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Abstract—Test-Driven Code Review (TDR) is a code review
practice in which a reviewer inspects a patch by examining the
changed test code before the changed production code. Although
this practice has been mentioned positively by practitioners
in informal literature and interviews, there is no systematic
knowledge on its effects, prevalence, problems, and advantages.

In this paper, we aim at empirically understanding whether
this practice has an effect on code review effectiveness and how
developers’ perceive TDR. We conduct (i) a controlled experiment
with 93 developers that perform more than 150 reviews, and (ii)
9 semi-structured interviews and a survey with 103 respondents
to gather information on how TDR is perceived. Key results from
the experiment show that developers adopting TDR find the same
proportion of defects in production code, but more in test code,
at the expenses of less maintainability issues in production code.
Furthermore, we found that most developers prefer to review
production code as they deem it more important and tests should
follow from it. Moreover, widespread poor test code quality and
no tool support hinder the adoption of TDR.

I. INTRODUCTION

Peer code review is a well-established and widely adopted
practice aimed at maintaining and promoting software qual-
ity [3]. Contemporary code review, also known as Change-
based Code Review [6] or Modern Code Review (MCR) [12],
is a lightweight process that is (1) informal, (2) tool-based,
(3) asynchronous, and (4) focused on inspecting new proposed
code changes rather than the whole codebase [43]. Specifically,
in a code review, developers other than the code change
author manually inspect the patch to find as many issues
as possible and provide feedbacks that need to be addressed
before accepting the code in production [6].

The academic research community is conducting empirical
studies to better understand the code review process [44], [43],
[3], [26], [45], as well as to obtain empirical evidence on
aspects and practices that are related to more efficient and
effective reviews [51], [34].

A code review practice that has only been touched upon
in academic literature [49], but has been described in gray
literature almost ten years ago [58] is that of test-driven
code review (TDR, henceforth). By following TDR, a reviewer
inspects a patch by examining the changed test code before
the changed production code.

To motivate TDR, P. Zembrod—Senior Software Engineer
in Test at Google—explained in the Google Blog [58]: “When
I look at new code or a code change, I ask: What is this about?
What is it supposed to do? Questions that tests often have a
good answer for. They expose interfaces and state use cases”.
Among the comments, also S. Freeman—one of the ideators of

Mock objects [48] and TDD [9]—commented how he covered
similar ground [21]. Recently, in a popular online forum for
programmers, another article supported TDR (collecting more
than 1,200 likes): “By looking at the requirements and check-
ing them against the test cases, the developer can have a pretty
good understanding of what the implementation should be
like, what functionality it covers and if the developer omitted
any use cases.” Interviewed developers reported preferring to
review test code first to better understanding the code change
before looking for defects in production [49].

These above are compelling arguments in favor of TDR, yet
we have no systematic knowledge on this practice: whether
TDR is effective in finding defects during code review, how
frequently it is used, and what are its potential problems and
advantages beside review effectiveness. This knowledge can
provide insights for both practitioners and researchers. De-
velopers and project stakeholders can use empirical evidence
about TDR effects, problems, and advantages to make informed
decisions about when to adopt it. Researchers can focus their
attention on the novel aspects of TDR and challenges reviewers
face to inform future research.

In this paper, our goal is to obtain a deeper understanding
of TDR. We do this by conducting an empirical study set up
in two phases: An experiment, followed by an investigation of
developers’ practices and perceptions.

In the first phase, we study the effects of TDR in terms
of the proportion of defects and maintainability issues found
in a review. To this aim, we devise and analyze the results
of an online experiment in which 92 developers (77 with
at least two years of professional development experience)
complete 154 reviews, using TDR or two alternative strategies
(i.e., production first or only production); also, two external
developers rated the quality of their review comments. In
the second phase, we investigate problems, advantages, and
frequency of adoption of TDR – valuable aspects that could
not be investigated in the experiment. To this aim, we conduct
nine interviews with experiment participants and deploy an
online survey with 103 respondents.

Key findings of our study include: with TDR, the proportion
of functional defects (bugs henceforth) found in production
code and maintainability issues (issues henceforth) found
in test code does not change. However, TDR leads to the
discovery of more bugs in test code, at the expenses of less
issues found in production code. The external raters judged
the quality of the review comments as comparable across
all review strategies. Furthermore, most developers seem to



be reluctant to devote much attention to tests, as they deem
production code more important; moreover applying TDR is
problematic, due to widespread poor test quality (reducing
TDR’s applicability) and no tool support (not easing TDR).

II. RELATED WORK

To some extent, TDR can be considered as an evolution of
classical reading techniques [4], as it shares the general idea to
guide code inspectors with software artifacts (i.e., test cases)
and help them with the code review task.

Scenario-based inspections. Among reading techniques,
Porter & Votta [39] defined the scenario-based approach,
based on scenarios that provide inspectors with more specific
instructions than a typical checklist and focus on a wider
variety of defects. They discovered that such technique is
significantly more useful for requirements inspectors. Later
on, Porter et al. [40], [38] and Miller et al. [35] replicated
the original study confirming the results. Other studies by
Fusaro et al. [22] and Sandahl et al. [46] reported contra-
dictory results, however without providing explanations on
the circumstances leading scenario-based code inspection to
fail. An important advance in this field was then provided by
Basili et al. [5], who re-visited the original scenario-based
as a technique that needs to be specialized for the specific
issues to be analyzed. They also defined a new scenario-
based technique called perspective-based reading: The basic
idea is that different aspects of the source code should be
inspected by inspectors having different skills [5]. All in
all, the papers mentioned above provided evidence of the
usefulness of reading techniques; their similarities with TDR,
give an interesting rationale on why TDR could bring benefits.

Ordering of code changes. Research on the ordering of code
changes is also related to TDR. In particular, Baum et al.
argued that an optimal ordering of code changes would help
reviewers by reducing the cognitive load and improving the
alignment with their cognitive processes [8], even though they
made no explicit reference to ordering tests. This may give
theoretical value to the TDR practice. Code ordering and its
relation to understanding, yet without explicit reference to tests
or reviews, has also been the subject of studies [24], [10].

Reviewing test code. Many articles on classical inspection
(e.g., [31], [56]) underline the importance of reviewing tests;
however, they do not leave any specific recommendation. The
benefits of reviewing tests are also highlighted in two case
studies [32], [37]. Already in Fagan’s seminal paper [15],
the inspection of tests is discussed, in this case noting fewer
benefits compared to the inspection of production code. Win-
kler et al. [57] performed an experiment on writing tests
during inspection and found neither large gains nor losses
in efficiency and effectiveness. Elberzhager et al. [14], [13]
proposed to use results from code reviews to focus testing
efforts. To our knowledge, in academic literature TDR has been
explicitly referred to only by Spadini et al. [49]. In a more
general investigation on how test files are reviewed, the authors
reported that some practitioners indeed prefer to review test

code first as to get a better understanding of a code change
before looking for defects in production code. Our work builds
upon the research on reviewing test code, by investigating
how reviewing test code can(not) be beneficial for the whole
reviewing process.

III. METHODOLOGY

In this section we describe the research questions and the
methodology we follow to conduct our study.

A. Research Questions

The overall goal of this paper is to obtain a deeper under-
standing of Test-Driven Code Review. This study has two parts
that we structure in two research questions. In the first part, we
start by designing and running an experiment to investigate the
effects of TDR on code review effectiveness. We measure the
effectiveness as the ability to find bugs and maintainability
issues during a code review (i.e., the main reported goal of
code review [3]). This allows us to establish whether it is
possible to empirically measure any significant difference in
this aspect using TDR. Hence, our first research question:

RQ1. Does the order of presenting test code to the
reviewer influence code review effectiveness?

In the second part of the study, we investigate the promi-
nence of TDR and the developers’ perception toward this
practice, also focusing on problems and advantages that could
be measured through the aforementioned experiment. Our aim
is to obtain a more complete view on TDR. To do so, we
turn to the developers, conducting semi-structured interviews
and deploying an online survey. Hence, our second research
question:

RQ2. How do developers perceive the practice of Test-
Driven Code Review?

B. Method – RQ1: Design Overview

Figure 1 depicts an overview of the overall flow of our
experiment. We follow a partially counter-balanced repeated
measures design [17], augmented with some additional phases.

1) We use a browser-based tool to conduct the experiment
and answer RQ1. The tool allows to (i) visualize and perform
code reviews, and (ii) collect data from demographic-like ques-
tions and the interactions that participants have with the tool.
The welcome page provides information on the experiment to
perform and requires informed consent.

2) After the welcome page, an interface is shown to collect
demographics as well as information about some confounding
factors such as: (i) the main role of the participant in software
development, (ii) Java programming experience, (iii) current
practice in programming and reviewing, and (iv) the hours
already worked in the day of the experiment to approximate
the current mental freshness. These questions are asked with
the aim of measuring real, relevant, and recent experience of
participants, as recommended by previous work [16]. Once
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Figure 1. Experiment steps, flow, and participation

filled in this information, the participant receives more details
on the reviews to be performed.

3) Each participant is then asked to perform two reviews
(the first is mandatory, the second is optional), randomly
selected from the following three treatments1 that correspond
to the TDR practice and its two opposite strategies:
• TF (test-first) – The participant must review the changes

in both test code and production code, and is shown the
changed test code first.

• PF (production-first) – The participant must review both
production and test, and is shown the production code first.

• OP (only-production) – The participant is shown and must
review only the changes to the production code.
For the treatments TF and PF, the tool shows a ‘Toggle

Shown Code’ button that allows the participant to see and
review the other part of the change (e.g., the production code
change if the treatment is TF). We do not limit the number
of times the ‘Toggle Shown Code’ button can be clicked, thus
allowing the participant to go back and forth from the test to
the production code as desired. The participant can annotate

1Our choice of proposing two of the three treatments is driven by our
willingness of keeping the experiment as short as possible to stimulate a high
response rate, as also recommended by Flanigan et al. [18]; nevertheless,
this does not influence our observations as the random selection guarantees a
balance in the answers among all treatments (see Table IV), thus allowing us
to effectively study their effects on code review performance and quality.

Figure 2. Example of the review view in the browser-based experiment UI,
showing the code change. In this case, the treatment is PF, thus to see the
test code, the participant must click on the ‘Toggle Shown Code’ button.

review remarks directly from the GUI of our tool.
4) Before submitting the experiment, we ask to the partic-

ipants if they would like to be further contacted for a semi-
structured interview; if so, they fill in a text field with their
email address. Further comments/impressions on the study can
be reported using a text block.

C. Method – RQ1: Browser-Based Experiment Platform

As previously mentioned, we adapt and use a browser-
based experiment platform to run the experiment. This has
two main advantages: On the one hand, participants can
conveniently perform code reviews; on the other hand, the
tool assists us when gathering data from the demographic
questions, conducting the different treatments, and collecting
information for the analysis of co-factors. To reduce the risk
of data loss and corruption, almost no data processing is done
on the server: instead, participants’ data is recorded as log
records and analyzed offline.

The tool implements a GUI similar to other browser-based
code review tools (e.g., GITHUB pull requests): It presents a
code change in form of two-pane diffs. An example of the
GUI implemented is reported in Figure 2: Review remarks
can be added and changed by clicking on the margin beneath
the code. The tool logs a number of user interactions, such as
mouse clicks and pressed keys, which we use to ensure that
the participants are actively performing the tasks.

D. Method – RQ1: Objects

The objects of the study are represented by the code changes
(or patch, for brevity) to review, which need to be properly



selected and eventually modified to have a sufficient number
of defects to be discovered by participants.

Patches. To avoid giving some developers an advantage, we
use a code base that is not known to all the participants of
the experiment. This increases the difficulty of performing
the reviews. To keep the task manageable, we ensure that
(i) the functional domain and requirements are well-known
to the participants and (ii) there is little reliance on special
technologies or libraries. To satisfy these goals, we select an
open-source project, NAME BLINDED:2 The project consists
of 42 production classes (≈2k LOC) as well as 13 test classes
(≈600 LOC), it received 103 pull requests in his history, and
has a total of 17 contributors.

To select suitable patches, we screen the commits of the
project and manually select changes that (1) are self-contained,
(2) involve both test and production code, (3) are neither too
complicated nor too trivial, and (4) have a minimum quality,
e.g., not containing dubious changes.

The selected patches are those of commits BLINDED and
BLINDED. In the first one, a new feature is added along with
the tests that cover it. In the second one, a refactoring in the
production code is applied and a new test is added.

Seeding of bugs and maintainability issues. Code review is
employed by many software development teams to reach dif-
ferent goals, but mainly (1) detecting bugs (functional defects)
and (2) improving code quality (e.g., finding maintainability
issues), (3) spreading knowledge [7], [33], [51], [3].

Since the online experiment is done by single developers,
we measure code review effectiveness by considering only
the first two points, detecting bugs (functional defects) and
maintainability issues. We seed more bugs and maintainability
issues. Examples of injected bugs are a wrong copy-paste
and wrong boundary checking. For maintainability issues, we
mainly mean “smells that do not fail the tests” [19], e.g.,
a function that does more than what it was supposed to do,
wrong documentation or variable naming. At the end, the two
patches contain a total of 4 bugs and 2 issues (Patch 1) and 5
bugs and 3 issues (Patch 2).

E. Method – RQ1: Variables and analysis

We investigate whether the proportion of defects found in
a review is influenced by the review being done under a TF,
PF, or OP treatment, controlling for other characteristics.

The first author of this paper manually analyzed all the
remarks added by the participants. Our tool explicitly asked
and continuously highlighted to the participants that the main
goal is to find both bugs and maintanability issues; therefore,
each participant’s remark is classified as identifying either a
bug or an issue, or as being outside of the study’s scope. A

2Due to double blind restrictions, we cannot reveal the project’s name.
However, to support the review of our paper, we include an anonymized
snapshot of the system in our replication package, also including the patches
selected for the experiment and the seeded defects [1].

Table I
VARIABLES USED IN THE STATISTICAL MODEL

Metric Description
Dependent Variables

ProdBugsProp Proportion of functional defects
found in the production code

ProdMaintIssuesProp Proportion of maintainability issues
found in the production code

TestBugsProp Proportion of functional defects
found in the test code

TestMaintIssuesProp Proportion of maintainability issues
found in the test code

Independent Variable
Treatment Type of the treatment (TF, PF, or OP)

Control Variables
Review Details
TotalDuration Time spent in reviewing the code

IsFirstReview Boolean representing whether the
review is the first or the second

Patch Patch 1 or 2
Profile
Role Role(†) of the participant
ReviewPractice How often(†) they perform code review
ProgramPractice How often(†) they program

ProfDevExp Years of experience(†)
as professional developer

JavaExp Years of experience(†) in Java

WorkedHours Hours the participant worked before
performing the experiment

(†) see Table III for the scale

remark is counted only if in the right position and correctly
pinpointing the problem.3

By employing values at defect level, we could compute the
dependent variables at review level, namely proportions given
by the ratio between the number of defects found and the total
number of defects in the code (dependent vars in Table I). The
dependent variables are then given by the average of nj binary
variables yi, assuming a value 1 if the defect is found and 0
if not, where nj is the total number of defects present in the
change j, so that the proportion πj results from nj independent
events of defect finding and yj are binary variables that can
be modeled through a logistic regression.

πj =

nj∑
1

yj
nj

(1)

The main independent variable of our experiment is the
review strategy (or treatment). We consider the other variables
as control variables, which include the time spent on the
review, the review and programming practice, the participant’s
role, the reviewed patch (i.e., P1 or P2), and whether the
review is the first or the second being performed. In fact,
previous research suggest the presence of a trade-off between
speed and quality in code reviews [25]; following this line, we

3To validate this coding process, a second author independently re-coded
the remarks and compared his classification with the original one. In case of
disagreements, the two authors opened a discussion and reached a consensus.
We compute the Cohen’s kappa coefficient [11] to measure the inter-rater
agreement between the two authors before discussion: we find it to reach 0.9,
considerably higher than the recommended threshold of 0.7 [11]. The detailed
coding of all review remarks can be found in our online appendix [1].



expect longer reviews to find more defects; to check this, we
do not fix any time for review, allowing participants to perform
the task as long as needed. Moreover, it is reasonable to
assume that participants who perform reviews more frequently
to also find a higher share of defects.

We run logistic regressions of proportions, where Logit(πj)
represents the explained proportion of found defects in review
j, β0 represents the log odds of being a defect found for
a review adopting PF (or OP) and of mean TotalDuration,
IsFirstReview, etc., while parameters β1 · Treatmentj , β2 ·
TotalDurationj , β3 · IsF irstReviewj , β4 · Patchj , etc.
represent the differentials in the log odds of being a defect
found for a change reviewed with TF, for a review with char-
acteristics TotalDurationj−mean, IsF irstReviewj−mean,
Patchj−mean, etc..

Logit(πj) = β0 + β1 · Treatmentj + β2 · TotalDurationj+
+β3 · IsF irstReviewj + β4 · Patchj+
+...(other vars and β omitted)

(2)

F. Method – RQ2: Data Collection And Analysis

While through the experiment we are able to collect data on
the effectiveness of TDR, the perception of the developers on
the prevalence of TDR as well as the motivations for applying
it or not cannot be collected. Hence, to answer RQ2, we
proceed with two parallel analyses: We (i) perform semi-
structured interviews with participants of the experiment who
are available to further discuss on TDR and (ii) run an online
survey with the aim of receiving opinions from the broader
audience of developers external to the experiment.

Semi-structured interviews. We design an interview whose
goal is to collect developers’ points of view on TDR. They
are conducted by the first author of this paper and are semi-
structured, a form of interview often used in exploratory
investigations to understand phenomena and seek new insights
on the problem of interest [55].

Each interview starts with general questions about code
reviews, with the aim of understanding why the interviewee
performs code reviews, whether they consider it an important
practice, and how they perform them. Then, we ask partic-
ipants what are the main steps they take when reviewing,
starting from reading the commit message to the final decision
of merging/rejecting a patch, focusing especially on the order
of reviewing files. Up to this point, the interviewees are not
aware of the main goal of the experiment they participated
in and our study: We do not reveal them to mitigate biases
in their responses. After these general questions, we reveal
the goal of the experiment and we ask their personal opinions
regarding TDR. The interview protocol is available [1].

During each interview, the researcher summarizes the an-
swers and, before finalizing the meeting, these summaries are
presented to the interviewee to validate our interpretation of
their opinions. We conduct all interviews via SKYPE. With
the participants’ consent, the interviews are recorded and
transcribed for analysis. We analyze the interviews by initially
assigning codes [28] to all relevant pieces of information, then

group these codes into higher-level themes, which we discuss
in our results (Section V).

Table II
INTERVIEWEES’ EXPERIENCE (IN YEARS) AND WORKING CONTEXT

ID Developer Reviewer Working context Applying TDR
P1 8 8 OSS Almost never
P2 3 3 Company A Almost Always
P3 15 15 Company A Almost Always
P4 10 10 Company B Almost Never
P5 10 5 Company C Always
P6 3 2 Company D Sometimes
P7 16 16 Company E Always
P8 4 4 Company F / OSS Sometimes
P9 3 3 Company G / OSS Never

Overall, we conduct nine interviews (each one 20/30 min-
utes long); Table II summarizes the demographical information
about the participants.

Online survey. We create an anonymous online survey (requir-
ing approximately 4 minutes to be filled out), organized into
two sections. In the first one, we ask demographic information
of the participants, including gender, programming/reviewing
experience, policies regarding code reviews in their team (e.g.,
if all changes are subject of review or just a part of them),
and whether they actually review test files (the respondents
who answer “no” are disqualified). In the second section,
we ask (i) how often they start reviewing from tests and
how often from production files and (ii) request them to fill
out a text box explaining the reasons why they start from
test/production files. The questionnaire is created using a
professional tool named SURVEYGIZMO4 and is spread out
through practitioners blogs (e.g., REDDIT) and through direct
contacts in the professional network of the study authors, as
well as the authors’ social media accounts on Twitter and
Facebook. As a result, we collect 103 valid answers, which are
used to complement the semi-structured interviews. Among
the respondents, 5% have one year or less of development
experience, 44% have between 2 to 5 years, 28% between 6
and 10 years, and 23% more than 10 years.

IV. RESULTS – RQ1: ON THE EFFECTS OF TDR

We present the results of the experiment we run to measure
the effects of TDR on finding defects during a code review.

A. Collected data, filtering, and considered cases

A total of 232 people accessed our experiment enviroment
following the provided link. From their reviews (if any), we
exclude all the instances in which the code change is skipped
or skimmed, by demanding either at least one entered remark
or more than 5 minutes spent on the review. We also remove an
outlier review that lasted more than 4 standard deviations from
the mean review time, without entering any comments. After
applying the exclusion criteria, a total of 92 participants re-
mained for the subsequent analyses. Table III presents what the
participants reported in terms of role, experience, and practice.

4https://www.surveygizmo.com



Table III
PARTICIPANTS’ CHARACTERISTICS – DESCRIPTIVE STATISTICS - N. 92

Dev Student Researcher Architect Analyst Other
Current
role 61% (56) 16% (15) 12% (11) 5% (5) 3% (3) 2% (2)

Experience
(years) with None <= 1 2 3-5 6-10 >10

- Java prog. 13% (12) 5% (5) 7% (6) 21% (19) 34% (31) 21% (19)
- Profess. dev. 5% (5) 11% (10) 13% (12) 18% (17) 28% (26) 24% (22)
Current
frequency of Never Yearly Monthly Weekly Daily

- Programming 0% (0) 0% (0) 3% (3) 17% (16) 79% (73)
- Reviewing 15% (14) 7% (6) 16% (15) 22% (20) 40% (37)

Table IV
DISTRIBUTION OF PARTICIPANTS’ REVIEWS ACROSS TREATMENTS

TF PF OP total
Patch1 31 32 29 92
Patch2 28 29 34 91

total 59 60 63

Only 5 of the participants reported to have no experience in
professional software development; most program daily (79%)
and review code at least weekly (62%). Table IV shows how
the participants’ reviews are distributed across the considered
treatments and by reviewed patch. Despite some participants
completed only one review and the aforementioned exclusions,
the automated assignment algorithm allowed us to obtain a
rather balanced number of reviews per treatment and by patch.

B. Experiment results

Table V shows the average values achieved by the reviews
for the dependent variables (e.g., ‘ProdBugsProp’) and the
average review time, by treatment. The most evident differ-
ences between the treatments are in: (d1) the proportion of
maintainability issues found in production code (PF and OP
have an average of .21 and .18, respectively, while TF of 0.08),
and (d2) the proportion of bugs found in test code (TF has
an average of 0.40, while PF of 0.17). Indeed, running the
Wilcoxon Signed Rank Test [29] (which is a non-parametric
test that makes no assumptions on the underlying data dis-
tribution) we find that these two differences are statistically
significant (p < 0.01) and the effect size (Cliff’s delta) is
medium (d1) and small (d2). On the contrary, all the other
differences are not statistically significant (the minimum p is
higher than 0.38). In other words, we find initial evidence
that PF and OP may provide a significant gain in detecting
maintainability issues within the production code (i.e., the
first code that is shown), when compared to TF. At the same
time, the average proportion of defects found in test code
is significantly higher for the reviews done with TF, when
compared to PF (the OP treatment cannot be compared because
it did involve any test code). We do not find any statistically
significant difference in the other outcomes (i.e., proportion
of defects in production and proportion of maintainability
issues in test). Also, we do not find any significant difference
in the time taken for reviews with TF vs. those with PF:
Reviewers consume nearly the same amount of time in both the

Table V
AVERAGE PROPORTION OF BUGS AND ISSUES FOUND, BY TREATMENT,
AND REVIEW TIME. COLORED COLUMNS INDICATE A STATISTICALLY

SIGNIFICANT DIFFERENCE BETWEEN THE TREATMENTS (p < 0.01), WITH
THE COLOR INTENSITY INDICATING THE DIRECTION.

Proportion of found
production test

bugs maintIssues bugs maintIssues
Time

TF 0.28 0.08 0.40 0.18 7m11s
PF 0.33 0.21 0.17 0.13 6m27s
OP 0.28 0.18 5m29s

Table VI
REGRESSIONS FOR ‘PRODMAINTISSUESPROP’ AND ‘TESTBUGSPROP’

TestBugsProp ProdMaintIssuesProp
Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -0.7314 1.9242 -0.0471 1.2191
TotalDuration 0.1664 0.0618 ** 0.0462 0.0259 .
IsFirstReview ‘TRUE’ -0.9213 0.5344 . -0.1554 0.2241
Patch ‘P2’ 1.9296 0.5688 *** -2.8474 0.4579 ***
Treatment ‘PF’ 0.0975 0.2386
Treatment ‘TF’ 1.1792 0.4639 ** -1.2468 0.3908 **
ReviewPractice 0.0675 0.2082 0.2598 0.1389 .
ProgramPractice -0.6608 0.4685 -0.2180 0.2938
ProfDevExp -0.0982 0.1951 -0.2953 0.1211 *
JavaExp -0.0182 0.1512 0.0366 0.0631
WorkedHours -0.0225 0.0817 0.0403 0.0405
... (†)

significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1
(†) Role is not significant and omitted for space reason

cases.5 Overall, the comparison of the averages highlights that,
within the same time, developers who started reviewing from
tests (TF) spot a similar number of bugs in production, while
discovering more defects in the tests but fewer maintainability
issues in the production code. Thus, there seems to be a
compromise between reviewing test or production code first
when considering defects and maintainability issues.

With regression modeling, we investigate whether these
differences are confirmed when taking into account the char-
acteristics of participants and reviews (variables in Table I).
In Section VI we describe the steps we take to verify that the
selected regression model is appropriate for the available data.

We build the four models corresponding to the four depen-
dent variables, independently. Confirming the results shown in
Table V, the treatment is statistically significant exclusively for
the models with ‘ProdMaintIssuesProp’ and ‘TestBugsProp’ as
dependent variables; Table VI reports the results.6 We observe
that—also considering the other factors—TF is confirmed a
statistical significant variable in both ‘ProdMaintIssuesProp’
and ‘TestBugsProp’, with negative and positive directions,
respectively. To calculate the odds of being a maintainability
issue found in a review with TF compared to the baseline
OP, we exponentiate the differential logit, thus: exp(−1.25) =
0.29, which means 71% less chances to find the issue in case
of TF than OP (or PF). Instead, the odds of being a test bug
found in a review with TF is 3.49, thus almost 250% more
chances to find the test bug than with PF. Also, we see that

5OP’s time is only reported for description and is not comparable to the
other treatments as only production code is reviewed in this treatment.

6For space reasons, we omit the other two models, in which no variable is
significant, but these models are available in our online appendix [1].



the specific patch under review has a very strong significance
for both models, thus confirming that differences in the code
are an essential factor in the final outcome. The review time
plays a significant role for ‘TestBugsProp’ and (to a lesser
degree) for ‘ProdMaintIssuesProp’, in the expected direction.
Unexpectedly, the professional experience plays a negative role
for ‘ProdMaintIssuesProp’; we hypothesize that professionals
focus more on functional defects than maintainability issues.

Finding 1. In reviews in which tests are presented first,
participants found significantly more bugs in test code,
yet significantly fewer maintainability issues in produc-
tion code. The production bugs and test maintainability
issues found is stable across the treatments.

C. Assessing code review quality

After having found differences in bugs/issues found with
TF, we check whether the different treatments (TF, PF, OP)
have an influence on the quality of the review: to this aim
two external validators manually classify each review, rating
each comment. These validators have more than 5 years of
industrial experience in code review and have collaborated in
many open-source projects. We request them to go through
each of the code reviews done by the developers involved
in the experiment and rate each comment aimed at fixing a
defect or maintainability issue in the production or test code
using a Likert scale ranging between ‘1’ (very poor comment)
and ‘5’ (very useful comment) 7. They also give a score to
each comment that is outside the scope (i.e., a comment that
does not fix any of our manually injected defects), plus a
final overall score for the review. Each validator performs the
task independently and then their assessments is sent back
to the authors of this paper. The validators are unaware of
which treatment was used in each review. A set of 33 reviews
is classified by both authors, so that we can measure their
inter-rate agreement using Cohen’s kappa [11]. To mitigate the
personal variability of the raters, we cluster their ratings into
three categories: ‘below average review comment’, ‘average
review comment’ and ‘good review comment’. Then, we check
the raters’ agreement. The result shows that in all ratings
there is at least a substantial agreement between the validators:
production issues (κ = .69), test issues (κ = .78), production
bugs (κ = 1), test bugs (κ = .77).

To measure the influence of a treatment on the review
quality we apply the ANOVA test on the independent variables
score (e.g., productivity issues) and the dependent variable
treatment. As a result, we find that for no score the
independent variable is a significant factor (productivity issues
p=.62; test issues p=.30; productivity bugs p=.25; test bugs
p=.37); thus, we conclude that raters do not see a difference
in the quality of the reviews for different treatments.

7We chose a 5-Points Likert scale because it is rather not probable that
raters can agree on a more fine-grained scale

Finding 2. There is no statistically significant differ-
ence between the quality of the reviews made under the
three considered treatments, according to two external
raters blinded to the underlying treatments.

V. RESULTS – RQ2: ON THE PERCEPTION OF TDR

In RQ1 we presented an investigation on the effectiveness of
TDR. However, the developers’ perception on the practice, the
motivations to apply it, and the frequency of adoption cannot
be investigated by means of an online experiment. For this rea-
son, we discuss with some of the participants of the experiment
what they perceive as advantages and disadvantages of TDR.
We also survey 103 developers to enrich the data collection
with people that do not participate in the experiment and can
provide a complementary view on TDR. In this section, we
report the answers obtained during our interviews and surveys.
We summarize them in topics, covering both advantages and
disadvantages of this practice. We refer to the interviewees by
their ID shown in Table II.

A. Adoption of TDR in practice

When analyzing the survey data, 5% (5) of the respondents
indicated that they always start from test code, 13% (13)
almost always, 42% (43) occasionally/sometimes, 27% (28)
almost never, and 13% (13) never. Thus, the majority of the
respondents indicate that they occasionally apply TDR. This
gives even more importance to this investigation, since there
is not empirical knowledge on why developers do it, and what
are the main advantages/disadvantages of this practice.

B. Perceived problems with TDR

When analyzing data coming from surveys and interviews,
we discover a set of blocking points for the adoption of TDR.
They can be grouped around four main themes, i.e., perceived
importance of tests, knowledge gained by starting reviewing
from tests, test code quality, and code review tool ordering,
that we further discuss in the following. Themes are discussed
based on the frequency of appearance in the survey.

Tests are perceived as less important. From the comments
left by the participants of the survey, it seems clear that test
code is considered much less important than production code
and that, as stated by one participant, they “want to see the
real change first”. This strong opinion is confirmed by other
15 participants;8 for example, a participant explains that s/he
starts “looking at production files in order to understand what
is being changed about the behavior of the system. [S/he]
views tests as checks that the system is behaving correctly so it
does not seem possible to evaluate the quality of the tests until
I have a clear understanding of the behavior”. While the semi-
structured interviews confirmed this general perception around
tests, they also add a more practical point to the discussion:

8It should be noted that in the survey we gave the possibility to leave open
comments; having 15 or more participants agreeing on exactly the same theme
indicates an important trend.



P1,2−5,7 state that they need to prioritize tasks because of time,
and often higher priority is given to the production code.

A closely related factor contributing to this aspect is the
tiredness associated with reviewing code for a long time. As
reported by one of the survey participants, “the longer you
are reviewing the more sloppy you get [...]. I would rather
have a carefully reviewed production file with sloppy test than
vice versa”. In other words, when performing multiple code
review at once, developers often prefer to pay more attention
to the production code than test files.

13 participants also report that is the production code to
drive tests rather than the opposite. A clear example of this
concept is enclosed in the following participant’s quote: “To
me, tests are about checking that a piece of software is
behaving correctly, so it doesn’t make sense to me to try to
understand if the tests are testing the right conditions if I do
not understand what the code is supposed to do first.” Finally,
another aspect influencing the perception that developers have
of tests is lack of testing experience. One of the participants
affirms that “not everyone in my team has lots of experience
with testing, so usually just looking at the production code will
tell me if there will be problems with the tests.” Thus, having
poor experience in testing practice might bias the perception
of the advantages given by tests in the context of code review.

Tests give less knowledge on the production behavior.
Both interviewees and survey respondents report that the main
advantage of starting with production code is that they can
immediately see the feature and how it is changed, and only
later they will check if it is properly tested. For example,
a survey respondent says: “I want to understand what the
production code does, form my own opinion of what should
be tested, and then look at the tests afterward.” From the
interviews, P9 also adds that it is hard to capture all the
possible behaviors with tests, while looking to production code
first helps him/her figuring out the failure modes before seeing
what the tests the developer proposed are.

Nevertheless, an interesting trend emerges from our results.
Despite most developers claim that tests cannot give enough
knowledge to review a change, six of them declare that the
decision of start reviewing from test code basically depends
on the degree of knowledge they have of the production code
under test. As explained by a survey participant, “If I am
familiar with the topic and the code, I will start with the
production files. Otherwise I will choose the test files”. In
other words, tests only seem to be useful in time of need, i.e.,
when a developer does not have any other instrument to figure
out the context of the proposed code change.

Tests have low code quality. 4 participants mention poor test
code quality as a reason to not apply TDR in practice. The use
of tests in a code review clearly has the prerequisite that such
tests can properly exercise the behavior of the production code.
One of the participants, when explaining why s/he prefers
starting from production code, reports that “sometimes the
tests are bad and it is easier to understand how the code
behave by looking at the feature code”. This is also confirmed

by the semi-structured interviews: the main obstacle when
reviewing tests first is the assumption that the test code is
well written [P1−3,5,6,9]. Both P1 and P9 said that most of
the times they prefer to start from production because they
assume developers do not write good tests. P1 says “Usually,
I start from production and maybe the reason is that many
of the projects where I worked do not have that many tests”.
Even if the tests are present, sometimes reviewers find them
difficult to understand: According to P6, “. . . the test needs
to be written in a clear way to actually understand what’s
going on.” The solution to this problem—according to our
interviewees—is to impose test rules, e.g., all the changes to
the production code should be accompanied by tests [P2,3,5].
P5 says that “if [tests] are not good, I will ask to modify them.
If they are not even present, I will ask to add them and only
after I will review the patch”. change in their IDE and run the
tests before start reviewing.
Code review tool ordering. The final disadvantage is related
to a practical problem: current code review tools present code
changes following an alphabetic order, meaning that most of
the times developers review following such order. This is
highlighted by 15 survey participants and confirmed by the
interviewees. For example, P3 says: “If there is a front-end, we
do not have integration tests for all the features, so sometimes
I do manual test. In this case I would stick with the order of
GitLab. I think GitLab present tests later than production, so
I generally start from that”. Interestingly, this point came up
also from 35% of the survey respondents who do not apply
TDR, that indicated they start from production code because
they simply follow the order given by the code review tool.
According to interviewees P3 and P4, they follow the order of
GitHub because in this way they are sure to have reviewed all
the files in the patch, while going back and forth from file to
file may result in skipping some files.

Finding 3. Perceived problems with TDR: Developers
report to (1) consider tests as less important than pro-
duction, (2) not being able to extract enough knowledge
from tests, (3) not being able to start a review from tests
of poor quality, and (4) being comfortably used to read
the patch as presented by their code review tool.

C. Perceived advantages of TDR

We identify two main themes representing the major per-
ceived advantages of adopting TDR, i.e., the coincise, high-
level overview tests give on the functionalities of production
code and the ability of naturally improving test code quality.
We discuss those aspects based on the frequency in the survey.
TDR provides a black-box view of production code. 18
of the respondents explain that the main advantage they
envision from the application of TDR is the ability of tests
to provide a coincise, high-level overview of the functional-
ities implemented in the production code. In particular, one
participant reports: “If I read the test first without looking



at the production implementation, I can be sure that the
test describes the interface clearly enough that it can serve
as documentation.” Moreover, developers appreciate that few
lines of test code allows them to contextualize the change.
Most interviewees agreed that starting reviewing tests allows
them to understand better the code change context [P2−8]. P3

says: “I think starting from tests helps you in understanding
the context first, the design, the “what are we building here?”
before actually looking at “how they implemented it”. The
common feeling between the interviewees is that tests better
explain what the code is supposed to do, while the production
code shows how the developer implemented it [P1−4,6,7]. P1

says: “When you are reviewing complex algorithms it is nice to
immediately see what type of outputs it produces in response to
specific types of input.” P2 adds that it is easier to understand
what the developer implemented, because through the tests a
reviewer can easily see what the code is supposed to return
given a specific input, and this is not always clear looking at
the production code.

TDR improves test code quality. Three of the survey par-
ticipants explicitly report that tests must be of good quality
and a practice like TDR would enable a continuous test code
quality improvement; as one put it: “Tests are often the best
documentation for how the production code is expected to
function. Getting tests right first also contributes to good TDD
practices and the architectural values that come with that”.
In other words, the developers report that, in situations where
reviewers inspect tests first, the improvement of test code
quality have to necessarily happen, otherwise reviewers could
not properly use tests as documentation to spot problems in
production code. As a natural consequence, TDR would also
enforce tests to be updated, thus producing overall benefits
to the system reliability. Furthermore, one participant reports
TDR to be efficient “because it captures and should capture
all the bugs”: even if we obtain this kind of feedback by a
small number of developers, it is still interesting to remark how
some of them perceive the potential benefits of TDR, which
we empirically found (RQ1), as being more effective in terms
of test bugs discovered—while spotting the same proportion
of production bugs. The semi-structured interviews confirm all
the aspects discussed so far. Most of the interviewees agreed
that TDR somehow helps reviewers to be more focused on
testing. According to P9: “I think it would encourage the
development of good tests, and I think better tests mean more
bugs captured. So yes, at the end you may capture more bugs”.
P6 and P8 also say that when reviewing the production code
the reviewer already knows what the code is tested for, so it
could be easier to catch not covered paths. For example, P3

refers to happy vs. bad paths: “starting from the tests you think
a little bit on the cases that apply, so for example if they only
test the happy path and not the bad path“.

Finding 4. Perceived problems with TDR: Developers
report that TDR (1) allows them to have a concise,
high-level overview of the code under test and (2) helps
them in being more testing-oriented, hence improving
the overall test code quality.

VI. THREATS TO VALIDITY

In this section we describe the threats to validity and
limitations to the results of our work, as posed by the research
methodology that we applied.

Construct validity Threats to construct validity concern our
research instruments. Many of the constructs we use are
defined in previous publications and we reuse existing in-
struments as much as possible: The tool employed for the
online experiment is based on a similar tool used in previous
work [1].

To avoid problems with the experimental materials, we
employed a multi-stage process: After tests among the authors,
we performed three pre-tests with one external participant
each; only afterward we started the release phase.

One of the central measures in our study is the number
of defects and maintainability issues found. The defects were
seeded by the first author, and later checked by the other
authors. Nevertheless, we cannot rule out implicit bias in
seeding the defects as well as in selecting the code changes.

We asked the participants to review test and production
code separately, using a “Toggle shown code” button to
switch between them. However, we cannot ensure that all the
participants used this button correctly (or used it at all). To
mitigate this, we analyzed the results mining only the shown
code (e.g., the second part of the review would not exist),
obtaining very similar results: Hence we can conclude that
this threat is not affecting the final results.

A major threat is that the artificial experiment created by us
could differ from a real world scenario. We mitigated this issue
in multiple ways: (1) we used real changes, (2) we reminded
the participant to reviewing the files as they would normally
do in their daily life, and (3) we used an interface very similar
to the common Code Review Tools GUIs.

Furthermore, to validate the reviews done by the partici-
pants, we involved two external validators. The only informa-
tion they had at their disposal when rating the reviews was the
patch and the comments of the participants, i.e., they did not
know what treatment it was, the duration of the review, and
all the other information we collected. Thus, the rate given
by the validators was based on their personal judge and past
experience in code review. To mitigate this issue, we involved
two validators that have strong experience in Java and in MCR:
one had worked for many years in a large Russian-based SE
company, and the other validator holds a PhD in SE and have
worked in many OSS.
Internal validity - Credibility Threats to internal validity con-
cern factors we did not consider that could affect the variables
and the relations being investigated. In an online setting, a



possible threat is the missing control over participants, which
is amplified by their full anonymity. To mitigate this threat, we
included questions to characterize our sample (e.g., experience,
role, screen size). To identify and exclude duplicate partic-
ipation, we logged hashes of participant’s local and remote
IP addresses and set cookies in the browser. Furthermore, to
exclude participants that did not take seriously the experiment,
we excluded experiments without any comments in the review,
and we did a manual classification of the comments to delete
the inappropriate ones.

We do not know the nature of the population that did
our experiment, hence it might suffer from a self-selection
bias. Indeed, it could be possible that the sample contains
better and more motivated reviewers than the population of
all software developers. However, we do not believe this
poses a major risk to the validity of our main findings since
we would expect stronger effects with a more representative
sample. Furthermore, as depicted in Table IV, the participants
experience is quite various, with a 30% lower then 2 years
and 50% with more than 6.

External validity - Transferability Threats to external va-
lidity concern the generalization of results. A sample of 93
professional software developers is quite large in comparison
to many experiments in software engineering [47]. However,
it is still small compared to the overall population of soft-
ware developers that employ MCR. We reduce this issue by
interviewing and collecting the opinions of other developers
that did not participate in the experiment and surveying 103
developers.

Statistical conclusion validity A failure to reach statistically
significant results is problematic because it can have multiple
causes, e.g., a non-existent or too small effect or a too small
sample size. Even though we reached a quite large sample of
participants, our sample is not large enough to detect small
effects for RQ1, hence we might not be able to reliable
calculate some statistics.

A major threat to our RQ1 results is to employ the wrong
statistical model. To ensure that the selected logistic regres-
sion model is appropriate for the available data, we first
(1) compute the Variance Inflation Factors (VIF) as a standard
test for multicollinearity, finding all the values to be below
1.5 (values should be below 10), thus indicating little or no
multicollinearity among the independent variables, (2) run a
multilevel regression model [42] to check whether there is
a significant variance among reviewers, but we found little
to none, thus indicating that a single level regression model
is appropriate, (3) ascertain the linearity (assumed by logistic
regression) of our independent continuous variable (the review
time) and log odds using the Box-Tidwell test [23], and
(4) build the models by adding the independent variables step-
by-step and found that the coefficients remained stable, thus
further indicating little to no interference among the variables.

Finally, in our statistical model we control for the type of
the patch, namely Patch 1 or 2. However, we do not control for
Product or Process metrics of the code (i.e., size, complexity,

churn, etc.): we control only for the patch as it encloses all the
characteristics that previous literature already demonstrated as
related to review effectiveness [33], [3].

VII. DISCUSSION AND IMPLICATIONS

Our findings provide two key observations to be further
discussed and that lead to implications for practitioners, edu-
cators, tool vendors, and research community.

Ordering of files within the code review. Interviewees and
survey respondents indicated that they often review the files as
presented by their own code review tool. While this process
has the advantage that at the end a reviewer is sure to have
reviewed all files, this order is not always the correct one:
for example, our experiment (RQ1) showed that looking first
at tests allows a reviewer to capture more test code bugs,
which have been shown to be extremely harmful for the overall
reliability of software systems [36], [50], [54]. At the same
time, TDR still allows to catch the same amount of bugs
in production code, thus being nearly equivalent to the case
of reviewing production files first. However, the drawback
consists of finding less issues in production.

We also found that developers decide on whether to start
reviewing from test or production based on different factors
such as familiarity with the code or type of modification
applied. This suggests that, to improve productivity and code
review performance, tool vendors might enable the option to
let developers decide on the code review ordering. At the
same time, the research community is called to the definition
of novel techniques that can exploit a set of metrics (e.g.,
change type or past modifications of the developer on the
code under review) to automatically recommend the order that
would allow the reviewer to be more effective: this would lead
to the definition of new adaptive mechanisms that take into
account developer-related factors to improve the reviewability
of source code [41].

Test code quality. On the other hand, the main enemy of
TDR seems to be the poor quality of test code [2], [53].
Many interviewees and survey respondents indicated this as
the main reasons to not apply TDR. If tests are badly written or
incomplete it becomes almost impossible (or even dangerous)
to start reviewing from test code, as it is harder to spot errors in
production code. If a possible solution consists of enforcing
the introduction of code of conducts that explicitly indicate
rules on how to review tests [52], our findings motivate and
encourage the steadily growing research area around test code
quality management and improvement [20], [27], [30].

At the same time, the development of a good team culture
in which test code is considered as important as production
code should be a must for educators. Indeed, as previous
work already pointed out [3], [33], [49], good reviewing
effectiveness is found mostly within teams that value the time
spent on code review; hence, practitioners should set aside
sufficient time for reviewing all the files present in the patch,
including test code.



VIII. CONCLUSION

We assessed (i) whether the order of presenting test or
production code to reviewers influences their code review
performance and (ii) the developers’ perception concerning
TDR, by performing an experiment with 92 developers, 9 semi-
structured interviews and a survey study with 103 participants.
We found that the proportion of production bugs and test
issues does not change, however TDR leads to the discovery of
more bugs in test code at the expenses of less issues found in
production code. Then, we discover that the application of TDR
can be problematic because of poor test quality, time pressure,
and no tool support. These findings represent the main inputs
for our future research agenda, which is focused on defining
novel techniques and tools to ease TDR in practice.
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