code change or contextual project
details. For instance, let consider the thread reported below, where the Author (A) replies to
the Reviewer (R) by pointing R to the file (and the line) containing the asked clarification.

, Vol. 1, No. 1, Article . Publication date: August 2018.

14 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

R: “In what situations would [this condition] be false, but not undefined?”
A: “See [file], exactly in line [number], in this case the evaluation of the expression
returns false.”
R: “It may be helpful to add a comment documenting these situations to avoid future
regressions.”

N5. Necessity
In this category, the reviewer needs to knowwhether a (part of) the change is really necessary
or can be simplified/removed. For example, a reviewer may spot something that seems like a
duplicated code, yet is unsure if whether the existing version is a viable solution or it should
be implemented as proposed by the author. In the example below, the reviewer asks whether
a certain piece of code could be removed.

R: “Is this needed?”
A: “I believe its only required if you have methods after the last enum value, but I
generally add it regardless. We have a pretty arbitrary mix.”

N6. Specialized Expertise
Threads belonging to this category regard situations in which a reviewer finds or feels there
is a code issue, however, the reviewer’s knowledge is not appropriate to propose a solution.
In these cases, typically a reviewer asks other reviewers to step in and contribute with
their specialized expertise. Sometimes, reviewers may ask the author to propose informal
alternatives that may better address the found issue. The examples reported below show two
cases where the reviewer encourages other developers to reason on how to fix an issue.

R: “. . . Lars, Simon, any ideas? We really need to fix this for [the next release] and the
time draws nigh”

R: “I need a better way to handle this . . . not a good idea to hard code digits in there.
example also needs to be removed, its there just to make the tests pass.”

N7. Splittable
For several reasons (including reducing the cognitive load of reviewers [5]), authors want
to propose changes that are atomic and self-contained (e.g., address a single issue or add a
single feature). However, sometimes, what authors propose may be perceived by reviewers
as something that can be addressed by different code changes, thus reviewed separately. For
this reason, a reviewer needs to understand whether the split she has in mind can be done;
based on this the reviewer asks questions aimed at finding practical evidence behind this
idea. In other words, this category gathers questions proposed by reviewers who need to
understand whether the proposed changes can be split into multiple, separated patches. For
example, the thread below reports a question where the reviewer (R) asks the author about
the possibility of splitting unrelated changes, but the feasibility of this split is not confirmed.

R: “This looks like an unrelated change. Should it be in a separate commit?”
A: “Actually its related. The input object is needed to log the delete options.”
R: “OK, I wasn’t sure because in the previous version we don’t pass ‘force’ into the
method, but now we do pass it in via the ‘input’.”

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 15

0

50

100

150

200

250

300

350

400

450

N1. Suitability of an
alternative solution

N2. Correct
understanding

N3. Rationale N4. Code
context

N5. Necessity N6. Specialized
expertise

N7. Splittable

Openstack Android

Qt Total

Fig. 4. Distribution of reviewers’ information needs across the considered systems.

In addition to the aforementioned categories, we found several cases in which the presence
of a question or question mark did not correspond to a real information need, similarly to the
aforementioned categorized information needs, we provide an example in the following.

R: “I hate name as a name. What kind of name is this?”

R: ‘If you thought it was necessary to check exe() for errors, then why’d you leave out
[another part] here? :)”

RQ1.2: How often does each category of reviewers’ needs occur?

Figure 4 depicts bar plots that show the distribution of each reviewers’ need over the considered
set of code review threads. The results clearly reveal that not all the information needs are equally
distributed and highlight the presence of a particular type (i.e., N1. ‘Suitability of an alternative
solution’), which has a way larger number of occurrences with respect to all the others (the result
is consistent over the three considered systems). Thus, we can argue that one of the most useful
tools for reviewers would definitively be one that allows them to have just-in-time feedback on the
actual practicability of possible alternative solutions with respect to the one originally implemented
by the authors of the committed code change.

The second most popular category is represented by ‘Correct understanding’ (N2), i.e., questions
aimed at assessing the reviewers’ interpretation of the code change and to clarify doubts. This
finding basically confirms one the main outputs of the work by Bacchelli and Bird [2], who found
that code review is understandability. The popularity of this category is similar in all the considered

, Vol. 1, No. 1, Article . Publication date: August 2018.

16 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

projects, confirming that this need is independent from the type of system or the developers
working on it.

Still, a pretty popular need is ‘Rationale’ (N3). This has also to do with the understandability of
the code change, however in this case it seems that a common reviewers’ need is having detailed
information on the motivations leading the author to perform certain implementation choices.
Other categories are less diffused, possibly indicating that reviewers do not always need such

types of information. For instance, ‘Splittable’ (N7) is the category having the lowest number
of occurrences. This might be either because of the preventive operations that the development
community adopts to limit the number of tangled changes [30] or because of the attention that
developers put when performing code changes. In any case, this category seems to be less diffused
and, as a consequence, one can claim that future research should spend more effort on different
(most popular) reviewers’ information needs.

RQ1.3: How do developers’ perceive the identified needs?
In this section, we present the results of our interviews and focus group with developers. First,

we report on the participants’ opinions on the taxonomy derived from the previous two sub-
research questions, then we describe the most relevant themes that emerged from the analysis of
the transcripts. We refer to individual interviewees using their identifiers (P# and FG#).

Participants’ opinion on the taxonomy. In general, all interviewees agreed on the information
needs emerged from the code review threads: For all the categories, the developers agreed that they
were asking those types of question themselves, several times and repeatedly. Furthermore, the
order of importance of the categories was also generally agreed upon: According to the interviewees,
the most important and discussed topic is ‘suitability of an alternative solution’ (N1), followed by
‘understanding’ (N2), ‘rationale’ (N3), and ‘code context’ (N4). Interestingly, the ‘splittable’ (N7)
category is perceived as very important for the interviewed developers, but they confirmed that it
happens rarely to receive big and long patches to review.

Although also the participants in the focus group agreed with the taxonomy of needs and their
ranking, they stated that questions regarding ‘correct understanding’ (N2) are not common (in our
taxonomy is ranked second). When discussing this difference with the focus group participants,
they argued that this discrepancy was probably due to the type of projects we analyzed: Indeed, we
analyzed open-source systems, while the focus group was conducted with participants working
in an industrial, closed-source setting. One developer said: "if I don’t understand something of the
change, I just go to my colleague that created it and ask to him. This is possible because we are all in
the same office in the same working hours, while this is not the case in the projects you analyzed."

Understanding a code change to review. An important step for all the interviewees when it
comes to reviewing a patch is to understand the rationale behind the changes (N3). P1 explained that
to understand why the author wrote the patch, he first reads the commit message, since “[it] should
be enough to understand what’s going on.” Interviewees said that it is very useful to have attached a
ticket to the commit message, for example a JIRA issue, to really understand why it was necessary
submitting the patch [P1−4, FG1−3]. However, sometime the patch is difficult to understand, and
this leads to reviewers asking for more context or rationale of the change, as P1 put it: "Sometime
the commit message just says "Yes, fix these things." And you say "Why? Was it broken? Is there a bug
report information?" So in this case there is not enough description, and I would have to ask for it".
Interestingly, P1 reported that this issues generally happens with new contributors or with novice
developers. During the focus group, FG3 said he also uses tests to obtain more context about the
change: "In general, to get more context I read the Java docs or the tests." Finally, all the interviewees
explained that to obtain more context, or the rationale behind the change, they use external IRC
channels (outside Gerrit) to get in touch with reviewers/authors, e.g., by emails, or Slack.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 17

Authors’ information needs. Considering the point of view of the author of a change, the
interviewees explained that code review is sometimes used as a way to get information from
specialized experts, thus underling the dual nature of the knowledge exchange happening in code
review [25, 26]. P2 explained that it is sometimes difficult for an author to have all the information
they need to make the change, for example if the change is in a part of the system where they
are not expert. In this case, P2 explained: "when you make a change, you usually add the experts
of the system to your review, and then you ping them on IRC, asking for a review, if they have some
time." Interestingly, this point also came up during the focus group, where a developer said "if it’s
a new system [...] my knowledge lacks at one front, it may be technology, it may be knowledge of
the system." In this case, the developer would ask the help of colleagues. This is also in line with
another need we discovered in the previous research question, that is the ‘Specialized Expertise’
(N6). Indeed, interviewees said that when they are not familiar with the change, or they do not
have the full context of the change, they ask an expert to contribute: "[in the project where I work]
we have sub-system maintainers: they are persons with knowledge in that area and have more pleasure
or willingness to work on those specialized areas. If the reviewers do not reach consensus during the
review, we always ask to those experts." [P4].

Small and concise patches. When discussing with developers the ‘Splittable’ (N7) need, all
agreed that patches should be self-contained as much as possible [P1−4, FG1−3]. P3 said: "I always
ask to split it, because in the end it will be faster to get it in [the system]." P4 added that it is something
that they do all the time, because usually people do not see this issue. P2 said: "It’s always better to
have 10 small reviews than one big review with all the changes, because no one will review your code.
It’s like that. So if you want to merge something big, it’s always better to do it in small changes."
Another point raised during the interviews is that large patch sets are difficult to review and

require a lot of time to read [P1−4, FG1−3], thus this may delay the acceptance of the patches. P4
explained: "You can have a large patch set that is 90% okay and 10% that not okay: the 10% will
generate a lot of discussion and will block the merge of 90% of the code. So yes, it’s something that I do
all the time. I ask people, you need to organize better the patch."
When talking about the issue, P1 also added that having small patches is very important for

making it easier to revert them: "yes this is something I find it to be really, really important. Bugs are
everywhere – there is always another bug to fix. So the patch should be small enough that [in case of
bugs] you can revert it without breaking any particular code."

Interestingly, all the interviewees agreed that tools could help reviewers and authors in solving
this need: for example, when submitting a large patch, the tool could suggest the author to split it
into more parts to ease the reviewing process.

Offering a solution. All interviewees agreed that to do a proper code review, reviewers should
always pinpoint the weak parts in the code and offer a solution [P1−4, FG1−3]. P3 said: "When I
request the change, I usually put a link or example because I know that maybe the other guy doesn’t
know about the other approach. This is usually the main reason why somebody didn’t do something:
because he didn’t know it was possible." P1 added: "[...] whenever you propose a change, you should
always explain why you need to change it and what. Just putting [the score to] minus two, or even
minus one without explanation, is bad because then people don’t know what to do. We have to try
being more friendly as a community." This constructive behavior was also agreed upon during
the focus group: one developer said that the worst thing that can happen in a code review is a
non-constructive comment. Interestingly, this reported behavior confirms what we discovered in
our previous research question: indeed, ‘Suitability of an alternative solution’ (N1) is the most
frequent type of question when doing code review.

, Vol. 1, No. 1, Article . Publication date: August 2018.

18 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●

●●●● ● ●●●● ●●●● ●

●●●●●

●●● ●

●● ● ●●● ●

N1. Suitability of an
alternative solution

N2. Correct
understanding

N3. Rationale

N4. Code context

N5. Necessity

N6. Specialized
expertise

N7. Splittable

0 2 4 6 8 10

●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●

●●●● ● ●●●● ●●●● ●

●●●●●

●●● ●

●● ● ●●● ●

N1. Suitability of an
alternative solution

N2. Correct
understanding

N3. Rationale

N4. Code context

N5. Necessity

N6. Specialized
expertise

N7. Splittable

0 2 4 6 8 10

●

●

●

●

●

●

●

Fig. 5. Distribution of the number of replies for each reviewers’ need.

In addition, concerning constructive feedback, interviewees said that when they do not fully
understand a change, they first ask the author explanations: "For example, if you don’t understand
correctly the change this person is trying to add, you just ask him, and they are forced to answer
you. And if you don’t have the context information, they should be able to provide it to you."[P2]
Interviewees said that it is better to ask explanation to the author first, and only after decide to/not
merge the patch. P4 also explained that sometime it is better to accept a patch than start a big
discussion on small detail: "Even though I understand that a better solution will be doable, I’ll probably
won’t propose it because a lot of times people won’t have time to actually rework on a new proposal,
and you need to balance how you want the project to move forward: Sometimes it’s better to have a
code that is not the best solution, but at least does not regress and it fixes a bug."

4.2 RQ2 - The Role of Reviewers’ Information Needs In A Code Review’s Lifecycle
We present the results achieved when answering our second research question, which was focused
on the understanding of the role of reviewers’ information needs in the lifecycle of the code review
process. We report the results by considering each sub-research question independently.

RQ2.1:What are the reviewers’ information needs that attract more discussion?
To answer RQ2.1 and understand to what extent the reviewers’ needs attract developers’ dis-

cussions, we compute, for each discussion thread that we manually categorized, the number of
iterations that involve the developers of a certain code review.

Figure 5 depicts box plots reporting the distribution of the number of answers for each reviewers’
need previously identified (red dots indicate the mean). Approximately 18% of code review threads
(considering both merged and abandoned patches of every projects) do not have an answer. The
first observation regards the median value of each distribution: as shown, all of them are within
one and three, meaning that most of the threads are concluded with a small amount of discussion.
From a practical perspective, this result highlights that authors can address almost immediately
the need pointed out by a reviewer; at the same time, it might highlight that tools able to address
the reviewers’ needs identified can be particularly useful to even avoid the discussion and lead to
an important gain in terms of time spent to review source code. Among the reviewers’ needs, the
‘Specialized expertise’ (N6) is the one with the largest scattering of discussion rate. This result seems
to indicate that the more collaboration is required due the largest number of replies a discussion
receives, which possibly preclude the integration in the codebase of important changes that require
the expertise of several people.
The statistical tests confirmed that there are no statistically significant differences among the

investigated distributions, with the only exception of ‘Suitability of an alternative solution’ (N1),

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 19

●

●●

●

N1. Suitability of an
alternative solution

N2. Correct
understanding

N3. Rationale

N4. Code context

N5. Necessity

N6. Specialized
expertise

N7. Splittable

0 10 20 30 40 50

●

●●

●

N1. Suitability of an
alternative solution

N2. Correct
understanding

N3. Rationale

N4. Code context

N5. Necessity

N6. Specialized
expertise

N7. Splittable

0 10 20 30 40 50

●

●

●

●

●

●

Fig. 6. Distribution of the number of hours needed to answer each reviewers’ need category.

for which the ρ-value is lower than 0.01 and the Cliff’s d is ‘medium’. This category is the one
having the lowest mean (1.7) and we observed that often authors of the code change tend to directly
implement the alternative solution proposed by the reviewer without even answering to the original
comment. This tendency possibly explain the motivation behind this statistical difference.

Overall, according to our results, most of the reviewers’ information needs are satisfied with few
replies–most discussions are closed shortly. The only category having more scattered results is the
one where reviewers ask for the involvement of more people in the code review process.

RQ2.2: How long does it take to get a response to each reviewers’ information need?

Figure 6 reports the distribution of the number of hours needed to get an answer for each group
of reviewers’ information need. In this analysis we could only consider the questions having at
least one answer; similarly, if a reviewer’s comment got more than one reply, we considered only
the first one to compute the number of hours needed to answer the comment.
Looking at the results, we can observe that the median is under 7 hours for almost all the

categories. A possible reason for that consists of the nature of the development communities behind
the subject systems. Indeed, all the projects have development teams that span across different
countries and timezones: thus, we might consider as expected the fact to not have an immediate
reaction to most of the comments made by reviewers. Some differences can be observed in the
distributions of two reviewers’ information needs such as ‘Necessity’ (N5) and ‘Suitability of an
alternative solution’ (N1). In this case, the median number of hours is higher with respect to the
other categories (7 vs 5), while the 3rd quartiles are around one day (meaning that 25% of the
questions in this category took more than one day to have a response). Conversely, the discussion
of other categories generally took less time to start. For instance, the ‘Specialized expertise’ (N6)
need has a median of one hour and a 3rd quantile equal to four. Such differences, however, are not
statistically significant.

To conclude the analysis of our findings for this research question, we can argue that developers
generally tend to respond slower to questions regarding the proposal of alternatives and the
evaluation of the actual necessity of a certain code change; on the other hand, questions where
more reviewers are called to discuss seem to get a faster response time.

RQ2.3: How do the reviewers’ information needs change over the code review process?

The last research question targets the understanding of whether reviewers’ needs vary over the
different iterations of the code review process. Figure 7 presents the result of our analysis, with
box plots depicting the distribution of each reviewers’ information need in the various iterations:

, Vol. 1, No. 1, Article . Publication date: August 2018.

20 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

N1. Suitability of an
alternative solution

N2. Correct
understanding

N3. Rationale

N4. Code context

N5. Necessity

N6. Specialized
expertise

N7. Splittable

0.0 0.2 0.4 0.6 0.8 1.0

N1. Suitability of an
alternative solution

N2. Correct
understanding

N3. Rationale

N4. Code context

N5. Necessity

N6. Specialized
expertise

N7. Splittable

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

Fig. 7. Distribution of reviewers’ needs over different iterations of the code review process.

for the sake of better comprehensibility of the results, we considered the normalized number of
iterations available in each of the 900 code review threads analyzed.7

Almost all the categories have their median around 0.5, meaning that the majority of reviewers’
information needs are raised in the first half of the review process. Moreover, we are not able to
map reviewers’ information needs with any specific iteration. This result might indicate that there
is not a time-sensitive relationship between those needs and that they arise independently from
how much discussion has already been going on in the review.

Besides this general conclusion, we also notice some differences between the category ‘Necessity’
(N5) and the others. In the case of the ‘Necessity’ (N5) category the median and mean reach both
0.67, thus indicating that most of such questions come later in the process. It is interesting to note
that modifications aimed at performing perfective changes that improve the overall design/style of
the source code rather than solving issues are mainly requested by reviewers in a later stage of
the code review process, i.e., likely after that most important fixes solving problems impacting the
functioning of the system are already submitted by the author and answers about understanding
the context of the change are given. Such an observation may need further investigations and
validation, however it may possibly reveal the possibility to devise strategies to guide the next
generation of code review tools toward a selection of the information that a reviewer might need in
a earlier/later stage of the code review process.

5 THREATS TO VALIDITY
Our study might have been subject to a number of threats to validity that may affect our results.
This section summarizes the limitations of our study and how we tried to mitigate them.

Validity of the defined reviewers’ needs. Since the meaning of a question may be dependent
by the context, we may lack of a full understanding of its nature and background. This type of threat
may first apply to our study when we identify code review threads composed of both questions
and answers: to this aim, we automatically mined the Gerrit repository that is a reliable source
for the extraction of code review data [10, 28]. To extract code review threads we employed the
publicly available APIs of such repository: For this reason, we are confident on the completeness of
the extracted data.

The adopted open card sorting process is also inherently subjective because different themes are
likely to emerge from independent card sorts conducted by the same or different people. To ensure
the correctness and completeness of the categories associated to the reviewers’ needs identified
with the card sorting, we iteratively conducted the process by merging and splitting reviewers’

7We also conducted an analysis using the absolute number of iterations, yet results were equivalent.

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 21

need categories if needed. As an additional step, we also took into account authors responses
and discussion threads when classifying questions made by reviewers, with the aim of properly
understand the context in which a certain question has been made. Moreover, all the authors of
this paper, who have more than seven years of experience in software development, assessed the
validity of the emerged categories, thus increasing its overall completeness. Of course, we cannot
exclude the missing analysis of specific code review threads that point to categories that were not
identified in our study.
We consider questions asked by reviewers through the Gerrit platform as indicators of the

actual reviewers’ needs. This assumption may not hold for all projects, as many active projects
do not use the Gerrit platform. For example, Tsay et al. [64] highlighted how several developers
contribute to the software development by using different platforms (e.g., GitHub). However, we
partly mitigated this threat to validity by carefully selecting software systems broadly studied in
code review research [8, 38, 39] and having a large number of code review data (which indicates they
actively use Gerrit). The study of different platforms such as GitHub, GitLab, or Collaborator
is left for future work.

External validity. As for the generalizability of the results, we conducted this study on a
statistically significant sample of 900 code reviews that include more than 1, 800messages belonging
to three well-known projects that use the Gerrit platform since 2011. A threat to validity in this
category may arise when we consider closed-source projects. In that case, the experience of closed-
source reviewers may affect the need to asks clarification questions, therefore, the findings that we
found in open-source project may be not generalizable to a closed-source context. As part of our
future research agenda, we plan to extend this study by including closed-source projects.

6 DISCUSSION AND IMPLICATIONS
Our quantitative and qualitative results showed that reviewers have a diversity of information
needs at different conceptual levels and pertaining to different aspects of the code under review. In
this section we discuss how our results lead to recommendations for practitioners and designers,
as well as implications for future research.

(1) Selection of assistant experts. The results achieved by mining code review repositories
and interviewing practitioners indicate that ‘Suitability of An Alternative Solution’ (N1) and
‘Correct Understanding’ (N2) are not only the most recurring needs, but also those perceived
as the most important. When discussing these topics with developers from both open-source
and industrial systems, we uncovered possible areas where current code review tools can
offer better features. For example, a key need for the reviewers is being able to communicate
with the experts of the sub-system under review; this underlines the importance of tools able
to recognize developers’ expertise and create recommendations.
Researchers have conducted the first steps into this direction. For instance, among others,
Patanamon et al. [63] proposed RevFinder, an approach to search and recommend reviewers
based on similarity of previous reviewed files, while Thongtanunam et al. [59] validated
the performance of a reviewer recommendation model based on file paths similarity. An
interesting novelty that emerged from our analysis, with respect to existing previous work
on reviewers recommendation, is the target of the recommendation. In fact, existing reviewer
recommendation mechanisms target the author of the change who has to select the reviewer
and propose reviewers for full changes or files. Instead, we found that also the reviewers have
the need to consult an external expert, maybe for a more specific part of the entire change
under review. For instance P3 explained that “reviewers sometimes ask for other reviewers that
may be more expert”, thus having an assistant that can help the selection of an expert reviewer

, Vol. 1, No. 1, Article . Publication date: August 2018.

22 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

may increase her productivity. Targeting reviewers instead of change authors and having a
finer grained focus for the recommendation mechanism can lead to interesting changes in
both the model (which may use different features to compute expertise and the difference of
expertise among reviewers) and the evaluation approach (which may no longer be based on
just matching actually selected reviewers). Further studies can be designed and conducted to
better understand this novel angle.

(2) Early detection of splittable changes. Even if the ‘Splittable’ (N7) category is the less
frequently occurring, interviewees argued that it is really useful to automatically detect split-
table code changes before a submission. For example, in the focus group all the participants
(FG1−3) suggested: “if it’s an unrelated change [...], pull it out of this ticket and put it on another
issue.” In fact, this would (1) decrease the time spent in detecting this issue and asking the
author to re-work the change, as well as (2) reduce the risks of introducing defects in the
source code [30].
Researchers have already underlined the risks of tangled code changes (i.e., non-cohesive
code changes that may be divided in atomic commits) for mining software repositories ap-
proaches [30] and have proposed mechanisms for automatically splitting them. For instance,
Herzig and Zeller [30] proposed an automated approach relying on static and dynamic anal-
ysis to identify which code changes should be separated; Yamauchi suggested a clustering
algorithm tuned to identify unrelated changes in a commit message [69]; and Dias et al. [22]
proposed a methodology to untangle code changes at a finer-granularity, i.e., by selecting
the single statement of a code review that should be placed in other commits. More recently
researchers also proposed untangling techniques specifically tailored to code review [5, 58]
and conducted the first experiments to measure the effects of tangled code changes on code
review [21, 58] substantiating the value of separating unrelated changes.
Despite these advances in splitting algorithms and their immediate practical value, no com-
mercial code review tool offers this feature. Our analysis underlines even more the relevance
of having such a feature integrated as early as possible in the development process, possibly in
the development environment, so that authors send already self-contained patches for review.
Moreover, despite the notable research advances in the field, we believe that there is still room
for improvement, e.g., by complementing state-of-the-art methods with conceptual-related
information aimed at capturing the semantic relationships between different code changes.
Also, early improvements of code changes before review are in line with the work by Bal-
achandran [4]. He reported that the time to market can be reduced also creating automatic
bots able to conduct preliminary reviews [4]. In this regard, there are still plenty of opportu-
nities and challenges on how and when bots can automatically help reviewers during their
activities and whether they may be employed to assist some of the developers’ needs in code
review.

(3) Automatically detecting alternative solutions. In connection with the most frequent
need (i.e., ‘Suitability of an alternative solution’ (N1)), an interviewee from one of the open-
source projects explained to prefer to propose an alternative solution before rejecting a patch:
“[...] usually I put a link or an example.” In this light, a promising avenue for an impactful im-
provement in code review is to integrate a toll that automatically mines alternative solutions.
Accordingly, a first interesting step would be to investigate how to integrate at code review
time an approach such as the one proposed by Ponzanelli et al., which systematically mines
community based resources such as forums or Stack Overflow to propose related changes [46].
Another promising starting point in this direction is the concept of programming with “Big

, Vol. 1, No. 1, Article . Publication date: August 2018.

Information Needs in Contemporary Code Review 23

Code,” as proposed by Vechev and Yahav [67], to automatically learn alternative solutions
from the large amount of code available in public code repositories such as GitHub.

(4) Synchronous communication support. The absence of a proper real-time communication
channel within code review tools was a common issue that emerged from both the interviews
with the open-source developers and the focus group. In fact, two interviewees ([FG1] and
[FG3]) explained: “you can just go to the author and ask to him in person, and maybe it
would be a long discussion [...]”. This is in line with the experience reported by developers at
Microsoft in a previous study by Bacchelli and Bird [2]. Nevertheless, in-person discussions
can happen only if both author and reviewer are co-located, otherwise logistic barriers could
impose serious constraints [2]. Yet, open-source developers are able to fulfill this real-time
communication need using alternative channels; P2 stated: “we usually have an IRC channel
[...]”. The two observations suggest that, when it is possible, developers prefer to rely on
direct communication to discuss feedback; this may be to avoid discussing difficult criticism
online in a public forum and to have a higher communication bandwidth than small online
thread comments. In both scenarios, our results show that current code review tools are
clearly not able to fully satisfy the communication need of the involved people. Future work
should be conducted to understand how communication can be facilitated within the code
review tool itself (thus improving traceability of discussions, which is relevant for future
developers’ information needs [55]); in principle, this future analysis should take into account
not only technical aspects to increase the communication bandwidth, but also the social
aspects that could currently hinder developers from discussing certain arguments with the
current tools.

(5) Automatic change summarization. ‘Correct understanding’ (N2) and ‘Rationale’ (N3) are
also key information needs for reviewers. Normally this is achieved by perusing the code
change description or additional comments. Nevertheless, our interviewees reported cases in
which these sources of information were insufficient to fulfill this need; on this P3 reported:
“I even had cases where the description didn’t have anything in common with the code”. Indeed
this shows that another significant source of delay in a code review process is when patches
contain unaligned or missing information (i.e., the commit message is not clear enough or
it does not match with the actual patch). Code summarization techniques appear to be a
good fit for this task: Indeed, past literature presented different summarization techniques
that can be used to both produce or check the current documentation. For example, Buse
and Weimer proposed a technique to synthesize human-readable documentation starting
from code changes [13], but also several other researchers have been contributing with more
approachess: Canforaet al. experimented Ldiff [15], Parnin and Görg developed CILDiff [45],
and Cortés-Coy et al. designed ChangeScribe [19]. Our analysis suggests that supporting
code review is a ripe opportunity for research on code summarization techniques to have
another angle of impact on a real-world application.

7 CONCLUSIONS
Modern code review is an important technique used to improve software quality and promote
collaboration and knowledge sharing within a development community. In a typical code review
process, authors and reviewers interact with each other to exchange ideas, find bugs, and discuss
alternative solutions to better design the structure of a submitted code change. Often reviewers are
required to inspect author patches without knowing the rationale or without being aware of the
context in which a code change is supposed to be plugged-in. Therefore, they must ask questions
aimed at addressing their doubts, possibly waiting for a long time before getting the expected

, Vol. 1, No. 1, Article . Publication date: August 2018.

24 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

clarifications. This might potentially result in causing delays in the integration of important changes
into production.
In this work we investigate the reviewers’ information needs by analyzing 900 code review

threads of three popular open-source software systems (OpenStack, Android, and QT). Moreover,
we conduct four semi-structured interviews with developers from the considered projects and
one focus group with developers from a software quality consultancy company, with the aim of
challenging and discussing our outcome.

We discovered the existence of seven high-level reviewers’ information needs, which are differ-
ently distributed and have, therefore, different relevance for reviewers. Furthermore, we analyzed
the role played by each category of reviewers’ information needs across the lifecycle of a code
review, and in particular what are the reviewers’ information needs that attract more discussion,
for how long a reviewer should wait to get a response, and how the information needs change over
the code review lifecycle.
Based on our findings, we provide recommendations for practitioners and researchers, as well

as viable directions for impactful tools and future research. We hope that the insights we have
discovered will lead to improved tools and validated practices which in turn may lead to higher
code quality overall.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 642954. Bacchelli and Palomba
gratefully acknowledge the support of the Swiss National Science Foundation through the SNF
Project No. PP00P2_170529.

REFERENCES
[1] Ulrike Abelein and Barbara Paech. 2015. Understanding the Influence of User Participation and Involvement on System

Success: a Systematic Mapping Study. Empirical Software Engineering 20, 1 (2015), 28–81. https://doi.org/10.1007/
s10664-013-9278-4

[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Challenges of Modern Code Review. In 35th
International Conference on Software Engineering (ICSE 2013a). 710–719.

[3] Richard A Baker Jr. 1997. Code reviews enhance software quality. In Proceedings of the 19th International Conference on
Software Engineering. ACM, 570–571.

[4] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer code reviews using automatic static
analysis and reviewer recommendation. In Proceedings of the 2013 International Conference on Software Engineering.
IEEE Press, 931–940.

[5] Mike Barnett, Christian Bird, Joao Brunet, and Shuvendu K Lahiri. 2015. Helping developers help themselves: Automatic
decomposition of code review changesets. In Proceedings of the 2015 International Conference on Software Engineering.
IEEE Press.

[6] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. 2016. A Faceted Classification Scheme for Change-Based
Industrial Code Review Processes. In Software Quality, Reliability and Security (QRS), 2016 IEEE International Conference
on. IEEE, Vienna, Austria. https://doi.org/10.1109/QRS.2016.19

[7] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2017. On the Optimal Order of Reading Source Code Changes for
Review. In 33rd IEEE International Conference on Software Maintenance and Evolution (ICSME), Proceedings.

[8] Gabriele Bavota and Barbara Russo. 2015. Four eyes are better than two: On the impact of code reviews on software
quality. In 2015 IEEE 31st International Conference on Software Maintenance and Evolution, ICSME 2015 - Proceedings.
81–90. https://doi.org/10.1109/ICSM.2015.7332454

[9] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2013. The influence of non-technical factors
on code review. In Reverse Engineering (WCRE), 2013 20th Working Conference on. IEEE, 122–131.

[10] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Modern code reviews in open-source
projects: which problems do they fix?. In Proceedings of the 11th Working Conference on Mining Software Repositories.
ACM, 202–211.

, Vol. 1, No. 1, Article . Publication date: August 2018.

https://doi.org/10.1007/s10664-013-9278-4
https://doi.org/10.1007/s10664-013-9278-4
https://doi.org/10.1109/QRS.2016.19
https://doi.org/10.1109/ICSM.2015.7332454

Information Needs in Contemporary Code Review 25

[11] Fevzi Belli and Radu Crisan. 1996. Towards automation of checklist-based code-reviews. In Software Reliability
Engineering, 1996. Proceedings., Seventh International Symposium on. IEEE, 24–33.

[12] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. 2010. Information Needs in Bug Reports :
Improving Cooperation Between Developers and Users. Proceedings of the 2010 Computer Supported Cooperative Work
Conference (2010), 301–310. https://doi.org/10.1145/1718918.1718973

[13] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting program changes. In Proceedings of the
IEEE/ACM international conference on Automated software engineering. ACM, 33–42.

[14] Raymond P.L. Buse and Thomas Zimmermann. 2012. Information needs for software development analytics. In
Proceedings - International Conference on Software Engineering. 987–996. https://doi.org/10.1109/ICSE.2012.6227122

[15] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. 2009. Ldiff: An enhanced line differencing tool. In
Proceedings of the 31st International Conference on Software Engineering. IEEE Computer Society, 595–598.

[16] Robert Chatley and Lawrence Jones. 2018. Diggit: Automated code review via software repository mining. In 2018
IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 567–571.

[17] Jason Cohen. 2010. Modern Code Review. InMaking Software, Andy Oram and GregWilson (Eds.). O’Reilly, Chapter 18,
329–338.

[18] W. J. Conover. 1999. Practical Nonparametric Statistics (3rd ed.). John Wiley & Sons, Inc.
[19] Luis Fernando Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and Denys Poshyvanyk. 2014. On automatically

generating commit messages via summarization of source code changes. In Source Code Analysis and Manipulation
(SCAM), 2014 IEEE 14th International Working Conference on. IEEE, 275–284.

[20] Jacek Czerwonka, Michaela Greiler, and Jack Tilford. 2015. Code Reviews Do Not Find Bugs. How the Current Code
Review Best Practice Slows Us Down. In Proceedings of the 2015 International Conference on Software Engineering. IEEE
– Institute of Electrical and Electronics Engineers. http://research.microsoft.com/apps/pubs/default.aspx?id=242201

[21] Marco di Biase, Magiel Bruntink, Arie van Deursen, and Alberto Bacchelli. 2018. The effects of change-decomposition
on code review-A Controlled Experiment. arXiv preprint arXiv:1805.10978 (2018).

[22] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane Ducasse. 2015. Untangling fine-grained
code changes. In Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd International Conference on.
IEEE, 341–350.

[23] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2017. Confusion Detection in Code Reviews.
In 33rd International Conference on Software Maintenance and Evolution (ICSME), Proceedings. ICSME.

[24] Deborah Finfgeld-Connett. 2014. Use of content analysis to conduct knowledge-building and theory-generating
qualitative systematic reviews. Qualitative Research 14, 3 (2014), 341–352.

[25] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work Practices and Challenges in Pull-Based
Development: The Contributor’s Perspective. In Proceedings of the 38th International Conference on Software Engineering
(ICSE ’16). ACM, 285–296.

[26] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen. 2015. Work practices and challenges
in pull-based development: the integrator’s perspective. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 358–368.

[27] Robert J Grissom and John J Kim. 2005. Effect sizes for research: A broad practical approach. Lawrence Erlbaum
Associates Publishers.

[28] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, AE Cruz, Kenji Fujiwara, and Hajimu Iida. 2013. Who does
what during a code review? datasets of oss peer review repositories. In Proceedings of the 10th Working Conference on
Mining Software Repositories. IEEE Press, 49–52.

[29] JD Herbsleb and E Kuwana. 1993. Preserving knowledge in design projects: What designers need to know. Chi ’93 &
Interact ’93 (1993), 7–14. https://doi.org/10.1145/169059.169061

[30] Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In Proceedings of the 10th Working Conference
on Mining Software Repositories. IEEE Press, 121–130.

[31] Yujuan Jiang, Bram Adams, and Daniel M. German. 2013. Will my patch make it? And how fast?: Case study
on the linux kernel. In IEEE International Working Conference on Mining Software Repositories. 101–110. https:
//doi.org/10.1109/MSR.2013.6624016

[32] Norihito Kitagawa, Hideaki Hata, Akinori Ihara, Kiminao Kogiso, and Kenichi Matsumoto. 2016. Code review
participation: game theoretical modeling of reviewers in gerrit datasets. In Proceedings of the 9th International Workshop
on Cooperative and Human Aspects of Software Engineering. ACM, 64–67.

[33] Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collocated Software Development Teams.
In 29th International Conference on Software Engineering (ICSE’07). 344–353. https://doi.org/10.1109/ICSE.2007.45

[34] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W. Godfrey. 2015. Investigating code review
quality: Do people and participation matter?. In 2015 IEEE 31st International Conference on Software Maintenance and
Evolution, ICSME 2015 - Proceedings. 111–120. https://doi.org/10.1109/ICSM.2015.7332457

, Vol. 1, No. 1, Article . Publication date: August 2018.

https://doi.org/10.1145/1718918.1718973
https://doi.org/10.1109/ICSE.2012.6227122
http://research.microsoft.com/apps/pubs/default.aspx?id=242201
https://doi.org/10.1145/169059.169061
https://doi.org/10.1109/MSR.2013.6624016
https://doi.org/10.1109/MSR.2013.6624016
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/ICSM.2015.7332457

26 Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli

[35] Klaus Krippendorff. 2011. Agreement and information in the reliability of coding. Communication Methods and
Measures 5, 2 (2011), 93–112.

[36] Mike Kuniavsky. 2003. Observing the user experience: a practitioner’s guide to user research. Elsevier.
[37] Mika V Mantyla and Casper Lassenius. 2009. What types of defects are really discovered in code reviews? Software

Engineering, IEEE Transactions on 35, 3 (2009), 430–448.
[38] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014. The impact of code review coverage and

code review participation on software quality: A case study of the qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 192–201.

[39] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016. An empirical study of the impact of
modern code review practices on software quality. 21, 5 (2016), 2146–2189. https://doi.org/10.1007/s10664-015-9381-9

[40] Robert K Merton and Patricia L Kendall. 1946. The focused interview. American journal of Sociology 51, 6 (1946),
541–557.

[41] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. 2015. Do code review practices impact design quality? a
case study of the qt, vtk, and itk projects. In Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd
International Conference on. IEEE, 171–180.

[42] Hazel E Nelson. 1976. A modified card sorting test sensitive to frontal lobe defects. Cortex 12, 4 (1976), 313–324.
[43] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. 2015.

Mining version histories for detecting code smells. IEEE Transactions on Software Engineering 41, 5 (2015), 462–489.
[44] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. The scent of a smell:

An extensive comparison between textual and structural smells. IEEE Transactions on Software Engineering (2017).
[45] Chris Parnin and Carsten G’́org. 2008. Improving change descriptions with change contexts. In Proceedings of the 2008

international working conference on Mining software repositories. ACM, 51–60.
[46] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco Oliveto, and Michele

Lanza. 2017. Supporting Software Developers with a Holistic Recommender System. In Proceedings of ICSE 2017 (39th
ACM/IEEE International Conference on Software Engineering). to be published.

[47] Adam Porter, Harvey Siy, Audris Mockus, and Lawrence Votta. 1998. Understanding the sources of variation in
software inspections. ACM Transactions on Software Engineering and Methodology (TOSEM) 7, 1 (1998), 41–79.

[48] Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto Bacchelli. 2018. What Makes A Code Change
Easier To Review? An Empirical Investigation On Code Change Reviewability. In 26th Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). forthcoming.

[49] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer review practices. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM, Saint Petersburg, Russia, 202–212.

[50] Peter C Rigby, Daniel M German, Laura Cowen, andMargaret-Anne Storey. 2014. Peer Review on Open Source Software
Projects: Parameters, Statistical Models, and Theory. ACM Transactions on Software Engineering and Methodology
(2014), 34.

[51] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a
case study at google. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering
in Practice. ACM, 181–190.

[52] Chris Sauer, D Ross Jeffery, Lesley Land, and Philip Yetton. 2000. The effectiveness of software development technical
reviews: A behaviorally motivated program of research. Software Engineering, IEEE Transactions on 26, 1 (2000), 1–14.

[53] Jonathan Sillito, Gail C Murphy, and Kris De Volder. 2006. Questions programmers ask during software evolution tasks.
In Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of software engineering. ACM, 23–34.

[54] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, and Alberto Bacchelli. 2018. When Testing
Meets Code Review: Why and How Developers Review Tests. In Software Engineering (ICSE), 2018 IEEE/ACM 40th
International Conference on. to appear.

[55] Andrew Sutherland and Gina Venolia. 2009. Can peer code reviews be exploited for later information needs?. In
Software Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st International Conference on. IEEE, 259–262.

[56] Andrew Sutherland and Gina Venolia. 2009. Can peer code reviews be exploited for later information needs?. In
Software Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st International Conference on. IEEE, 259–262.

[57] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012. How do software engineers understand
code changes?: an exploratory study in industry. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM.

[58] Yida Tao and Sunghun Kim. 2015. Partitioning composite code changes to facilitate code review. In Proceedings of the
12th Working Conference on Mining Software Repositories. IEEE Press, 180–190.

[59] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz, Norihiro Yoshida, and Hajimu Iida.
2014. Improving code review effectiveness through reviewer recommendations. In Proceedings of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering. ACM, 119–122.

, Vol. 1, No. 1, Article . Publication date: August 2018.

https://doi.org/10.1007/s10664-015-9381-9

Information Needs in Contemporary Code Review 27

[60] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida. 2015. Investigating Code Review
Practices in Defective Files: An Empirical Study of the Qt System. InMSR ’15 Proceedings of the 12th Working Conference
on Mining Software Repositories.

[61] Patanamon Thongtanunam, Shane Mcintosh, Ahmed E. Hassan, and Hajimu Iida. 2016. Review Participation in Modern
Code Review. Empirical Software Engineering (EMSE) (2016), to appear. https://doi.org/10.1007/s10664-016-9452-6

[62] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida. 2016. Revisiting code ownership
and its relationship with software quality in the scope of modern code review. In Proceedings of the 38th international
conference on software engineering. ACM, 1039–1050.

[63] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula, Norihiro Yoshida, Hajimu Iida, and Ken-
ichi Matsumoto. 2015. Who should review my code? A file location-based code-reviewer recommendation approach
for modern code review. In Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd International
Conference on. IEEE, 141–150.

[64] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluating contributions through discussion
in GitHub. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 144–154.

[65] Yuriy Tymchuk, Andrea Mocci, and Michele Lanza. 2015. Code Review: Veni, ViDI, Vici. In Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference on. IEEE, 151–160.

[66] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ van den Brand, Alexander Serebrenik, Premkumar Devanbu,
and Vladimir Filkov. 2015. Gender and tenure diversity in GitHub teams. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems. ACM, 3789–3798.

[67] Martin Vechev, Eran Yahav, et al. 2016. Programming with “Big Code”. Foundations and Trends® in Programming
Languages 3, 4 (2016), 231–284.

[68] Robert S Weiss. 1995. Learning from strangers: The art and method of qualitative interview studies. Simon and Schuster.
[69] Kenji Yamauchi, Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. 2014. Clustering commits for

understanding the intents of implementation. In Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 406–410.

, Vol. 1, No. 1, Article . Publication date: August 2018.

https://doi.org/10.1007/s10664-016-9452-6

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background: The code review process
	2.2 Related Work

	3 Methodology
	3.1 Subject Systems
	3.2 Gathering Code Review Threads
	3.3 RQ1 - Identifying the Reviewers' Needs from Code Review Discussions
	3.4 RQ2 - On the role of reviewers' needs in the lifecycle of a code review

	4 Results
	4.1 RQ1 - A Catalog of Reviewers' Information Needs
	4.2 RQ2 - The Role of Reviewers' Information Needs In A Code Review's Lifecycle

	5 Threats to Validity
	6 Discussion and Implications
	7 Conclusions
	References

