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Abstract—The impact of developers’ experience on several de-
velopment practices has been widely investigated in the past. One
of the most promising research fields is software testing, as many
researchers found significant correlations between developers’
experience and testing effectiveness. In this paper, we aim at
further studying this relation, by focusing on how development
teams’ experience is associated with the assertion density, i.e., the
number of assertions per test class KLOC, that has previously
been shown as an effective way to decrease fault density. We
perform a mixed-methods empirical study. First, we devise a sta-
tistical model relating development teams’ experience and other
control factors to the assertion density of test classes belonging to
12 software projects. This model enables us to investigate whether
experience comes out as a statistically significant factor to explain
assertion density. Second, we contrast the statistical findings with
a survey study conducted with 57 developers, who were asked
their opinions on how developer’s experience is related to the
way they add assertions in test code. Our findings suggest the
existence of a relationship: on the one hand, the development
team’s experience is a statistically significant factor in most of the
systems that we have investigated; on the other hand, developers
confirm the importance of experience and team composition for
the effective testing of production code.

Index Terms—Assertion Density; Developers’ Experience;
Mixed-Methods Empirical Study.

I. INTRODUCTION

It is often said that “failure leads to success”. One has to
have experienced failure to truly understand what it takes to
succeed. This is true in many fields, and perhaps also in the
area of software testing. Pham et al. [1] have already alluded
to it, when they conjectured that junior developers do not see
the need to write test cases, or at least, not that many test
cases; their reasoning being that junior developers have likely
not experienced the consequences of inadequate testing [1].

The research community has widely investigated developers’
experience as a factor in different contexts related to software
maintenance and testing [1]–[10]. In particular, several studies
focused on the correlation between developers’ experience
and the effectiveness of testing activities [1], [4]–[7], finding
a high correlation between the two phenomena. Following
these previous achievements, in this paper we aim at further
understanding the relation between developers’ experience and
software testing practices, which are fundamental for program
comprehension, understandability, and maintainability.

Among the different ways to measure test code effectiveness
(e.g., branch or mutation coverage [11]–[13]), we focus on test
assertions, which were originally described by Alan Turing [14]
as an effective way to prove the correctness of a program and

later shown as actually useful to improve testing effectiveness.
Specifically, researchers found that a high assertion density,
i.e., the number of assertions per test class KLOC, is associated
with a decrease of faults in production code [15] and makes
software systems more stable over their evolution [16], as the
assertions verify the internal state of a program at runtime [17].

In the context of this paper, we conjecture that the experience
of development teams in charge of developing a test class
is correlated to its assertion density. In other words, teams
composed of more expert developers add more assertions to
better verify the production code. Should this conjecture be
confirmed, the experience factor would represent an instrument
based on which project managers can compose testing teams
that are more effective and less likely to miss faults in
production code. To test our conjecture, we perform a mixed-
methods empirical study [18] that aims at addressing the
following two main research questions:

• RQ1. To what extent is the experience of development
teams correlated to the assertion density?

• RQ2. How do developers perceive experience as a relevant
factor for assertion density?

In the first place, we collect data of 12 open-source projects
and build a statistical model relating development teams
experience (and other control factors) to assertion density. In
addition, we contrast the statistical results with a survey study
featuring the opinion of 57 developers, who were asked about
the relation between experience and assertions.

The results of both the studies converge toward a clear
conclusion: the experience of development team is a statistically
significant factor to explain assertion density; this is also
reflected in the opinions of developers, who explicitly state the
importance of testing teams’ composition and experience for
effective testing of production code.

Based on our findings, we identify two main implications
for both the research community and practitioners.
On testing team composition. The findings reported in the

paper show that taking into account the experience of
development teams might have an impact on assertion density,
meaning that practitioners and project managers should
consider this aspect when allocating testing tasks. At the same
time, the research community is called upon to investigate
novel experience-aware methodologies and techniques that
enable/optimize the allocation of resources.



On human-oriented testing. As a side effect, the results of
our study highlight the importance of considering human
aspects in software testing and how they can impact source
code quality. On the one hand, this confirms recent findings
in the field of software maintenance and evolution [19]–[22]
as well as the correlations observed between developer’s
experience and testing practices [4]–[7]; on the other hand,
researchers in the field of software testing should further
explore these aspects and understand how to measure them
and the extent to which good people management can lead
to better software quality and reliability.

Structure of the paper. Section II overviews the literature
related to previously studied uses of developers’ experience, and
assertions. In Section III we discuss the research methodology
adopted to build the statistical model, while in Section IV we
report the results of the study. Section V examines the threats
to the validity of the study and the way we mitigated them.
Finally, Section VI concludes the paper and provides insights
on our future research agenda.

II. RELATED WORK

As our work is at the intersection between the use of
assertions and developers’ experience, due to space limitations,
we only report the main work related to these two aspects.

A. On assertion density

Rosenblum [23] defined assertions as “formal constraints
on software system behavior that are commonly written as
annotations of a source text. The primary goal in writing
assertions is to specify what a system is supposed to do rather
than how it is to do it” [23]. Based on this definition, the use
of asserts has been both suggested and investigated by many
researchers in different contexts [15], [24]–[28].

In particular, researchers constantly advised practitioners to
introduce assertions when testing software systems in order
to promote the automatic checking for program failures [26].
Chen et al. [28] found that assertion density, i.e., the number of
assertions per KLOC, is strongly correlated to coverage-based
test-suite reduction. Estler et al. [16] investigated the use of
pre- and post-conditions in 21 object-oriented projects, finding
that program elements including contracts/asserts tend to be
more stable over time. More importantly, Kudrjavets et al.
[15] showed that bug density decreases when the assertion
density increases, meaning that the higher the number of
assertions, the lower the number of bugs in production code.
Finally, there are some works very close to ours [29]–[31].
In particular, Casalnuovo et al. [31] collected asserts in C
and C++ programs in order to assess a relationship between
asserts and defect occurrence. As a results they found that
methods with asserts do have significantly fewer defects. They
replicated this analysis in a subsequent study [30] showing also
that developers with higher ownership and experience are more
likely to add assertions. Finally, Kochar et al. [29] analyzed the
correlation between the use of assertions and the presence of
defects, but also whether and how developer-related factors are

correlated to the addition of assertions. In particular, they show
that there exists a significant relationship between assertions
and the presence of defects; also, developers’ ownership leads
to more assertions being added in test code.

To summarize, the aforementioned investigations indicate
that having a high assertion density represents a key factor
influencing quality aspects of test cases. Our work builds upon
these previous findings and aims at further investigating whether
developers’ experience might play a role in the way developers
introduce assertions when testing software systems.

B. On the use of developers’ experience

Recent findings have shown how developers’ experience
constitutes a key factor to carefully consider during mainte-
nance tasks [2], [3], [8]–[10], [32], [33]. For instance, Bhatt
et al. [10] found that human and organizational factors such
as organization climate, customer attitude, and developers’
experience have a significant influence on software maintenance
effort. Similarly, Jørgensen et al. [8] reported that more expert
developers promptly deal with the complexity of maintenance
tasks. Finally, Li et al. [9] discovered that maintainers’
experience, tool support and domain knowledge are the most
influential cost drivers of bug fixing operations.

Besides software maintenance, several studies have pointed
out the role of experience when performing testing activities [1],
[4]–[7]. Specifically, Kanij et al. [5] investigated which factors
influence testing effectiveness through a user study. The results
show that tools and training, but also human-centered factors
like personality characteristics and experience are those more
related to the ability of discovering bugs in production. The
same authors [6] also studied the correlations between per-
sonality characteristics of developers and testing effectiveness,
confirming the central role of experience. Rooksby et al. [7]
reported about the collaborative aspects of testing activities,
while Pham et al. [1] interviewed 97 computer science students,
exploring their experience and attitudes regarding testing. A
key result of these studies is that novice developers seemingly
have less understanding of what should be tested. Finally, Beer
and Ramler [4] investigated the role of developers’ experience
during testing activities in three projects at Siemens. The results
showed how test case design is based on experience in all
three projects and that experience-based testing is an important
supplementary approach to requirements-based testing.

Our work can be seen as complementary to those discussed
above. Indeed, while previous work clearly pointed out the
role of developers’ experience for testing activities, we aim at
further understanding this relation, by considering whether and
how the experience of developers that touch a test class (i.e.,
development teams) can impact the assertion density, building
a statistical model, and corroborating the results conducting a
survey analysis involving a large number of developers.

III. RESEARCH METHODOLOGY

This section reports the methodology that we have followed
to study the relation between the experience of development
teams and assertion density.



A. Hypothesis and Research Questions

The goal of the empirical study is to investigate the
relationship between the experience of development teams
and the assertion density, with the purpose of understanding
the extent to which team experience can have a correlation with
the number of assertions present in a test class. The quality
focus is on the relation between team experience and assertion
density, while the perspective is that of project managers
who want to understand how much team experience can be a
factor to consider when allocating resources for testing. More
specifically, our study was driven by the following hypothesis:

H0 - The experience of development teams correlates with the
assertion density of test classes.

In other words, we believe that teams composed of more
expert developers write more effective test cases. It is important
to note that we intentionally focused on assertion density
because previous research has shown its relation to test
code effectiveness [15]–[17]. As such, we are interested in
determining which factors are correlated to assertion density
and how development team’s experience contribute to it. We are
aware that other factors may relate to the test code effectiveness
(e.g., branch or mutation coverage [11]–[13]), but an analysis
of the factors influencing them is out of the scope of this paper.
The aforementioned hypothesis has led to the definition of two
main research questions:

• RQ1. To what extent is the experience of development
teams correlated to the assertion density?

• RQ2. How do developers perceive experience as a relevant
factor for assertion density?

As detailed in the next subsections, we addressed our
research questions by means of a mixed-methods approach [18].
In RQ1, we built a statistical model relating experience of
development teams to the assertion density of test classes, while
in RQ2 we conducted a survey study with 57 developers.

B. RQ1 — Research Methodology

In this section, we overview the methodology adopted to
address our first research question.

Context Selection. The context of the study consists of the
12 open source systems whose characteristics are shown in
Table I. Starting from the list of projects available on GITHUB,1

we first ordered them based on the number of tests and excluded
those which had less than 100 JUnit test classes. Then, we re-
ordered the list based on the repository activity, i.e., the number
of commits performed over the last year. With these two criteria,
we randomly selected 12 systems having a high number of tests
and being actively developed: the first criterion was used to
set a minimum number of test classes the considered systems
should have to be part of our study, i.e., no statistically sound
method can be applied with few data points; the latter was an
important requirement aimed at reducing possible threats to
construct validity in the way development team’s experience

1https://github.com

is computed (see Section V for further discussion). It is also
worth noting that the randomly selected systems come from
different application domains and have different characteristics,
especially in terms of number of developers and number of
classes: as such, this selection process mitigates possible threats
to external validity. To enable the replication of our study, we
made the dataset available in our online appendix [34].

Table I: Characteristics of the Software Projects in Our Dataset
System # Assertions #Commits #Dev. #Classes #Methods KLOCs
Adempiere 421 14,131 20 4,922 104,866 1,112
Camel 45,035 35,143 447 17,171 111,195 940
Commons-Lang 14,517 5,363 110 308 6,292 97
Groovy 1,914 15,578 267 1,453 19,198 207
Closure 14,986 13,568 406 1,182 27,867 268
Eclipse Che 5,525 7,550 113 7,871 44,678 357
Guava 38,049 4,861 171 3,057 46,964 480
Jabref 4,642 12,262 184 1,429 9,874 86
Metasfresh 8,641 23,561 14 11,433 152,367 1,407
Mockito 2,555 4,946 138 816 4,783 45
RxJava 17,041 5,515 236 1,616 25,211 266
xWiki 10,096 36,182 94 4,477 26,901 324
Overall 163,422 178,660 2,200 55,735 580,196 5,589

Extracting Development Teams Composition. The first
step needed to answer our research question was the ac-
tual identification of development teams in our dataset. To
this aim, we followed the same definition of development
team used by many previous studies (e.g., [35], [36]): in
particular, a team is defined as the set of developers who
have added/modified/removed lines of code to a certain (test)
class. We are aware that such a definition might lead to the
approximation of the real composition of the development
teams of the considered projects, e.g., a team member might
not necessarily contribute to the development of the test code.
However, this identification strategy is the only one available so
far and, according to previous studies [35], represents a valid
heuristic to estimate both size and composition of open-source
development teams.

Building a Statistical Model. Once we have extracted
the development teams composing our subject projects, we
proceeded with the definition of a statistical model relating
development team experience to assertion density. In the
following, we overview the steps that we have taken.

Response Variable Definition. The response variable in our
statistical model is the assertion density, which has been
defined by Kudrjavets et al. [15] as follow:

assertion density(Ti) =
#assertionsTi

KLOCTi

(1)

where #assertionsTi represents the total number of assertions
in a test class Ti and KLOCTi

is the thousands (kilo) of lines
of code of Ti.

Independent Variables Definition. Our goal was to measure
the extent to which the experience of development teams is
correlated to the assertion density of test classes. Thus, our
independent variables were represented by metrics computing
team experience under different perspectives. We relied
on the metrics defined by Kamei et al. [37]: experience
(EXP), recent experience (REXP), and subsystem experience



(SEXP). The rationale behind their selection is twofold:
on the one hand, they can measure experience in three
orthogonal dimensions [37], [38], thus allowing us to more
comprehensively verify our research hypothesis. On the other
hand, these metrics have been widely employed in the past by
the research community and are well-established in the field
[39], [40]. Given a developer d, the first metric computes
the total number of commits performed by d on a certain
test class Ti (hereafter, we name this metric as “T-EXP” to
highlight that it refers to test classes); REXP refers to the
number of commits performed by d on Ti over the last three
months (“T-REXP”), while SEXP computes the number of
commits performed by d on the package containing Ti (“T-
SEXP”). Note that while the last metric does not directly
consider Ti, it still makes sense because developers that are
in charge of testing an entire subsystem might have more
confidence with the test classes it contains.
As we consider the overall experience of a development team,
we needed to compute these metrics at team-level. To do so,
we have followed a similar process to that of previous work
[35], [36]. Specifically, for each test class Ti:
• We identified the development team corresponding to Ti

(as described before in this section);
• For each developer, we computed T-EXP, T-REXP, and

T-SEXP;
• We aggregated the values of single developers using

the median operator, i.e., the final development team
experience was given by the median experience of the
involved developers. It is important to note that we
have adopted the median to mitigate the influence of
possible outliers (e.g., a team member having much more
experience than another one): nevertheless, this choice did
not bias our conclusions, as similar results have been
observed when considering the average experience of
developers in a team (see Section V for more details).

Besides computing the experience of development teams on
test classes, we also measured how the developers belonging
to those teams are expert globally, i.e., independently from
test classes. Indeed, it may be that the overall experience
of a developer influences her actions on source code, rather
than the specific experience on tests. To account for this
aspect, we computed EXP, REXP, and SEXP of development
teams on all classes of the considered systems, i.e., without
considering tests only. For the sake of readability, in the
following we name them as O(verall)-EXP, O-REXP, O-
SEXP. It is worth noting that other experience metrics have
been proposed in literature, like the commit-tenure [20], [36],
[41] which computes the experience of developers looking at
the contributions done over all GITHUB projects. However,
these metrics are domain-agnostic, meaning that they do
not distinguish the type of projects a developer contributes
to (e.g., third-party library or Android app) and, therefore,
can fail in identifying the actual experience of a developer
in a specific project. As we were interested in assessing
how developers add assertions in the specific context of

the considered projects, we preferred to compute within-
project metrics such as EXP, REXP, and SEXP. A further
investigation of domain-agnostic experience metrics is part
of our future work.

Control Variables. Although we conjectured that develop-
ment team experience is correlated to the assertion density of
test classes, it is worth remarking that other factors related to
both the structure of production and test code (e.g., number
of lines of code) might represent an important source of
information to understand the response variable [42]–[44].
To account for this aspect, we have defined a list of technical
factors having the role to control possible confounding factors
when evaluating the role of development team experience.
More specifically, we have computed the four categories of
metrics described in the following:

Size. The first factor we have considered is the size of both
production and test classes. Indeed, it might be possible
that the number of assertions present in a test class is
simply a reflection of the number of lines of code or the
number of methods belonging to the test class (i.e., the
larger the test class, the higher the number of assertions)
or the tested class (i.e., the test requires more assertions
to test a large production class); thus, we considered the
metrics Number of Methods (NOM) [45]—computed for
both production and test classes, i.e., prod.class.nom and
test.nom—and Lines of Code (LOC)—only for production
code, i.e., prod.class.loc—as control factors in our model;

Complexity. Intuitively, production classes having a higher
complexity require more effort to be tested [46], [47].
Following this conjecture, we computed the Weighted
Methods per Class (WMC) metric [48], which measures
the degree of complexity of a production class, i.e.,
prod.class.wmc. It is important to remark that WCM uses
the McCabe Cyclomatic Complexity metric [49], which in
turn is known to be important with respect to the number
of test cases (or assertions) that need to be written [50].
Similarly, we also computed WMC on test classes to check
the extent to which the complexity of the test is correlated
to the assertion density, i.e., test.wmc;

Cohesion. Low cohesive classes might contain code re-
sponsible for more than one responsibility [48]. As a
consequence, the corresponding test classes might require
more assertions to verify the behavior of the production
code. To control for this aspect, we computed the Lack
of Cohesion of Methods (LCOM5) defined by Henderson-
Sellers et al. [51] on the production classes of our dataset,
i.e., prod.class.lcom. Also in this case, we computed
LCOM5 on test classes too: indeed, low cohesion of
tests has been shown to be an important factor for test
effectiveness [52], [53], i.e., test.lcom;

Coupling. Production classes having a high level of coupling
tend to be less maintainable [42], [54]. As a result,
the corresponding test classes might require more assert
statements in order to carefully verify the behavior of the
tested code. For this reason, we compute the Coupling



Table II: Complete list of survey questions.
n. Question Evaluation Criteria
Section I. Background
1 What is your current job? Multiple Choice (with the possibility, in addition, to write the job)
2 Experience in:

2.1 - Programming Multiple Choice (e.g., No Experience, 1-3 Years, More than 5 years)
2.2 - Industrial development
2.3 - Verification/Testing of Programs

3 What is your company size? Multiple Choice (e.g., more than 250 employees)
4 What is your team size? Multiple Choice (e.g., 5-10 team, Just me)

Section II. Relevant factors when writing assertions
5 Please rate the importance of the following aspects for writing assertions:

5.1 - Your testing skills
5.2 - Your experience within the domain of the project
(e.g., in past you worked on similar code and know where to check for bugs)
5.3 - Your experience within the project
(i.e., the knowledge accumulated on the project)
5.4 - Authority of the developer who wrote the production code
(e.g., For example, whether the production code has been developed by a core developer or a developer whose reputation is high, but he/she doesn’t test its code) Likert Scale (i.e., from Not at all important to Extremely important)

5.5 - The characteristics of the production code that should be tested
(e.g., if you have to test a long or complex method/class)
5.6 - The characteristics of the test code

(e.g., if it already has assertions)
5.7 - The presence of test smells/anti-patterns

(e.g., a test method that exercises more than one production method)
5.8 - Other Text box

Section III. Further opinions

6 Can you please provide a brief explanation to your answers, by reporting how do you decide to add
an assertion in your tests and why these factors are (not) important? Open Question

Between Object Classes (CBO) [48] on the considered
production classes, i.e., prod.class.cbo. Moreover, we
compute CBO on test units because coupling between
tests can affect test effectiveness [52], i.e., test.cbo.

In the end, the statistical model comprises a total of nine
control factors and six independent variables. For each of
them, we initially compute the standard deviation in order to
understand the distribution of each factor and whether there
are outliers that might possibly create bias in the statistical
model [55]. Based on the observed distributions, we then
decide to use the natural logarithm of the computed metrics as
independent variables of the model—the logarithm correction
is recommended to reduce the impact of outliers on the results
of statistical models [55].
It is important to point out that an intuitively interesting
control factor could be test coverage [56], [57], a measure
that expresses how many lines, branches or methods of
production code are actually exercised by the tests. However,
the coverage measure typically does not represent the quality
of a test: a more high-level (system/integration) test might
cover production code up to a certain percentage, while
more fine-grained (unit) tests might cover that same code
up to the same percentage of coverage [47]. Yet, more fine-
grained tests are likely to be more helpful to the developer
when trying to locate a defect. Because of the potentially
“misleading” nature of test coverage, we have decided not
to consider it as a factor; we aim to further investigate this
aspect in our future research agenda.

Statistical Modeling. Once we have collected all the re-
quired information, we devise a generalized linear model
(GLM) [58] relating development team experience and
control factors to assertion density for each of the projects in
our dataset. This statistical technique is used to fit a function
describing the continuous response variable (the assertion
density in our case) relying on a set of categorical and/or
continuous variables (in our case, experience of development
team and further control factors). We have used this statistical
modeling approach for two reasons. On the one hand, it is
able to analyze the simultaneous effects of both independent

variables and control factors on the response variable [59]. On
the other hand, it does not assume the underlying distribution
of data to be normal: in our case, we have verified the
normality of the distribution exploiting the Shapiro-Wilk
test [60], which fails to reject the null-hypothesis, i.e., our
data is not normally distributed and, as such, we had to
rely on GLM [58]. Note that we also verified that the other
assumptions made by the statistical method (e.g., errors are
independent but not normally distributed) are valid adopting
the standard diagnostics tools provided by the regdiag
package2 available in R.3

More formally, let Logit(πt) be the explained proportion of
assertions in a test t, let β0 be the log odds of the assertion
density being increased in a test, and let the parameters
β1 · t − expt , β2 · t − rexpt, β3 · t − sexpt, β4 · loct, etc.
be the differentials in the log odds of being the assertion
density increased for a test with characteristics t−expt−mean,
t−rexpt−mean, t−sexpj−mean, etc., the devised statistical
model is represented by the function:

Logit(πt) = β0 + β1 · t− expt + β2 · t− rexpt+
+β3 · t− sexpt + β4 · loct+
+...(other vars and β omitted for space reasons)

(2)

To implement the model, we rely on the glm function
available in the R toolkit. To avoid multi-collinearity we
use the vif (Variance Inflation Factors) function [61]
implemented in R to discard non-relevant variables, putting
a threshold value equal to 5 as recommended in literature
[61]. This method provides an index for each independent
variable that measures how much the variance of an estimated
regression coefficient is increased because of collinearity.
The square root of the variance inflation factor indicates how
much larger the standard error is, compared to what it would
be if that variable were uncorrelated with the other predictor
variables in the model. Based on this information, we can
understand which metric produces the largest standard error,
thus allowing the identification (and removal) of the metric
that is better to drop from the model.

2https://goo.gl/Z9WRrr
3https://www.r-project.org



Data Analysis. Once we have built the statistical model, we
address RQ1 by assessing whether the coefficients assigned
by the statistical model to the independent variables are
statistically significant (p < 0.05). In other words, we
verify that, despite the presence of the control factors, the
development team’s experience represents an important (i.e.,
statistically significant) factor when explaining the assertion
density of test classes. Moreover, in order to measure the
goodness of fit of our model we computed the R-square
coefficient [62], which is a measure determining how well
the model fits our data and how well it predicts new unseen
observations [62]. The coefficient is implemented in the rsq
package available in R.

C. RQ2 — Research Methodology
In RQ2, we aim at triangulating the results that we achieve

in the previous research question and understand developers’
opinions on the relation between experience and assertion
density. For this purpose, we conduct a survey study, whose
details are reported in the following.

Survey design. We define an anonymous questionnaire
composed of three main sections. In many cases, making a
survey anonymous leads to more honest feedback [63]; indeed,
previous studies have shown that when respondents are aware
that they will not be tied to their answers, a researcher may
get more insights [63], [64]. The structure of the survey, along
with the expected response type, is reported in Table II.

In the first section we collect demographic information of
the participants, including programming/testing experience as
well as some information about the size of company and her/his
team: we use this information to characterize the sample of
developers taking part in the study. In the second section,
we inquire participants about their opinions on the assertion
mechanism with the aim of gathering insights that can address
our research question. In particular, we ask what are the
crucial aspects for writing assertions: we provide them with a
predefined list of factors potentially being relevant when writing
assertions (e.g., ‘Testing Skills’ or ‘Experience in domain of
the project’ ) and requested them to rate the importance of
each of them using a 5-points Likert scale [65] ranging from

‘Not at all important’ to ‘Extremely important’. Of course,
participants could also indicate additional entries by filling
out a text box with other relevant aspects. It is important to
note that in this section we explicitly ask about the factor that
we want to measure, i.e., developer’s experience. With the
answers provided to the experience-related questions, we could
assess how much the experience counts for developers and
possibly corroborate the results of RQ1. Furthermore, in the
last part of this survey we asked participants to give further
opinions on whether and how tester’s experience is related
to the addition and management of assertions. In doing so,
we aimed at collecting additional insights that can help us in
answering RQ2 and better understanding developers’ opinions
on the factors related to the assertion density.

Survey dissemination. We have created the questionnaire
using a GOOGLE survey module and made it accessible from

December 10th, 2018 to January 10th, 2019. We have first
advertised it using our personal social network accounts, i.e., the
survey was available on FACEBOOK, TWITTER, and LINKEDIN.
Then, we have posted it on REDDIT,4 targeting three specific
sub-groups such as SOFTWARETESTING,5 COMPSCI,6 and
LEARN JAVA.7 We have selected these sub-reddits because (i)
they allow for the advertisement of surveys, (ii) they have a
large amount of subscribers (≈35,000, overall), and (iii) they
are all directly related to Java and/or JUnit. Finally, we have
also contacted developers through our personal contacts.

Survey recruitment. To stimulate developers to participate
in the study, we have followed the guidelines provided by
Flanigan et al. [66]. As such, we mitigate common issues
possibly arising in survey studies and affecting the response
rate by keeping the survey short, respecting the anonymity of
participants, and preventing our influence in the answers. As a
result, we have collected 57 fully compiled questionnaires: 4
of them came from personal contacts, 5 from TWITTER, and
the remaining 48 from the REDDIT sub-groups.

IV. ANALYSIS OF THE RESULTS

In this section we report on the analysis of the results
obtained for the two research questions formulated in our
study. For RQ1 we show the results of the statistical models
built for each system considered in the study. Subsequently,
for RQ2, we show through charts and box plots the results
of our survey. The raw data and fine-grained overview of the
results of the study are available in the online appendix [34].

A. RQ1 - Statistical Models results

Table III shows the results of the 12 models we have built,
one for each project in our dataset. Specifically, the set of
tables contain, for each independent variable and control factor
investigated (column “Factor”), the value of the estimate in
the regression model (column “Est.”) and the standard error
(column “S.E.”). The statistical significance is given by the
number of stars, i.e., ‘***’ indicates a p < 0.001, ‘**’ a p <
0.01, ‘*’ a p < 0.05, and ‘.’ a p < 0.1. It is important to note
that when a certain metric is associated with a blank cell in
the tables, it indicates that the metric has been excluded by
the model as a result of the vif analysis [61]. For the sake of
space limitation, detailed results i.e., goodness of fit for each
model as well as the script used in order to compute these
analyses are available in our online appendix [34].

Looking at the tables, it seems that the models follow
a common pattern: indeed, metrics related to the size and
complexity of test and production classes, i.e., NOM and WMC,
are usually discarded or have limited statistical significance in
only few cases. In particular, the result of the WMC metric
is pretty surprising: it measures the complexity of production
code and directly impacts testing efforts [49], however it turned
out that it has often a limited power. In other words, most

4https://www.reddit.com/
5Link omitted for double-blind rules
6Link omitted for double-blind rules
7Link omitted for double-blind rules



Adempiere Camel Common-Lang
Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

(Intercept) -2.594 1.176 * -3.966 0.391 *** -2.498 1.185 *
o.exp -1.042 0.765 0.013 0.19 0.137 0.619
o.sexp -0.849 0.716 -0.304 0.142 * -0.115 0.49
o.rexp -0.625 0.371 . -0.014 0.154 0.572 0.518
t.exp -0.763 1.01 0.017 0.330 0.011 1.114
t.sexp 0.526 2.342 0.018 0.329 -0.849 1.069
t.rexp 3.452 1.032 ** 3.566 0.487 *** 5.6 0.987 ***
prod.class.loc 0.023 0.037 -0.105 0.114
prod.class.cbo -0.003 0.006 -0.005 0.006 -0.003 0.02
prod.class.lcom 0.014 0.012 -0.005 0.04
prod.class.nom 0.005 0.009
prod.class.wmc 0.002 0.016
test.nom
test.cbo -0.013 0.02 0.014 0.005 * -0.013 0.02
test.lcom 0.001 0.002 0.001 0.0004 ***
test.wmc

Groovy Closure Eclipse Che
Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

(Intercept) -5.525 1.624 *** -6.049 0.772 *** -5.819 0.447 ***
o.exp 0.23 0.845 0.279 0.51 0.402 0.374
o.sexp -0.895 0.608 0.531 0.414 -0.224 0.312
o.rexp -0.49 0.683 -0.266 0.287 -0.168 0.204
t.exp -0.947 1.471 -0.913 1.375 -1.324 0.395 ***
t.sexp -0.187 1.494 1.784 0.435 *** 3.926 0.865 ***
t.rexp 5.416 1.685 ** 6.668 0.386 *** 4.183 0.358 ***
prod.class.loc 0.25 0.151 . -0.033 0.063 0.326 0.051 ***
prod.class.cbo 0.011 0.027 -0.002 0.006 -0.025 0.005 ***
prod.class.lcom -0.003 0.0485 0.0001 0.0003
prod.class.nom 0.002 0.011
prod.class.wmc 0.013 0.023
test.nom
test.cbo 0.017 0.026 0.041 0.009 *** -0.005 0.004
test.lcom 0.0007 0.0002 ***
test.wmc

Guava Jabref Metasfresh
Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

(Intercept) -4.333 0.255 *** -4.019 0.866 *** -7.094 0.558 ***
o.exp 0.523 0.200 ** 0.272 0.345 0.837 0.353 *
o.sexp 0.643 0.166 *** 0.343 0.29 0.323 0.309
o.rexp -0.211 0.116 . -0.573 0.203 *** 0.17 0.2
t.exp 1.155 0.227 *** -0.166 1.471 3.944 0.576 ***
t.sexp 1.613 0.527 ** 0.168 0.92 0.595 0.904
t.rexp 2.482 0.268 *** 5.189 0.524 *** 3.807 0.721 ***
prod.class.loc 0.21 0.041 *** 0.164 0.047 ***
prod.class.cbo 0.010 0.003 *** -0.020 0.006 *** -0.009 0.003 **
prod.class.lcom -0.0002 0.0002
prod.class.nom
prod.class.wmc
test.nom 0.032 0.006 ***
test.cbo -0.003 0.003 -0.033 0.008 *** -0.001 0.004
test.lcom -0.0005 0.0003 * -0.0003 0.0006
test.wmc 0.044 0.02 * -0.211 0.053 ***

Mockito RxJava xWiki
Est. S.E. Sig. Est. S.E. Sig. Est. S.E. Sig.

(Intercept) -0.566 1.430 -3.240 0.626 *** -4.047 2.78 ***
o.exp 1.149 0.526 * -0.168 0.242 -6.953 2.193 **
o.sexp 0.593 0.430 0.521 0.205 * 2.725 1.835
o.rexp -0.459 0.321 -0.630 0.146 *** -4.956 1.226 ***
t.exp -4.353 2.313 . 1.633 1.02 4.330 3.471 ***
t.sexp -4.035 1.489 ** -0.768 0.65 -8.115 5.590
t.rexp 3.806 0.887 *** 1.38 0.467 ** 8.816 3.782 *
prod.class.loc 0.073 0.088 0.243 0.045 *** 6.157 1.984 **
prod.class.cbo -0.037 0.015 * -0.051 0.013 ***
prod.class.lcom -0.0003 0.0004
prod.class.nom
prod.class.wmc
test.nom
test.cbo -0.006 0.012 0.026 0.009 ** -1.710 2.305 ***
test.lcom 0.0007 0.0005 -4.525 8.421
test.wmc -0.056 0.083 -0.250 0.031 **

Table III: Results achieved by the statistical models - S.E. =
Standard Error, Sig. = Statistical significance

of the metrics that are supposed to be correlated to the way
developers test production code in terms of assertion density
are instead not at all or not very significant.

With respect to the role of development team experience,
as shown in the tables, at least two of the experience-related
variables are significant in all the projects when describing
the phenomenon of assertion density; in particular, O-EXP
is statistically significant in four projects, while O-SEXP

and O-REXP are statistically significant in three and five
projects, respectively. The statistical relevance increases when
considering the metrics specifically related to testing experience:
indeed, T-EXP and T-SEXP are statistically significant factors
in five and four projects, respectively, while T-REXP is the
only metric that is significant in all the systems considered.

Thus, our findings seem to confirm our hypothesis: the
development team’s experience is correlated to the assertion
density of test classes. As a side effect, we can confirm what
previous works reported on the relation between experience
and testing practices, namely: the most expert developers
tend to better test production code [1], [4]–[7]. Furthermore,
our findings further stimulate and suggest the need for more
research on how developer-related factors can be employed
within software testing techniques.

Besides development teams experience, we also observe
that other control variables, mainly related to cohesion and
coupling, can partially explain the phenomenon of interest. As
an example, let us consider the case of ECLIPSE CHE. Here
all the metrics related to testing experience, along with the test
LCOM and production CBO are significant factors explaining
the assertions density of the system. On the one hand, this
means that test cohesion and product coupling can represent
important elements to assess the dependent variable (this is
true for more than one system considered); on the other hand,
it is worth noting that this is the third largest system considered
in our study (see Table I), possibly indicating that the assertion
density in larger systems tends to be mainly explained by test
class-related factors.

If we consider the other systems, we find that in GUAVA all
the metrics related to the developers’ experience are significant.
Analyzing the project deeper, we find that the statistical
significance of O-SEPX and T-SEXP can be explained by the
solid package division and good distribution of classes within
the system: this is confirmed by the value of the Modularization
Quality (MQ) metric [67] of the project, that is 0.85. Such a
good modularization likely made developers more focused on
specific aspects of the system and, as a consequence, more
expert of the way they should be exercised. A similar discussion
can be held when considering the METAFRESH project, where
we have found that O-EXP and T-EXP are significant. A
possible explanation could be given by looking at its repository.
In particular, we observe that only 4 out of 14 contributors
have continuously been active in the project right from the
start and have developed all the tests. As such, the testing
experience is concentrated within a small group of developers;
this aspect is correctly identified by both metrics, that are,
therefore, significant in this case. There are also smaller systems
like ADEMPIERE, GROOVY and APACHE COMMON LANG,
where we observe that the recent experience on test classes
(T-REXP) is relevant for explaining assertion density. Looking
at the ADEMPIERE repository, we notice that over the last
three months there is an increasing number of commits and
the development of both production and test code was very
active: likely, this has contributed to the statistical relevance of
T-REXP and O-REXP. As for APACHE GROOVY, we notice



that the number of commits is quite low, so T-REXP could
better explain the phenomenon of assertion density. Finally, for
APACHE COMMON LANG, the number of developers working
on test cases is pretty low (20 out of 113 contributors), and
they frequently modify tests to make them compliant with the
changes of the production code: therefore, T-REXP turns to
be the metric that correlates better with assertion density.

As mentioned in Section III-B, we also verify the goodness of
fit of the devised statistical model using the R-square coefficient,
that is a metric to determine how well the model fits our data
and how well it predicts new unseen observations [62]. The
average value of the coefficient is 0.25. According to previous
studies [68], [69], this value is considered “moderate”, meaning
that the statistical models we have built can fit the data rea-
sonably well and, therefore, can well explain the phenomenon
of interest, i.e., assertion density. The detailed results achieved
for each project are available in the appendix [34].

To sum up, our findings reveal that, even when controlling
for production and test code variables, different experience-
related metrics turn out to be significant when explaining
assertion density. This seems to further demonstrate the role
of developers’ experience in testing activities and thus also
warrants further analyses into this research area.

Summary for RQ1: At least two of the considered
experience-related metrics turn out to be statistically signif-
icant factors to explain assertion density over the entire
dataset. Also, we have found that metrics like WMC
and NOM do not frequently correlated to the number of
assertions added by developers.

B. RQ2 - Survey analysis result

Figure 1 shows the background of our participants. This data
comes from the first four questions in Table II. Among the 57
respondents, 39% (22 participants) report that they have more
than 5 years of experience in testing activities, while another
42% (24) report between 1 and 3 years of experience. Moreover,
72% of the participants (mostly) work in industry, and 51%
(29) of them work in large companies having more than 250
employees. From these descriptive statistics, we can claim that
our sample is composed of a variety of developers having
enough experience in testing activities and whose opinions are
likely to provide us with valid and reliable insights into how
developers’ experience is correlated to the assertion density.
In addition, 32% of the participants work in a large team
composed of 5-10 people (18), 21% within a team of 10-12,
while the majority (35%) in a small team (i.e., 2-5 people).

Regarding the relevant factors for writing assertions, looking
at the boxplots in Figure 2 we see that the majority of them are
considered important, as indicated by the median value that is
close to 4. For factors such as Testing Skill, Experience within
the domain of the project (e.g., if in the past a developer has
worked on similar code and knows where to check for bugs),
Characteristics of Test Code, and Presence of Test Smells, we
notice that participants assigned a similar value of importance
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Figure 1: Graphics of the background of our participants

to all of them; this is also visible by looking at the tight shape
of the boxplots. Conversely, in the case of Experience within
the Project (i.e., the knowledge accumulated on the project) and
Characteristics of Production Code, the shape of the boxplots
is extended upward, meaning that participants’ answers are
mixed but also that some of them consider these factors highly
important (many times assigning a value of 5, i.e., extremely
important). Finally, we observe that Developers’ authority is
considered as having limited importance to write assertions,
i.e., the median value is very low with respect to the others.
Note that as a description of this factor, we have provided
the following statement: “Whether the production code has
been developed by a core developer or a developer whose
reputation is high"; in doing so, we try to verify if the status
of a developer can influence the decisions made during testing
activities. The results, however, highlight that our participants
are not concerned with this aspect, but rather they base their
decisions on good skillset and past experience, as also shown
in previous work [70], [71].

From the analysis of the answers provided to the second
section of the survey, we can claim that developers consider
experience and code quality as key factors influencing the deci-
sion to add test assertions. Thus, not only the survey confirms
our statistical analyses, but also highlights an additional aspect,
i.e., the relationship between test code quality [53], [72]–[74]



Figure 2: Results related to the relevant aspects for writing assertions.

and assertion density should be further investigated.
Going deeper into the comments left by participants in the

last section of the survey, we can provide a more comprehensive
view of the usefulness of assertions and the way developers
decide to add them in test code. For instance, participant #20
(i.e., an industrial developer that works in a large team of 10-20
people with high experience in verification and testing activity)
stated that:

#20 - “Assertions make test-driven development
possible, which allows immediate feedback to how
the application should even run in the first place.
They keep bugs from regressing, and when they do
pop up, we know how to fix them”.

As such, we can deduce that having a high assertion density
is fundamental to properly verifying source code reliability.
Still, the mechanism of adding assertions is driven by the
experience of the development team. Indeed, as pointed out
by one the surveyed developers:

#15 - “The experience of who develops tests is
necessarily important to make them effective and this
influences the way assertions are inserted.”.

Thus, the results of the study seem to corroborate the findings
of RQ1. Nevertheless, according to our participants, there are
also drawbacks when it comes to an excessive usage of the
assertion mechanism, as it might create side-effects. More
specifically, two of the participants stated:

#7 - “Too many assertions in one test makes the
test less readable.”

#12 - “Testing the right things is hard. More
assertions do not automatically mean better tests.”

These opinions somehow recall the concept of assertion
roulette [72], a test smell which occurs when a test method
has multiple non-documented assertions. Multiple assertion
statements in a test method without a descriptive message
impacts readability/understandability/maintainability as it is
harder to understand the reason leading to the failure of the

test. Consequently, developers are concerned with the number
of assertions to add and try to determine when it is really
the case to add a new assert. Moreover, the last statement of
participant #12 suggests that assertion density is important but
is not the only aspect to consider for test code effectiveness;
thus, the quality of tests should be assessed by taking into
account additional and complementary aspects such as, for
instance, branch or mutation coverage [11]–[13].

In summary, the survey study highlights that, on the one
hand, experience represents an important factor when writing
assertions, thus corroborating our previous results coming from
the statistical modeling done in Section IV-A; on the other
hand, our findings also show that assertions need to be treated
carefully: although they are widely perceived as a key and
useful element for writing effective test cases, over-using them
may be detrimental to test design quality.

Summary for RQ2: The survey participants perceive
the role of experience as a relevant factor when writing
assertions, thus confirming the findings achieved when
statistically assessing the impact of experience-related
metrics on assertion density. Moreover, they also highlight
that test code quality plays a role.

V. THREATS TO VALIDITY

A number of threats might have influenced our findings. In
this section, we summarize and explain how we mitigate them.

A. Threats to construct validity

Threats to construct validity are related to the relationship
between theory and observation. In our case, they are mainly
due to the independent variables used within the statistical
model, as well as the dataset exploited in RQ1. To compute
the team’s development and testing experience, we relied on the
metrics originally proposed by Kamei et al. [37]. We are aware
of the existence of other metrics that can capture experience
under different angles (e.g., commit-tenure [36], [41]), and we
plan to explore their role as part of our future research agenda
as well as to measure the phenomenon at a finer granularity
(e.g., at individual-developer level). As for the control variables,



we computed them using PYDRILLER,8 a publicly available
framework able to mine software repositories and compute a
number of code metrics. It is important to note that the tool has
also been evaluated by the original authors, showing excellent
performance [75]. Nevertheless, we cannot exclude possible
imprecision in the computation of such variables.

To extract development teams composition, we relied on the
definition previously used in literature [35], [36], i.e., a team is
the set of developers who have added/modified/removed lines
of code to a certain test class. While this definition has been
shown to be accurate enough [35], [36], [41], it may be possible
that in some cases it is inaccurate because of the presence
of developers that are not active anymore in the considered
projects, e.g., developers who worked on a test in the past but
that are now not part of the team anymore. We recognize this
threat to validity: the context selection process, which explicitly
selects systems which are still actively developed, partially
mitigated the possibility to consider non-active developers.

In the context of RQ2, threats are related to the way we
have measured how important the developer’s experience is
when writing assertions. In this regard, we have relied on a
5-point Likert scale [65] ranging from ‘Not at all important’ to

‘Extremely important’. However, being aware that this indication
only gives part of the story, we invited participants to further
explain the reported answers, in order to obtain a deeper insight.

B. Threats to conclusion validity

Threats to conclusion validity concern the relation between
treatment and outcome. A major threat in our context is related
to the statistical methods employed. To ensure that the model
is appropriate for the available data, we have first investigated
how similar studies performed their analyses [76] and verified
the assumptions made by the GLM technique on the underlying
data. Afterwards, to ensure that the experimented model did
not suffer from multi-collinearity, we have adopted the well-
established variance inflation factors function [61] to discard
non-relevant variables from the considered features, setting
the threshold to 5 as suggested by O’Brien [61]. In addition,
we have discarded outliers to avoid some interpretation bias
[77]. Moreover, we have computed the R-square coefficient
for evaluating the goodness of fit of our model. Finally,
we statistically verified our conjecture while applying some
precautions to avoid conclusion biases: in particular, we have
defined a number of control variables related to both production
and test code [48]. To compute a team-level measure of
experience, we have computed the median experience of the
developers composing a team: it is worth noting that the results
we have achieved were similar even when considering the mean
as operator, and thus we can exclude that this choice might
have biased our findings.

C. Threats to external validity

Threats to external validity relate to the generalizability of
the results. In our context, we analyzed 12 systems coming

8https://github.com/ishepard/pydriller

from various ecosystems (e.g., APACHE vs ECLIPSE), having
different application domains, and characteristics (size, number
of classes, etc.). However, studies aimed at corroborating our
findings on a different set of systems would be worthwhile.
At the same time, we gathered opinions from 57 developers.
Most of them had more than five years of programming
and testing experience and, therefore, this limited possible
threats to the validity and generalizability of the reported
answers. Nevertheless, also in this case a replication with more
developers would be beneficial to corroborate our findings.

VI. CONCLUSION

The role of developer’s experience for software maintenance
and evolution tasks has been widely explored in the past [2],
[3], [8]–[10]. Similarly, initial compelling evidence showed
that experience is also relevant in the context of software
testing [1], [4]–[7]. In this paper, we aimed at expanding on
this line of research by proposing an empirical study on the
role of development teams’ experience when writing assertions.

We first performed a quantitative study aimed at under-
standing the relation of experience to assertion density from
a statistical perspective on a set of 12 software systems.
Afterwards, we conducted a survey study that triangulated
the results and proposed insights coming from 57 developers.

To sum up, this paper proposed the following contributions:

1) Empirical evidence of the relation between the experience
of development teams and assertion density of test classes.
Our findings suggest that the higher the experience, the
higher the number of assertions present in a test. Given
previous findings that successfully related assertion density
to source code quality [15], our results highlight that the
composition of testing teams might represent an important
aspect to take into account to assist and improve both
software quality and reliability;

2) Insights from practitioners of how more expert developers
can produce better test cases, possibly discovering a
higher number of faults in production code. Furthermore,
our investigation provided hints on the decision-making
process followed by developers to decide on whether to
add new assertions in test code: this information may be
further explored to devise novel recommendation systems
that assist developers when writing test code;

3) A replication package containing all data and scripts used
to conduct our study [34].

Our findings represent the main input for our future research
on the topic. We aim at corroborating our findings on a larger set
of systems, possibly considering how the individual developer’s
experience plays a role in this context. Moreover, it would be
also interesting analyze how others factors, e.g., occurrences
of test smells or mutation coverage, are correlated to the
assertion density. Finally, more analyses on the way developer-
related factors influence software testing practices are part
of our research agenda, as well as the definition of novel
methodologies to help developers writing effective test code.

https://github.com/ishepard/pydriller
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