
Adoption, Support, and Challenges of
Infrastructure-as-Code: Insights from Industry

Michele Guerriero,1 Martin Garriga,2 Damian A. Tamburri,3 Fabio Palomba4
1Politecnico di Milano, Italy

2Jheronimus Academy of Data Science & Tilburg University, The Netherlands
3Jheronimus Academy of Data Science & Eindhoven University of Technology, The Netherlands

4University of Zurich, Switzerland
michele.guerriero@polimi.it, m.garriga@uvt.nl, d.a.tamburri@tue.nl, palomba@ifi.uzh.ch

Abstract—Infrastructure-as-code (IaC) is the DevOps tactic
of managing and provisioning infrastructure through machine-
readable definition files, rather than physical hardware config-
uration or interactive configuration tools. From a maintenance
and evolution perspective, the topic has piqued the interest of
practitioners and academics alike, given the relative scarcity of
supporting patterns, best practices, tools, and software engineer-
ing techniques. Using the data coming from 44 semi-structured
interviews in as many companies, in this paper we shed light
on the state of the practice in the adoption of IaC and the
key software engineering challenges in the field. Particularly,
we investigate (i) how practitioners adopt and develop IaC, (ii)
which support is currently available, i.e., the typically used
tools and their advantages/disadvantages, and (iii) what are
the practitioner’s needs when dealing with IaC development,
maintenance, and evolution. Our findings clearly highlight the
need for more research in the field: the support provided by
currently available tools is still limited, and developers feel the
need of novel techniques for testing and maintaining IaC code.

Index Terms—Infrastructure-as-Code; DevOps; Software
Maintenance & Evolution; Cloud Automation;

I. INTRODUCTION

The current information technology (IT) market is in-
creasingly focused towards the “need for speed": speed in
deployment, faster release-cycles, speed in recovery, and more.
This need is reflected in DevOps, a family of techniques which
shorten the software development cycle and also intermix
software development activities with IT operations [1], [2].
As part of the DevOps family of practices, infrastructure-
as-code (IaC) [3] promotes managing the knowledge and
experience inside reusable scripts of infrastructure code, instead
of traditionally reserving it for the manual-intensive labour of
system administrators which is typically slow, time-consuming,
effort-prone, and often even error-prone.

While IaC represents an ever increasing widely adopted
practice nowadays [2]–[4], little is known concerning how to
best maintain, speedily evolve, and continuously improve the
code behind the IaC strategy and yet it is picking up more
and more traction in most if not all domains of society and
industry: from Network-Function Virtualization (NFV) [5] to
Software-Defined Everything [6] and more [7].

This paper targets at addressing that gap with empirical
software engineering inquiry to aid and better focus the work
of practitioners and academicians in the area. We conduct 44

semi-structured interviews in as many companies to distill: (1)
how practitioners currently develop infrastructural code — that
is, the best/bad practices experienced by the practitioners as
IaC blueprints grow in size and maintenance costs [8], (2)
what is the automatic support available — that is, pros and
cons of using existing tools in practice, and (3) the challenges
reported by the practitioners via direct experience — that is,
the research and industrial avenues that practitioners perceive
as worthy of investigation in the near future.

Data on the above points reveals a number of results as well
as valuable avenues for further work. More specifically, our
data reveals that 8-10 tools constitute equally-used alternatives
in the DevOps IaC technical space, and they include Docker,
Ansible, Vagrant, Kubernetes, and more. Also, the practitioners
do not agree concerning the major pro’s on these tools and their
best usage are sparse while, on the con’s front, practitioners
identify testability, readability, consistency, and portability as
major technical challenges which still need much attention
from the state of the art and practice. Finally, although
several best practices emerged from practitioners’ insights (e.g.,
infrastructure programming to break fast, to speedily reveal
broken code), they differ in applicability per technology.

The impact of our findings is considerable. First, software
practitioners can use these to understand the best practices used
by their peers when developing infrastructural code as well as
the reported wrong design choices, thus possibly improving
or refining their practice. Second, academicians in the field
of software maintenance and evolution can better focus their
research efforts towards the needs of industrial practitioners
focusing on the evidence in this paper. Last but not least, for
the sake of replicability, we make available our entire dataset
such that others may replicate or further analyse our results
for the benefit of theory and practice alike.

Structure of the paper. The remaining of this paper is
structured as follows. Section II sets the background for our
study. In Section III we outline our research design, while
Section IV presents the results of our semi-structured interviews,
while Section V discusses our findings and the implications for
both industry and research. Section VI discusses the possible
threats affecting the validity of our results. Section VII outlines
related work on infrastructure code maintenance and evolution.



Finally, Section VIII concludes the paper.

II. BACKGROUND

The DevOps methodology is radically changing the way
software is designed and managed nowadays. DevOps entails
the adoption of a set of organizational and technical practices,
e.g. Continuous Integration (CI), Continuous Deployment
(CD), blending development and operation teams. The goal
is, essentially, to be able to survive as an organization in the
modern digital ecosystem and digital market, which demands
for fast and early releases, continuous software updates,
constant evolution of market needs, and adoption of scalable
technologies such as Cloud computing.

In this context, Infrastructure-as-Code (IaC) is the DevOps
practice of describing complex and (usually) Cloud-based
deployments by means of machine-readable code. The main
enabler for IaC has been the advent of Cloud computing,
which, thanks to virtualization technologies, for the first time
allowed the provisioning, configuration and management of
computational resources to be performed programmatically.

Subsequently, many different languages and corresponding
platforms have been developed, each of which deals with
a specific aspect of infrastructure management. From tools
able to provision and orchestrate virtual machines (Cloudify,
Terraform, etc.), to those doing a similar job with respect
to container technologies (Docker Swarm, Kubernetes), to
machine image management tools (Packer), to configuration
management tools (Chef, Ansible, Puppet, etc.). Just to give an
example, Listing 1 shows a piece of Kubernetes code, which
provisions and deploys a Couchbase database. We can notice
how we can configure various aspects such as the ports to be
opened on the host container, the container image to be used
or the desired number of replicas of the database.

Figure 1: An example of Kubernetes code.

a p i V e r s i o n : v1
k ind : R e p l i c a t i o n C o n t r o l l e r
m e t a d a t a :

name : couchbase−r c
l a b e l s :

name : couchbase−r c
c o n t e x t : i a c−example

spec :
r e p l i c a s : 1
t e m p l a t e :

m e t a d a t a :
name : couchbase−rc−pod
l a b e l s :

name : couchbase−rc−pod
c o n t e x t : i a c−example

spec :
c o n t a i n e r s :
− name : couchbase−rc−pod

image : devs / i a c−example : l a t e s t
p o r t s :
− c o n t a i n e r P o r t : 8091
− c o n t a i n e r P o r t : 8092
− c o n t a i n e r P o r t : 8093
− c o n t a i n e r P o r t : 11210

Currently, the landscape of IaC languages and tools is
jeopardized by the technology heterogeneity and by the huge
number of available solutions. On the one hand this is the

result of the great interest that IaC has raised. On the other
hand, it complicates the understanding and adoption of this
new technology. Shedding light on the IaC current adoption,
issues and challenges is thus fundamental towards bringing
IaC to maturity and ease its further development.

III. RESEARCH METHODOLOGY

The goal of the study is to empirically investigate the state-of-
the-practice in the development of infrastructural code, with the
purpose of eliciting the developer’s perspective when it turns to
(i) current development practices, (ii) pros and cons of available
tools, and (iii) challenges when developing infrastructural code.
The perspective is of both practitioners and researchers: the
former are interested in gaining a wider knowledge of how the
general population of developers develop infrastructural code,
while the latter are interested in assessing the limitations of the
current state-of-the-practice and sketch the developer’s needs
that have to be further addressed by the research community.

A. Research Questions

The specific research questions driving our investigation are
the following:

• RQ1. How do practitioners currently develop infrastruc-
tural code?

• RQ2. How do currently available tools support practi-
tioners when developing infrastructural code?

• RQ3. What are the challenges that practitioners face when
developing infrastructural code?

With the first research question (RQ1), we aim at under-
standing how practitioners develop infrastructural code in
terms of good and bad development practices they follow and
encounter, respectively. Then, in RQ2 we focus on the (semi-
)automatic support available for practitioners when developing
infrastructural code. Finally, with RQ3 we focus on the
main issues and challenges practitioners perceive during IaC
development.

Addressing these three specific angles, we aim at providing
a broad view of the state-of-the-practice and future challenges
that the research community should pursue to help practitioners
in the development of high-quality infrastructural code. In the
following sections, we describe methodological steps and data
analysis methods used to address our research questions.

B. Subjects of the Study

To address our RQs, we need to select subjects able to
provide us with an authoritative opinion with respect to IaC
practices, tools, and challenges. To this aim, the four authors
of this paper first internally discussed and selected a set of
candidate companies to involve in the study: this was done
by considering (1) the list of companies that, in the last five
years, have been granted with European projects related to
the development of IaC technologies (e.g., the DICE project1)
and (2) personal contacts of the authors. This step led to the
identification of 86 companies which are supposed to be active

1http://www.dice-h2020.eu



Table I: Schema of the semi-structured interviews conducted on IaC development practices, tools, and challenges.

Question ID Question
Background
Q1 How many years of working experience do you have in DevOps?
Q2 Do you actively develop Infrastructure-as-Code?
Q3 How many hours per week do you work on developing IaC?
Q4 Do you also develop standard (non-IaC) software?
Theme: IaC Development Practices
Q5 Describe the main differences between writing standard code and IaC.
Q6 Do you have anything you consider a bad practice in IaC development? Please specify.
Q7 Do you have any good practice to develop IaC? Please specify.
Theme: IaC Development Tooling

Q8 When you develop IaC, which specific software development tools do you use?
(e.g. IDEs, static analyzers, debuggers, testing frameworks, documentation frameworks, etc.)?

Q9 Which DevOps tool(s) are you experienced with?

Q10 For each tool you are experienced with, could you name some pros and cons in terms
of the programming language for writing IaC it provides?

Theme: IaC Development Challenges
Q11 Could you list from 2 to 5 common issues that you currently face when you develop IaC?
Q12 How much desirable are IaC-specific Integrated Development Environments (IDEs)?
Q13 How much desirable are IaC-specific Integrated testing frameworks?
Q14 How much desirable is IaC language standardization?
Q15 How much desirable are IaC-specific static analysis tools?
Q16 How much desirable are tools and methods to support IaC security and privacy related issues?

Q17 How much desirable is to have IaC support for heterogeneous infrastructures
(GPUs, FPGAs, Cloud, HPC)?

Q18 Could you mention any other challenge and future direction in the context of IaC development?

in the development of infrastructure code and, perhaps more
importantly, are medium to large. In the second place, we
sent a study participation invitation to the senior developers
of those companies, who were identified through the company
websites. We got response from 44 of them, who confirmed
their willingness to conduct a semi-structured interview on IaC
themes. In case they had no experience at all with infrastructural
code, we excluded and asked them to indicate another person
of the company who was willing to conduct the interview.

C. Gathering the Practitioner’s Perspective

To acquire knowledge on the state-of-the-practice in the
development of infrastructural code, we conducted semi-
structured interviews, a form of interactive discussion often
used in exploratory investigations to understand phenomena and
seek new insights [9]. The general structure of the interviews
is presented in Table I; as shown, after some background
questions aimed at characterizing the sample of practitioners
interviewed, we organized the semi-structured interview around
three main themes, one for each research question.

The first theme, i.e., ‘IaC Development Practices’, revolves
around the main differences observed by practitioners when
developing infrastructural code with respect to standard source
code and the best/bad practices they could recognize in IaC
development. Through this set of questions, we aimed at
shedding lights on the ways practitioners develop infrastructural
code as well as the key elements making IaC different from
standard code. With the second theme, i.e., ‘IaC Development
Tooling’, we instead focused on the tools currently available
for writing infrastructural code and their main advantages and
disadvantages from the practitioner’s perspective: this angle had

the goal of discovering potential limitations that tool vendors
and researchers could address in the future. Finally, the last
theme, i.e., ‘IaC Development Challenges’, is the one where
we aimed at extracting a set of issues and challenges in the
development of infrastructural code. As shown, we inquired
practitioners on a broad set of software maintenance and
evolution perspectives, ranging from language standardization
to testing- and security-related matters. All these aspects are
of interest for both tool vendors and researchers, called to
improve the automatic support provided to practitioners.

The 44 interviews were conducted by two authors of this
paper via SKYPE. They were all recorded and transcribed for
analysis, and took ≈1 hour per practitioner.

D. Data Analysis

Once concluded all the semi-structured interviews, we
analyzed the transcripts by means of content analysis [10].
Specifically, the four authors of the paper first independently
went through each transcript and assigned preliminary codes to
all relevant pieces of information. In a second step, they opened
a joint discussion where they discussed the codes assigned so
far and came up with a final set of pieces of information that
we discuss in the following section.

IV. ANALYSIS OF THE RESULTS

In this section, we analyze the results of our study. For the
sake of comprehensibility, the analysis that follows is structured
according to the structure of the semi-structured interviews
defined in Table I. In particular, Section IV-A presents the de-
mographic information of the practitioners involved. Following,
Section IV-B addresses RQ1: IaC Development Practices. Then,



Figure 2: Distribution of the IaC development experience of
interviewees (Q1).

Section IV-C addresses RQ2: IaC Tooling; and Section IV-D
discusses RQ3: IaC challenges and directions.

A. Background and Demographics

First, we asked questions regarding activity and experience in
developing IaC. Figure 2 reports the results for experience (Q1),
where 64.3% of industry practitioners have less than 5 years
of experience developing IaC, whilst only 14.3% have more
than 10 years of experience. This somehow confirms that IaC
is a relatively new trend, and practitioners are now acquiring
the required expertise to develop IaC. Regarding activity (Q2),
88.4% of practitioners actively develop IaC, which gives us
confidence on the answers given to subsequent questions, i.e.,
the majority of our interviewees are actual IaC developers.

We then wanted to understand whether IaC developers
are specialized personnel or actually common developers or
operators which, as part of their job, do write IaC (Q3) and
standard production code (Q4) alike. Figure 3 shows that 61.9%
of respondents spend less than 5 hours per week writing IaC,
which can be regarded as a quite small amount of time. Indeed,
assuming a developer works on average 40 hours per week,
less than 12.5% of its time is devoted to IaC development. On
the other hand, only 19% of respondents spend more than 20
hours per week in IaC development.

These results suggest IaC developers are pretty versatile,
as it turned out that 88.1% of respondents do also develop
standard code (Q4). This is also in line with the belief that
IaC is a DevOps practice; with DevOps engineers being highly
versatile workers which deal not only with infrastructures
and applications operations, but also with standard application
development as well, covering the entire application lifecycle.

B. RQ1: IaC Development Practices

When addressing RQ1, we firstly aimed at understanding
the particularities of writing IaC code with respect to standard
production code (Q5). Table II depicts the main differences
pointed out by interviewees, ordered by frequency. Interestingly,
IaC turns out to be, in general, declarative and Tree-alike vs.
the imperative and Graph-alike features of standard code. As
an example, one of our interviewees explained that:

“Product development is more akin to developing
a ’graph’ of modules while IaC is a tree of nodes”.

Figure 3: Distribution of the number of hours per week spent
developing IaC (Q2).

Table II: Differences between IaC code and standard code (Q5),
ordered by the number of mentions (#) among all answers.

Diff Description #

Impossible
Testing

The lack of standard practices for testing and proper
(maybe local) testing environments makes testing
painful

8

Declarative Standard programming is in terms of class, functions,
flow. With IaC the reasoning is declarative, i.e.,
express what is needed, not how to do it.

7

Graph vs.
Tree model

Production code is shaped as a graph of modules
whereas IaC code resembles a tree of nodes.

7

Impossible
Debugging

Similar to testing, the lack of standard practices and
the distributed nature makes debugging painful.

6

IaC
error-prone

The tools for code checking are more shallow for
IaC (e.g., lack of type-checking).

5

Longer
feedback
loop

The developer has to wait for the whole
infrastructure to be deployed in order to understand
the correctness of the IaC code.

3

Unmaintainable As the infrastructure evolves and the computer
resources changes, IaC code cannot cope with those
on a seamless way.

2

This substantially changes the way in which practitioners
approach and design IaC code and blueprints, and circumscribes
the practices and patterns that they can migrate from their
experience with standard code. The other differences mentioned
were mostly in the form of IaC disadvantages, mainly regarding
testing and debugging. As such, more discussion on this is
presented in Section IV-D.

Following, we collected what are perceived as bad practices
when developing IaC (question Q6). Table III summarizes the
answers for those bad practices that were mentioned more than
once in the answers. The most common one is hardcoding
which not only hinders maintainability (e.g., by not using
environment variables) but also can cause critical security
breaches, e.g., by embedding passwords, ssh keys or access
codes on the blueprints.

This was followed by too Polyglot IaC, which means
blueprints in various languages for the same environment.
This goes against understandability and maintainability of the
systems. For instance, one practitioner explained that:

“Code which is too polyglot is unreadable, sloppy
to deploy, often slow, and difficult to debug”.



Table III: Bad practices when Developing IaC (Q6) ordered
by number of mentions.

Bad-practice Description/Effects #

Hardcoding Hardcoding values on the script such as
credential or constants.

5

Too Polyglot Using many languages in interrelated node
definitions.

4

Blob blueprints Generating too large scripts. 3

Non idempotent
code

Writing scripts with side effects can lead to
undesired states.

3

Poor
documenting

Hinders understandability and
maintainability

3

Manual
infrastructure

Some parts of the configuration are made
manually, outside of IaC scripts.

2

Nodes too deep The tree of nodes generated from a single
script is too deep.

2

Moving to best practices to develop IaC (Q7), we were
able to distill four practices from the practitioners’ comments.
The most common (12 mentions) was the Secret-Injection that
fosters parametric configuration of IaC scripts. For instance,
by loading environment variables from a separate .env file
thanks to the dotenv module2.

Following, break-fast allows one to test and fail as soon
as possible, which counterfeits one of the disadvantages of
IaC: the longer feedback loop, as one has to wait for the
deployment to take place in order to see the results of the
scripts. This was best expressed in one of the comments given
by our interviewees:

“Develop and test in small increments (make
added features small and as orthogonal as possible),
setup testing environment early on, make your deploy
as deterministic as possible”.

Last but not least, reuse by abstraction and low nesting both
aim to modularize templates (a la object-oriented code) which
also makes them reusable, simple and shallow (not nesting
many nodes).

In summary, there are some development practices inherited
from standard code that seem to be applicable to IaC with some
considerations due to its singularities – e.g., being declarative
and tree-alike.

C. RQ2. IaC Development Tooling

Moving to tool support, we first assessed the use of
common development tools (Q8) when developing IaC. Table V
summarizes the types of tools mentioned by interviewees along
with some examples also extracted from their answers. The
most common ones are IDEs (11), followed by text editors,
linters – static code analyzers that detect potential errors – and
models such as UML diagrams and dependencies graphs (4
each). What we can observe is that the automated support
relates to various types of tools, which may be a sign that

2https://github.com/bkeepers/dotenv

Table IV: Best practices for developing IaC (Q7), ordered by
number of mentions.

Best-
practice

Description #

Secret-
Injection

Keep all contents of the blueprint or IaC scripts
parametric so that the orchestrator or users can
inject the desired results at will

12

Break-fast program the infrastructure to be buildable as
fast as possible and hopefully as fast-breaking
as possible furthermore, infrastructure
circuit-breakers are needed to minimize waste

8

Reuse by
Abstraction

Making templates and scripts also recall
each-other to allow for interdependency but also
interchangeability and possibly reuse, e.g.,
object orientation

6

Low-Nesting Keep nodes nesting to at most one level of
recall (i.e., tree of height 2)

5

Table V: Summary of most common support tools for IaC
(Q8).

Type of Tool #

IDEs (IntelliJ, Visual Studio Code) 11
Editors (Sublime, emacs, vim) 4
Linters (pylint, cfn-lint) 4
Models (UML, dependencies graphs) 4
Testing (molecule, pytest) 3
Own Scripts 3
Monitoring (grafana, Amazon x-ray) 2
Ontologies (no examples given) 2
Auto-documentation (sphinx) 1

practitioners have not an objective idea of what an automated
support for IaC would be.

Next, we wanted to get insights regarding IaC-specific tools
and languages that are common among practitioners (Q9).
Indeed, the IaC technology ecosystem is currently characterized
by a plethora or different and often overlapping (in terms
of their goals) tools and languages. Thus, it is important to
study and understand their adoption, plus identifying those that
nowadays represent the de facto standard way of writing IaC.
Results of this analysis are reported in Table VI, showing that
no IaC tool is currently used by more than 60% of respondents,
with Docker being the most used technology with 59.5% of
respondents using it, confirming it as the de facto standard
containerization technology. This also confirms the observation
that the IaC technology ecosystem is currently very scattered,
heterogeneous and not fully understood, with no single tool
dominating the market.

We can also observe that 69% of interviewees declared to
use three or more different tools. This shows the lack of a
single tool covering the various aspects of IaC in an unified
way. As a consequence, developers tend to select a stack of
tools, each having a different purpose, whose combination
enables full IaC development. This seems to be confirmed
also by looking at the top tools being adopted by more than
30% of survey respondents, namely Kubernetes, Vagrant, Chef,
Terraform, Ansible and Docker. Indeed, each of these tools

https://github.com/bkeepers/dotenv


Table VI: Results on the adoption of IaC tools, ordered by
decreasing frequency (Q9).

Tool # Usage %

Docker 26 59.0%
Ansible 23 52.2%
Vagrant 19 43.1%
Kubernetes 18 40.9%
Chef 16 36.3%
Terraform 15 34.1%
Puppet 13 29.5%
Apache Brooklyn 9 20.0%
Packer 9 20.0%
CloudFormation 9 20.0%
TOSCA 8 18.2%
Salt 6 13.6%
Shell scripts 4 09.0%
Cloudify 3 06.8%
Octopus Deploy 1 02.3%
Azure DevOps 1 02.3%

deals with a different aspect of IaC development: Kubernetes
enables orchestration of containers of any kind; Vagrant allows
to define and manage virtual machines; Chef and Ansible deal
with configuration management of services; Terraform aims
to orchestrate services deployed on different infrastructures
(VMs, containers, public and private clouds); Docker is the
weapon-of-choice when building containers. Another observa-
tion stemming from the results on IaC tools adoption regards
language standardization: Despite the standardization effort
behind TOSCA 3, TOSCA-enabled orchestrators are still far
from being the standard solution for IaC development.

Afterwards, in Q10 we aimed to disguise the pros and cons
for each DevOps language/tool. For doing this we elicited six
categories from the answers obtained, that help understand the
main concerns of the practitioners when using the tools. These
may be categorized as follow:

• Coding: Refers to the ease of building scripts for a given
tool/language (e.g., being declarative or imperative);

• Portability: Refers to the portability of the scripts to
different target infrastructures (e.g., configuring Linux
nodes vs configuring Windows nodes transparently);

• Automation: Refers to the degree of automation on the
infrastructure building (e.g., one can create a VM or a
complete cluster automatically with the same scripts);

• Usability: Refers to the usability of a given language/tool
(e.g., if it provides a local development/testing environ-
ment or higher abstractions to design infrastructure);

• Extensibility: Refers to the degree in which a given
language/tool can be used outside of its original context
(e.g., by providing hooks to other tools/platforms);

• Maturity: Refers to the stability and activity of the
language/tool and its broad adoption by the community
(e.g., by having active repositories on github or a big
number of contributors).

Table VII summarizes the results for the answers to Q10
according to the categories above. We grouped positive and

3https://www.oasis-open.org/committees/tosca

Table VII: Categorized pros and cons comments for the IaC
languages/tools (Q10), ordered by number of mentions.

Coding Portability Automation Usability Extensibility Maturity

Tool + - + - + - + - + - + - Tot Ratio

Docker (compose) 1 2 2 1 2 8 0.00

Chef 2 2 1 2 7 -0.14

TOSCA 1 3 1 1 1 7 0.42

Ansible 1 2 2 1 6 0.33

Puppet 2 1 1 4 -1.00

Terraform 1 1 1 1 4 0.00

Vagrant 1 1 1 1 4 0.50

Shell-Script 1 1 2 4 0.50

Cloudify 1 2 1 4 0.00

CloudFormation 1 1 1 3 -0.33

Apache Brooklyn 1 1 1 3 0.33

Kubernetes 1 1 1 3 0.33

Saltstack 1 1 2 1.00

PowerShell 1 1 1.00

Packer 1 1 1.00

negative comments into the six categories and then present
a total of the different mentions (nevertheless positive or
negative) and a ratio per tool (ratiotool = (pos− neg)/total),
which shows whether the overall feeling for the tool among
practitioners is positive/negative. The tools whose number
of mentions are above average are Ansible, Chef, Docker
and TOSCA, while the most positively perceived tools are
Powershell, Packer and Saltstack – however those have only a
few mentions which indicates low popularity. The negatively
perceived tools are Puppet and Chef, although we notice
that more comments on the tools (either negative or positive)
indicate more adoption or popularity.

All in all, our findings suggest that there is no one-size-fits-all
tool, as also explained by one of our interviewees:

“All the tools have cons as far as I’m concerned,
its a matter of combining them effectively through
experience and canceling those cons out”.

In summary, these results clearly point out the need for
further research and industry efforts on the tool support
provided to IaC developers. Besides, the negative perception of
some tools such as Puppet and Chef could be indeed due to the
higher popularity of these tools, as practitioners complain more
of tools that they use more. This result calls for more studies
that corroborate this finding in a more quantitative manner.

D. RQ3: Challenges and Directions for IaC Development

For the last research question RQ3, we started by identifying
current issues when developing IaC (Q11). As shown in
Table VIII, the most critical issue for developers is Testability
(14 mentions). This finding is aligned with the most prevalent
disadvantage with respect to standard code, namely impossible
testing (recall Table II). In particular, as reported by one of
our interviewees:

“Issues are mostly related to setting up a testing
environment, since this is usually quite a complex
problem. Combine that with no standard practices
when it comes to testing and you have one big mess”.

The last set of questions in Table I addresses what prac-
titioners consider as a priority regarding the support of IaC



Table VIII: Most common IaC issues (Q11).

Issue Description # Relation

Testability Testing is impossible and verifyability
as well as peer-review or code-review
is too basic, no review guidelines

14

Readability/
Polyglot

infrastructure triaging involves many
different formats which are often
obscure to most and need specialised
personnel

10

Inconsisten-
cy

Versions often break back-ward
compatibility and templating is
different; new versions of the language
may not be supported by the tools

6 Lack of
IDE

Runtime
Automa-
tion

Automating the infrastructure at
runtime is still very limited and
managed events are often reduced to
elasticity/scalability properties only

4

Portability Difficult to port the nodes between
technologies especially when there are
multiple technologies in a polyglot
topology with multiple hooks of
different types in the same node

4 Readability/
Polyglot

Concurren-
cy

Race-conditions and circular
dependencies in pipelines both in
actual and dry-runs; testability for
pipelines is still poor

3 Testability

Lack of
IDE

A development environment with
pre-made code and compatibility with
other more naive formats is missing

3 Runtime
Automa-
tion

lifecycle (from Q12to Q17), and also a final question (Q18)
where interviewees could further clarify their previous answers
and share their vision on the future of IaC.

For questions Q12–Q17 we defined a Likert scale with 5
values (ranging from Not Important to Extremely Important) on
the importance of supporting different aspects of IaC: from tool
support of critical activities such as testing, to the extension of
IaC coverage to heterogeneous infrastructures (e.g., GPUs, Bare
metal). Then we defuzzified the answers (i.e., expressed them
numerically) using a triangular membership function [11]. The
triangular function assigns a numerical value in the normalized
range [0,1] for each linguistic response: in our case, from
Not Important = 0.2 to Extremely Important = 1. Then, one
can analyze the responses distribution upon such range, and
calculate the average [12].

All in all, not surprisingly the vast majority of the responses
pointed out that Testing Frameworks are extremely important
and needed on the context of IaC with a value of 0.90 in the
normalized scale. This confirms the findings and tendencies
of the previous answers discussed along Sections IV-B and
IV-C. However, support for all other activities is also conceived
as highly important: Testing support was followed by Static
analysis tools (0.82), languages standardization (0.80), security
and privacy (0.76) support for heterogeneous infrastructures
(0.75) and, finally, ad-hoc IDEs (0.74). One can see that all
values are high and practitioners are thriving for support of
any kind to develop and maintain their IaC scripts.

The final question (Q18) captured the concerns regarding

the future of IaC. In the first place, practitioners indicated
the advent of serverless computing (also known as Functions-
as-a-Service - FaaS). Serverless is a fully outsourced cloud
computing model in which the cloud provider dynamically
manages the allocation of machine resources, while developers
only concentrate in writing application code, i.e., functions [13].
In such a model, management of the myriad of functions
becomes even more difficult than in typical cloud scenarios.
As pointed out by the practitioners:

“Serveless will be a mess – we have an upcoming
pipeline with dozens if not hundreds of concurrent
functions, management will be a mess, perhaps
TOSCA policies could help.”.

In summary, there are concerns among practitioners about
the overlapping of the increasing number of tools; Quality
assurance and testability both in production and local devel-
opment environments; and finally but perhaps most important,
the organizational rewiring that lies beyond IaC, which goes
towards embracing DevOps. More in detail:

“Not only focus on technology but also the change
in work processes and organization that are needed
when using IaC to better serve the business.”.

V. DISCUSSION AND IMPLICATIONS

The results of our study highlight a number of insights to
be further discussed in order to explicitly address our research
questions.

A. RQ1: On the adoption of Infrastructure-as-Code

There does not exist one full-fledged and bullet-proof
solution for IaC, rather the tools used by practitioners are
very varied and also very common; out of the top 8, the
median frequency is 15,5 times a tool is used with no
major winner whose frequency greatly surpasses the others.
This denotes a proliferation and divergence of tools which
could make maintenance and evolution of IaC sensibly more
difficult; as highlighted in Table VII there exists a sensible
variety on the dimensions reported by practitioners to evaluate
used technologies. In essence, to address our RQ1, namely,
How do practitioners currently develop infrastructural code?,
practitioners still tend to develop IaC on a best-effort basis,
diversifying the tool used based on several still implicit
principles, with no best fit-for-purpose tool and little to no
best practices for their integration. More specifically, reported
best practices reflect more how to internally structure and
write the code in the same snippet as opposed to combining
multiple tools and formats together. Beyond that, one best
practice explicitly aims at avoiding to combine multiple formats
since this lowers the general quality and maintainability of the
blueprint, denoting that practitioners are explicitly working to
simplify overly complex blueprints and avoiding interoperation.
However, at the same time another best practice proposes
the recombination of possibly diverse formats by abstraction
(e.g., using the OASIS TOSCA standard for IaC and including
multiple formats inside node-type definitions). These rather



conflicting best practices indicate a balance in the complexity
of IaC blueprints which is still implicit and needing further
research to be empirically established.

B. RQ2: On the support given by Infrastructure-as-Code tools

The data reveals no less than 6 dimensions which allow
comparison and trade-off between technologies, but the lack
of a specific “winner” in terms of most-frequently adopted
solutions indicates that much work still needs to be done
to establish and fill the gaps in the current state of practice.
Furthermore, the matrix in Tab. VII is rather sparse, meaning
that technology vendors are, perhaps deliberately, assuming
that Operations engineers would intermix series of tools as part
of a DevOps pipeline which, although true in fact, reveals tool-
specific as well as tool-interaction challenges that need further
attention from a maintenance and IaC evolution perspective. To
address specifically RQ2, namely How do currently available
tools support practitioners when developing infrastructural
code?, available tools offer very limited quality automation as
well as maintenance & evolution support features. The findings
recapped in this section can aid the work of practitioners
providing them a heads-up concerning the tools and approaches
that they exploit as part of their IaC adoption. Furthermore,
the findings clearly outline avenues for further research beyond
the state of the art.

C. RQ3: On the Challenges of Infrastructure-as-Code

Tools and automation in infrastructure code reveal several
typical issues such as consistency-breaking across different
versions of the same technology or level of runtime automation.
Perhaps most importantly, the most frequent challenges reflect
testability and understandability which have been empirical
shown to be deeply interwoven and also majorly affecting
production code, as seen in previous work [14]. Overall, it
seems the maintenance and evolution research on IaC code
features and automation needs to undergo the same tortuous
road previously walked by practitioners and academicians for
production code; our data highlights that the challenges along
this path are considerable. To address RQ3 namely, What
are the challenges that practitioners face when developing
infrastructural code?, as previously stated the practitioners
clearly perceive it very difficult to test infrastructure code,
e.g., while maintaining code readable and consistent with
multiple formats. Furthermore, version management is still
a big issue, considering the multiple technologies involved
and their dependencies. In addition, there is an implicit non-
trivial relationship between readability and polyglottism in
IaC blueprints and their portability; these two challenges
implies a trade-off which is yet to be fully understood and
deserving further study. Finally, perhaps from an overarching
perspective, the lack of an IDE specifically designed to support
the development, operation, and maintenance of infrastructure
code is perceived as a challenge, although not from the majority
of practitioners. It should be noted that several practitioners
highlight the usage of formats which do in fact provide
some basic development environments (e.g., several TOSCA

implementations, Terraform and more), there are in general
very few supporting IaC development (not only IDEs, but
also static analyzers, tools supporting security aspects, etc.),
highlighting another direction for research.

D. Observations, Lessons Learned, and Implications

The first key observation evident from our data is that,
on the one hand, there is evidence for a proliferation of
infrastructure code automation tools, techniques, languages,
and approaches but, on the other hand, the key standard in
the field, namely OASIS TOSCA, is adopted by a mere 20%
of the total practitioners in our sample. This could identify a
shortcoming of the standard in terms of its dissemination and
exploitation or a divergence of its practicability from the real
requirements that practitioners put forth. This study may serve
as a lens to understand those requirements perhaps bringing
about alignment between the two and thus fostering better
exploitation of the OASIS open standard for the benefit of IaC
maintenance and evolution.

The second key observation reflects on the striking diversity
of types of tools we reported in our sample, ranging from
orchestration tools (e.g., CloudFormation, Saltstack) to config-
uration management (e.g., Puppet), to topology management
(e.g., Kubernetes), to containerization (e.g., Docker) and more.
It is evident from this data that infrastructure code is polyglot
by design and therefore practitioners and academicians alike
should strive to find the right blends, patterns, and any anti-
patterns matching or existing in their practice and theoretical
outlook. It is also evident that an ontology of IaC, namely, a
representation and definition of the categories, properties, and
relations between IaC concepts, data, and entities [15], could
aid in reasoning how certain IaC tool/format patterns may be
fit for purpose in specific scenarios or whether those tools
may adhering specific properties (e.g., consistency, readability).
Perhaps an ontology engineering [16] is needed in order to
distill such an ontology for the benefit of practitioners and
academicians alike.

VI. THREATS TO VALIDITY

A number of threats might have influenced our findings. In
this section, we summarize and explain how we mitigate them.

A. Threats to construct validity

To conduct our study and get the practitioner’s perspective
on the state-of-the-practice of IaC, we have proceeded with
semi-structured interviews. Rather than alternative approaches
(e.g., surveys), our methodology allowed us to have a direct
interaction with practitioners and ask them more details on the
three aspects treated with our research questions. Of course,
we are aware that our empirical investigation is limited to the
analysis of the developer’s perception and, indeed, we plan
to complement our study with a large-scale mining software
repository investigation of how infrastructure code is actually
treated by developers. Another discussion point in this category
is related to the set of practitioners surveyed. We explicitly took
into account developers having experience with infrastructure



code: to enable it, we designed a specific recruitment process
that allowed us to get in touch with IaC experts. Nevertheless,
our study may miss the perspective of novice IaC practitioners:
we are aware of this potential limitation, however our study
was explicitly focused on gathering opinions from experts of
the field. Replications targeting novice developers is part of
our future research agenda.

B. Threats to conclusion validity

To address our RQs, we collected and transcribed the semi-
structured interviews performed. Afterwards, we applied an iter-
ative content analysis method [10] to assign the specific themes
emerged from the practitioner’s point of view. Afterwards, to
ensure the validity of the assigned codes, we opened an internal
discussion aimed at addressing possible conflicting names
or misunderstanding. As explained in the previous section,
our analysis is qualitative in nature: complementing it with
quantitative methods is part of our future work.

C. Threats to external validity

Threats in this category concern with the generalisability
of the results. We interviewed 44 practitioners from as many
companies: this made our analysis quite broad and able to give
us a good coverage of the practitioner’s view on the state of
the practice of infrastructure code development. Of course, an
even broader analysis would corroborate our findings further.

VII. RELATED WORK

IaC has recently received increasing attention in the research
community, mainly due to the paradigm shift it brings in
software design and development. Various previous works
relate to our study by empirically investigating the adoption,
defects, or challenges of IaC.

Schermann et al. [17] proposed a structured database of
information about over 100,000 Docker files retrieved from
over 15,000 GitHub repositories. The database is used to answer
questions about typical images, programming languages, quality
defects, and files evolution. The database was made available
open source for future research and, although limited to the
scope of Docker, could prove useful to validate our results
from a mining software repository perspective.

In the field of IaC defects and smells, various works have
appeared in very recent years. Jiang and Adamns [18] analyzed
the co-evolution between infrastructure and production code,
finding that the former is tightly coupled with test files,
leading testers to often change infrastructure specifications
when modifying tests. Sharma et al. [19] looked for code
smells in the source code of configuration management tools
(e.g., Puppet, Chef). As a result, they proposed a catalog of
13 implementation and 11 design configuration smells. The
catalog was then benchmarked against 4,621 Puppet open
source repositories. Interestingly, design smells showed higher
average co-occurrence with respect to the implementation
smells. That is, one wrong or non-optimal design decision
introduces many quality issues in the future.

Rahman et al. [20] investigated the challenges in developing
IaC, specifically in the context of configuration management
tools. They looked for the questions that were more asked by
programmers on Stack Overflow with the goal of helping IaC
developers. Also in this case, the focus was on Puppet-related
questions. By applying qualitative analysis they identified the
three most common question categories as being (i) syntax
errors, (ii) provisioning instances, and (iii) assessing Puppet’s
feasibility to accomplish certain tasks. The three categories of
questions that yielded to the most unsatisfactory answers were
installation, security and data separation. Then, the authors
classified IaC defects according to standard non-IaC defects
categories by doing qualitative analysis of commit messages
and issue report descriptions in open source projects, limited to
Puppet code. Syntax and configuration-related defects turned
out to be the most common categories. Moreover, these two
categories of defects were much more prevailing in IaC than
in non-IaC software. Later on, Van der Bent et al. [21] defined
a measurement model to assess the quality of Puppet code.

In the scope of software security, Shu et al. [22] studied
vulnerabilities in Docker Hub. They proposed a framework
for Docker Images Vulnerability Analysis (DIVA) able to
automatically discover and analyze images from Docker HUB.
DIVA found more than 180 vulnerabilities on average when
considering all versions of images. Moreover, many images
were not updated for hundreds of days and that vulnerabilities
easily propagate from parent images to child images. The
authors advocated for more automated methods for applying
security updates to Docker images.

Also Rahman et al. [23] presented a catalog of seven security
smells in IaC. These were extracted from qualitative analysis
of Puppet scripts in open source repositories. The identified
smells comprise: (1) granting admin privileges by default,
(2) empty passwords, (3) hard-coded secrets, (4) invalid IP
address binding, (5) suspicious comments (such as ’TODO’
or ’FIXME’), (6) use of HTTP without TLS, and (7) use of
weak cryptography algorithms. However, this is again limited
to Puppet scripts and not all smells are generalizable to other
languages or tools. Finally, Rahman et al. [24] investigated
the research challenges in IaC through a Systematic Literature
Review (SLR). The main goal was to identify the various
research areas surrounding the field of IaC. The four main
topics that have been identified are (i) framework/tool for IaC;
(ii) use of IaC; (iii) empirical studies related to IaC; and (iv)
testing in IaC. They concluded that, while several studies exist
on framework and tools, research in the context of IaC defects
and security flaws is still at its early stages. The results of the
SLR are perfectly in line with the research proposed in this
paper: indeed, the state of research and practice in IaC is still
immature, which calls for more empirical and industry-focused
studies, as the one carried out throughout this paper.

VIII. CONCLUSION

DevOps is a family of tactics that aim at accelerating
deployment and delivery of large-scale applications. Essentially,
all the DevOps automations are driven by infrastructure code,



that is, the series of blueprints laying out the application
infrastructure, its dependencies, and involved middleware across
a DevOps pipeline.

In this paper we investigate infrastructure code tools, prac-
tices, and challenges from a practitioner perspective, with 44
semi-structured practitioner interviews. Our findings reveal
critical insights into the available tools, their complexities,
the challenges thereto, as well as best practices adopted by
practitioners to address (some of) those challenges. Overall,
however, the most direct conclusion stemming from our
evidence is that the field of software maintenance and evolution
of IaC is in its infancy and deserves further attention.

On the one hand, several best practices exist but they are
mostly concentrated on limiting the complexities inherent
within IaC. On the other hand, many challenges exist, from
conflicting best-practices, to lack of testability, readability
issues, and more.

Practitioners can benefit from our results by: (1) using the
content analysis and comparisons provided in Sec. IV to identify
the tools and practices best fitting with their domain and have
an evidence-based view over what’s available currently in
the state of practice; (2) understand and be prepared for the
challenges inherent with adoption of IaC; (3) control for the
levels of complexity and plan ahead for major maintenance
and evolution phases in their IaC strategy.

In the future we plan to extend this work with tools that
address the identified challenges. First, we plan to refine
pattern detection tools and metrics able to appraise the level
of complexity of a IaC blueprint and identify any recurrences
which may amount to any anti-pattern revealed in our findings.
Second, we plan to refine and test prototypical support for
the automated measurement of IaC readability, understanding
empirically how that relates to higher or lower IaC quality
and maintainability. Finally, we plan to improve the testability
of IaC starting from state-of-the-art testing approaches from
production code and empirically establishing the extent to
which those approaches generalise to IaC as well.

REFERENCES

[1] L. J. Bass, I. M. Weber, and L. Zhu, DevOps - A Software Architect’s
Perspective., ser. SEI series in software engineering. Addison-Wesley,
2015.

[2] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri,
“Devops: introducing infrastructure-as-code,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C).
IEEE, 2017, pp. 497–498.

[3] K. Morris, Infrastructure As Code: Managing Servers in the
Cloud. Oreilly & Associates Incorporated, 2016. [Online]. Available:
https://books.google.si/books?id=kOnurQEACAAJ

[4] M. Hüttermann, “Infrastructure as code,” in DevOps for Developers.
Springer, 2012, pp. 135–156.

[6] D. Soldani, B. Barani, R. Tafazolli, A. Manzalini, and C.-L. I, “Software
defined 5g networks for anything as a service [guest editorial].”
IEEE Communications Magazine, vol. 53, no. 9, pp. 72–73, 2015.
[Online]. Available: http://dblp.uni-trier.de/db/journals/cm/cm53.html#
SoldaniBTMI15

[5] M. Jarschel, “Network function virtualization: Towards the commoditi-
zation of middle boxes,” DATEV Trendscout, Nurnberg, Germany, 11
2013.

[7] P. Lipton, D. Palma, M. Rutkowski, and D. A. Tamburri, “Tosca solves
big problems in the cloud and beyond!” IEEE Cloud Computing, vol. 5,
no. 2, pp. 37–47, 2018. [Online]. Available: http://dblp.uni-trier.de/db/
journals/cloudcomp/cloudcomp5.html#LiptonPRT18

[8] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainability
of code smells: a large scale empirical investigation,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1188–1221, 2018.

[9] R. S. Weiss, Learning from strangers: The art and method of qualitative
interview studies. Simon and Schuster, 1995.

[10] B. Hanington and B. Martin, Universal methods of design: 100 ways
to research complex problems, develop innovative ideas, and design
effective solutions. Rockport Publishers, 2012.

[11] W. Pedrycz, “Why triangular membership functions?” Fuzzy sets and
Systems, vol. 64, no. 1, pp. 21–30, 1994.

[12] A. Christoforou, M. Garriga, A. S. Andreou, and L. Baresi, “Supporting
the decision of migrating to microservices through multi-layer fuzzy
cognitive maps,” in International Conference on Service-Oriented
Computing. Springer, 2017, pp. 471–480.

[13] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless computing:
Current trends and open problems,” in Research Advances in Cloud
Computing. Springer, 2017, pp. 1–20.

[14] A. Trockman, K. Cates, M. Mozina, T. Nguyen, C. Kastner,
and B. Vasilescu, “"automatically assessing code understandability"
reanalyzed: combined metrics matter.” in MSR, A. Zaidman, Y. Kamei,
and E. Hill, Eds. ACM, 2018, pp. 314–318. [Online]. Available:
http://dblp.uni-trier.de/db/conf/msr/msr2018.html#TrockmanCMNKV18

[15] N. Guarino, “Formal ontology and information systems,” 1998.
[16] Y. Sure, S. Staab, and R. Studer, “Ontology engineering methodology,”

2009.
[17] G. Schermann, S. Zumberi, and J. Cito, “Structured information on state

and evolution of dockerfiles on github,” in Proceedings of the 15th
International Conference on Mining Software Repositories, ser. MSR
’18. New York, NY, USA: ACM, 2018, pp. 26–29. [Online]. Available:
http://doi.acm.org/10.1145/3196398.3196456

[18] Y. Jiang and B. Adams, “Co-evolution of infrastructure and source code:
An empirical study,” in Proceedings of the 12th Working Conference on
Mining Software Repositories. IEEE Press, 2015, pp. 45–55.

[19] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Conference
on Mining Software Repositories, ser. MSR ’16. New York,
NY, USA: ACM, 2016, pp. 189–200. [Online]. Available: http:
//doi.acm.org/10.1145/2901739.2901761

[20] A. Rahman, A. Partho, P. Morrison, and L. Williams, “What questions
do programmers ask about configuration as code?” in Proceedings of the
4th International Workshop on Rapid Continuous Software Engineering,
ser. RCoSE ’18. New York, NY, USA: ACM, 2018, pp. 16–22.
[Online]. Available: http://doi.acm.org/10.1145/3194760.3194769

[21] E. Van der Bent, J. Hage, J. Visser, and G. Gousios, “How good is your
puppet? an empirically defined and validated quality model for puppet,” in
2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2018, pp. 164–174.

[22] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities
on docker hub,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, ser. CODASPY ’17.
New York, NY, USA: ACM, 2017, pp. 269–280. [Online]. Available:
http://doi.acm.org/10.1145/3029806.3029832

[23] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in Proceedings of the 41st International
Conference on Software Engineering, 2019, in Press.

[24] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “Where are
the gaps? A systematic mapping study of infrastructure as code
research,” CoRR, vol. abs/1807.04872, 2018. [Online]. Available:
http://arxiv.org/abs/1807.04872

https://books.google.si/books?id=kOnurQEACAAJ
http://dblp.uni-trier.de/db/journals/cm/cm53.html#SoldaniBTMI15
http://dblp.uni-trier.de/db/journals/cm/cm53.html#SoldaniBTMI15
http://dblp.uni-trier.de/db/journals/cloudcomp/cloudcomp5.html#LiptonPRT18
http://dblp.uni-trier.de/db/journals/cloudcomp/cloudcomp5.html#LiptonPRT18
http://dblp.uni-trier.de/db/conf/msr/msr2018.html#TrockmanCMNKV18
http://doi.acm.org/10.1145/3196398.3196456
http://doi.acm.org/10.1145/2901739.2901761
http://doi.acm.org/10.1145/2901739.2901761
http://doi.acm.org/10.1145/3194760.3194769
http://doi.acm.org/10.1145/3029806.3029832
http://arxiv.org/abs/1807.04872

	Introduction
	Background
	Research Methodology
	Research Questions
	Subjects of the Study
	Gathering the Practitioner's Perspective
	Data Analysis

	Analysis of the Results
	Background and Demographics
	RQ1: IaC Development Practices
	RQ2. IaC Development Tooling
	RQ3: Challenges and Directions for IaC Development

	Discussion and Implications
	RQ1: On the adoption of Infrastructure-as-Code
	RQ2: On the support given by Infrastructure-as-Code tools
	RQ3: On the Challenges of Infrastructure-as-Code
	Observations, Lessons Learned, and Implications

	Threats to Validity
	Threats to construct validity
	Threats to conclusion validity
	Threats to external validity

	Related Work
	Conclusion
	References

