
OpenSZZ: A Free, Open-Source, Web-Accessible Implementation
of the SZZ Algorithm

Valentina Lenarduzzi,
1
Fabio Palomba,

2
Davide Taibi,

3
Damian Andrew Tamburri

4

LUT University, Finland — SeSa Lab - University of Salerno, Italy

Tampere University, Finland — Jheronimus Academy of Data Science, The Netherlands

valentina.lenarduzzi@lut.fi,fpalomba@unisa.it,davide.taibi@tuni.fi,d.a.tamburri@uvt.nl

ABSTRACT
The accurate identification of defect-inducing commits represents

a key problem for researchers interested in studying the natural-

ness of defects and defining defect prediction models. To tackle

this problem, software engineering researchers have relied on and

proposed several implementations of the well-known Sliwerski-

Zimmermann-Zeller (SZZ) algorithm. Despite its popularity and

wide usage, no open-source, publicly available, and web-accessible

implementation of the algorithm has been proposed so far. In this

paper, we prototype and make available one such implementation

for further use by practitioners and researchers alike. The evalua-

tion of the proposed prototype showed competitive results and lays

the foundation for future work. This paper outlines our prototype,

illustrating its usage and reporting on its evaluation in action.

KEYWORDS
SoftwareDefect Proneness, SoftwareDefect Prediction, Open-Source

Tools, Web APIs

ACM Reference Format:
Valentina Lenarduzzi,

1
Fabio Palomba,

2
Davide Taibi,

3
Damian Andrew

Tamburri
4
. 2020. OpenSZZ: A Free, Open-Source, Web-Accessible Imple-

mentation of the SZZAlgorithm. In 28th International Conference on Program
Comprehension (ICPC ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM,

New York, NY, USA, 5 pages. https://doi.org/10.1145/3387904.3389295

1 INTRODUCTION
State-of-the-art research in automated software engineering has

proposed many studies investigating the nature of software defects

[5, 18] as well as a number of approaches for predicting defects in

various contexts, combining anything between rule-based [17] and

machine-learning based approaches [7, 8, 19]. To support the con-

clusions of all these pieces of research, a common problem concerns

the correct identification of so-called defect-inducing commits, i.e.,

the code changes in which a defect was introduced by develop-

ers. To handle this problem, a widely used solution is to rely the

on Sliwerski-Zimmermann-Zeller (SZZ for short) algorithm [24]

— that is, an algorithm based on the annotation/blame feature of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00

https://doi.org/10.1145/3387904.3389295

version-control systems able to locate such defect-inducing com-

mits.

Despite its wide usage, there exists no open-source and publicly

available implementation of the SZZ algorithm which is paralleliz-

able and highly-distributable for use in large-scale production sys-

tems, as highlighted by a recent systematic literature review on the

topic [25]. This lacking entails two main consequences: (1), it is

not possible for researchers to have a common ground on which to

build and base their experiments; (2) there is no benchmark imple-

mentation that can be either augmented or compared to alternative

solutions. For these reasons, in this paper we present OpenSZZ,

our public implementation of the SZZ algorithm. Specifically, we

publish and make available the full SZZ implementation project as a

GitHub project
1
. Researchers can use our implementation to inves-

tigate different hypotheses or submit new versions of the algorithm.

Furthermore, practitioners can make use of our implementation

e.g., as part of their DevOps pipelines [2].

Overall, this paper offers two main contributions:

(1) a publicly available implementation of OpenSZZ, an open-

source, scalable implementation of the SZZ algorithm;

(2) the empirical evaluation of OpenSZZ, done by conducting

a manual analysis of the results yielded by the tool, which

confirmed the validity of our implementation.

The remainder of this paper is organized as follows. In Section 2,

we provide the background on the SZZ algorithm. Section 3 outlines

our own implementation of the SZZ algorithm, highlighting its

design characteristics and licensing schema. Subsequently, Section

4 outlines the evaluation, while Section 5 summarizes the impact

of the proposed tool for the research community. In Section 6 we

overview the tools similar to the one proposed, thus highlighting

how it overcomes the state of the art. Finally, Section 7 concludes

the paper.

2 THE SZZ ALGORITHM
The SZZ algorithm is the most frequently used algorithm for iden-

tifying bug-introducing changes
2
[24], [10] and has been applied

by the authors of 200+ research papers [20].

More specifically, the SZZ algorithm identifies sets of changes

that induce bug fixes in the source code, based on historical data

from versioning and issue tracking systems. The SZZ algorithm

labels commits as one of three possible types: (1) Inducing; (2)
Fixing; (3) Not related to faults. The algorithm is based on two

main steps:

1
OpenSZZ Github repository: https://github.com/clowee/OpenSZZ

2
303 citations in Scopus and 707 in Google Scholar on 20/05/2019

https://doi.org/10.1145/3387904.3389295
https://doi.org/10.1145/3387904.3389295


ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Valentina Lenarduzzi,1 Fabio Palomba,2 Davide Taibi,3 Damian Andrew Tamburri4

...../ambari/server/controller/spi/Resource.java

Step 1 Fault-Fixing-Commit

Commits

E
8b

fd
b9

2
11

 J
ul

 2
01

6

Diff. with previous changes

...../ambari/server/controller/spi/Resource.java

Step 2 Diff

An
no

ta
te

Step 3 Fault-inducing commit
a2

d7
c9

e5
7

22
 J

un
 2

01
6

Figure 1: The OpenSZZ Approach, an outline.

Step 1. Identification of bug-fixing commits. As part of this
step, the algorithm matches commits with bug reports labeled as

fixed, through regular expressions that allow identifying bug num-

bers and keywords in the commit messages.

Step 2. Identification of bug-introducing commit(s). As part
of this step, the algorithm first employs the diff functionality im-

plemented in the control version systems to determine the lines

that have been changed (to fix the bug) between the fixed commit

version and its previous version.

Step 2.1. SZZ locates the commit that modified or deleted these

lines the last time in previous change(s) applying annotate/blame

functionalities. For example, Step 2.1 is applied in the context of

Figure 1. The figure shows the differences between the commit

#e8bfdb and its predecessor (#300a7e) in the Resource.java file. In
this case, in order to fix the bug, the data structure at line 188 was

changed. Therefore, SZZ identifies the changes that introduced the

bug AMBARI-17618 through the history of the source configuration

management system (GitHub).

Step 2.2. SZZ labels the commit #a2d7c9 as a potential bug-

introducing commit.

3 SZZ: AN OPEN IMPLEMENTATION
We implemented the SZZ algorithm as a cloud-native application

provided together with a free web interface. The algorithm is im-

plemented based on the following four concepts:

• Transaction: This is an object representing a commit re-

trieved by the git log. It contains information about the com-

mit, such as the commit timestamp, the author, the title, the

commit message, the attachments, the comments, and the

changed files.

• Issue: This is an object representing a Jira issue. It contains

information about the issue, such as the status, the priority,

the reporting date, the fixing date, and the author.

• Link: This is an object containing a transaction and its (prob-
ably) related issue. Since a transaction can fix several issues,

we can have several link objects with the same transaction,

but with different issues.

• Suspect: For each changed link file, a suspect object is cre-

ated. It contains the changed file under analysis, a commit

SHA, and its time stamp. The commit is the commit that is

closest to the issue-reporting day affecting the same lines of

code changed by the transaction of the link.

OpenSZZ takes as input a Jira URL and a Git URL and returns a

list of Bug-Fixing Commits and Bug-Inducing Commits. Below, we
provide a short description of the workflow adopted:

(1) If both the Jira and the GitHub URL are correct, the tool

downloads the git log and all the Jira issues;

(2) Commits containing the Jira Key (retrieved by the Jira URL)

or a number or special key words (like bug(s) fix(es), defects)

are saved in a transaction list;

(3) For each transaction in the list, and for each presumed Jira

Key found in the description, a "Link" object is created. Each

Link object is evaluated by a semantic and a syntactic analy-

sis. Only Links achieving a certain score are kept for further

analyses. We consider the remaining Links Bug-Fixing Com-
mits; in other words, commits/transactions that really have

closed/fixed a bug/issue;

(4) For each remaining Link for each changed file of the related

Transaction, the suspect is calculated. The suspect that is

closest to the issue-reporting date is kept and printed and

considered the Bug-Inducing Commit of the issue.

The cloud-native implementation of the OpenSZZ algorithm

makes it possible to execute the algorithm by invoking aweb service

API. The API creates a queue of requests that allows serving a higher

and parallel number of requests.

The architecture of the web application version is depicted in

Figure 2 and features the following architecture elements:

• The WebApp Container element contains the web user inter-

face. It sends the data inserted by the user to the Dispatcher
Container through RESTweb services and also displayswarn-

ing or error messages in case the input data is not correct.

Admin users also have the possibility to get an overview

of the requests inserted by the users and the status of the

requested analyses.

• The Dispatcher Container element checks the correctness of

the input data and, if correct, inputs the data into a Rabbit-

MQ reliable messaging queue to conduct OpenSZZ analysis.

Once the analysis is completed, the Dispatcher Container

component (1) receives a message from the Analyzer Con-

tainer, (2) gets the results from it, and (3) sends an email to



OpenSZZ: A Free, Open-Source, Web-Accessible Implementation of the SZZ Algorithm ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

the user communicating the completion of the analysis and

providing a link for downloading the results. The results are

encoded as a csv file of BugInducingCommits. Request data
is also saved in a mongo db for monitoring purposes.

• The Analyzer Container is replicated n times in order to

guarantee good analysis performance as well as multiple

concurrent analyses; n is a parameter established by the

administrator and can be instrumented with automated elas-

ticity management following state-of-the-art approaches [1].

If it is not busy, each Analyzer Container listens to the same

queue. Once it gets a message, it starts the analysis and will

not listen to the queue anymore until it has finished the cur-

rent analysis. If all containers are busy, incoming messages

are queued and executed by the first available container.

WEB	APP	CONTAINER ANALYSER	CONTAINER

DISPATCHER	
CONTAINER

ANALYSER	CONTAINER

ANALYSER	CONTAINER

ANALYSER	CONTAINER

Figure 2: OpenSZZ, Web Application Architecture

In terms of direct usage of the web service, OpenSZZ provides a

web dashboard where users can analyze projects by entering the

basic project information into the web form 3. The SZZ then starts

to compute the bug-fixing and bug-inducing commits and sends

an email with the link for downloading the results as soon as the

computation is finished. The users should be aware that for some

big projects, the computation time could be very long (e.g., it takes

more than one week for the Apache Https server).

Figure 3: Screenshot of OpenSZZ Web Application.

3.1 Licensing Schema and Intended Follow-ups
The SZZ implementation is provided as free and open-source soft-

ware. Users can redistribute and/or modify it under the terms of

the GNU General Public License as published by the Free Soft-

ware Foundation version 3. Furthermore, the SZZ implementa-

tion is distributed without any warranty, without even the im-

plied warranty of merchantability or fitness for a particular pur-

pose. More details on the GNU GPL 3 License can be found here:

https://www.gnu.org/licenses/. The aforementioned schema ismeant

to support academics and practitioners in furthering their under-

standing of the algorithm as well as promoting its use in production-

ready pipelines or as part of active research transfer engagements.

3.2 Current code version
Nr. Code metadata description Please fill in this column
C1 Current code version R1.1

C2 Permanent link to code/repository used

for this code version

https :

//дithub .com/clowee/OpenSZZ
C3 Code Ocean compute capsule

C4 Legal Code License GPL-3.0

C5 Code versioning system used Git

C6 Software code languages, tools, and ser-

vices used

Java, Docker

C7 Compilation requirements, operating en-

vironments & dependencies

Docker, Docker-compose, Java JDK 1.8 or

higher, availability of open port ranges

(at least 10 open ports)

C8 If available Link to developer documenta-

tion/manual

https :

//дithub .com/clowee/OpenSZZ
C9 Support email for questions davide.taibi@tuni.fi

4 EVALUATION
Several researchers who used the SZZ algorithm have published

their data. However, the links to several of these data sets are not

available anymore. The vast majority of the available data sets do

not report information on bug-inducing and bug-fixing commit

identifiers; instead, they report aggregated information on the total

number of inducing and fixing bugs.

We validated the results of our algorithm by following the same

approach adopted by Kim et al. [10] and [4]. We manually inspected

the commits marked as bug-inducing and bug-fixing commits.

We randomly selected 50 bug-fixing commits from the trunk of

the Zookeeper project
3
. These 50 commits contained a total of 650

changed lines, which were mapped back to a bug-inducing commit.

As expected, 551 of the 650 lines changed in the bug-fixing com-

mits appear to actually have fixed a bug. This is in line with the

results obtained by [4], who reported that 83% of the lines changed

in bug-fixing commits actually fixed the bugs.

Regarding false positives, several lines were related to code refac-

toring or cleaning. For example, in some cases, the declaration of

some variables was moved to the beginning of the class or of the

method.

Unfortunately, we were not able to evaluate the results against

other implementations, or to compare the results with other stud-

ies [26][6], since the replication packages were not available or did

not include the labeled data on the fault-fixing and fault-inducing

commits.

5 PRACTICAL IMPACT AND IMPLICATIONS
As highlighted by Rodriguez et al. [20], several works adopted the

SZZ algorithm, but only some limited implementations are avail-

able. Researchers need to implement the algorithm independently,

and validate it internally, with the threat of using an algorithm that

3
https://github.com/apache/zookeeper



ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Valentina Lenarduzzi,1 Fabio Palomba,2 Davide Taibi,3 Damian Andrew Tamburri4

is not externally validated and potentially buggy. Several exten-

sion of the SZZ algorithm have been proposed by different groups.

However, also the extensions are not public and the algorithms

are only reported on papers. Rodriguez et al. also proposed to im-

plement a public and open source version of the SZZ algorithm,

to enable researchers to propose practical improvements, and to

widely validate it.

OpenSZZ, as free and open-source project, available in GitHub,

is bound to enable: (1) practitioners to practically integrate the al-

gorithm as part of automated testing, integration, and deployment

pipelines; (2) researchers interested in developing and extending

this algorithm as well as testing its limitations in terms of non-

functional aspects such as performance, scalability, automation

degree and more; (3) security and & privacy engineers to elab-

orate more on the SZZ’ weaknesses and vulnerabilities at scale.

Furthermore, researchers are enabled to fork the project proposing

their new versions, or submit new improvements by means of the

classical GitHub pull-request mechanism.

Beyond the current state of the art, OpenSZZ will open several

research questions, including for example the public and concurrent

open validation of the original SZZ algorithm as well as its further

improvement. In addition, the availability of our implementation

will also enable mining software repositories competitions with the

goal of improving the identification accuracy of the fault-inducing

commit.

Finally, on top the indication of usage of the SZZ algoritm re-

ported in the SLR from Rodriguez et al. [20], a query in Scopus
4

reveals that more than 450 papers implemented the SZZ algorithm

independently. Figure 4. OpenSZZ will enable many more works

on this topic, allowing all the researchers that never implemented

the algorithm to use it.

0

10

20

30

40

50

60

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

#Papers using SZZ

Figure 4: Number of papers using the SZZ [24] algorithm

6 RELATEDWORK
In this paper, we present an open-source and publicly available

tool implementing the SZZ algorithm. While we are aware of the

many previous studies that employed SZZ for finding the origin of

defects, we consider them out of the scope of our literature review;

a comprehensive overview of these studies is available in the paper

by Rodriguez et al. [20].

When it comes to the implementation of SZZ, this was originally

devised by Śliwerski et al. [24]. Later on, different researchers have

4
Scopus Search String: REF ( ”When do changes induce fixes” )

provided improvements in order to filter out cosmetic changes (e.g.,

rename refactoring operations) [9] or to increase its precision by

means of line number mapping [27]. While in our work we have

opted for the implementation of the original algorithm, we made

our source code open with the aim of stimulating other researchers

to contribute, implement, and test new versions of SZZ. At the

same time, it is important to note that the evaluation conducted to

verify the performance of the proposed tool showed that it is able

to correctly locate most of the bug-inducing commits, meaning that

our implementation already offers a valuable basis for conducting

studies that require the usage of SZZ.

The closest tools to the one presented herein are those presented

by Rosen et al. [21] and Borg et al. [3]. In the former work, the

CommitGuru platform was introduced: this is a software analytics

tool that allows researchers to specify a Github repository and out-

puts a number of metrics, including the information on the risky

commits, i.e., those that can potentially introduce defects. Looking

at the implementation details of the platform, the risky commits are

identified based on the original implementation of SZZ. There are

two main differences with respect to the tool we propose: contrarily

to Rosen et al. [21], (1) we present an open-source platform that

researchers can directly use or even improve; and (2) we empirically

assessed the performance of our implementation, showing that it

is suitable for mining software repository studies. As for Borg et

al. [3], they presented SZZUnleashed, an open implementation of

SZZ that has later used in an example scenario involving Jenkins

projects. While our paper has a similar goal, the open-source na-

ture of OpenSZZ makes it more usable and extensible. Moreover,

OpenSZZ enables to scale faster, allowing to analyze several large

projects in parallel thanks to its cloud-native nature. Furthermore,

Borg et al. [3] did not report details about the accuracy of their

implementation and the resulting performance, while we made an

effort toward this direction in order to produce a tool that is as

accurate as possible.

7 CONCLUSIONS
This paper presented an open implementation of the well-known

SZZ algorithm. The implementation is provided as a downloadable

package and container so that it can be used as a containerized web

service API. The evaluation was conducted using state-of-the-art

data sets and by comparing implementation performances.

The evaluation itself showed competitive performance, which

reflects a highly usable and potentially production-ready piece

of software. OpenSZZ has been already adopted in our previous

works [22][11][12][14][16] and a dataset containing the analysis

of 33 open source projects has been recently published [15]. More

details on the dataset and on the diffuseness of faults can be found

in [13] Moreover, the GitHub project has been forked 49 times by

several researchers.

In the future, we aim to refine our implementation from several

perspectives, including its usage as part of larger-scale DevOps

verification and validation pipelines and analytical solutions. More-

over, we are planning to implement different extensions of the SZZ

algorithm, such as [23] and [4], to allow researchers to adopt the

version they need in their research work.



OpenSZZ: A Free, Open-Source, Web-Accessible Implementation of the SZZ Algorithm ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Luciano Baresi, Sam Guinea, Giovanni Quattrocchi, and Damian Andrew Tam-

burri. 2016. MicroCloud: A Container-Based Solution for Efficient Resource

Management in the Cloud.. In SmartCloud. 218–223.
[2] Len Bass. 2018. The Software Architect and DevOps. IEEE Software 35, 1 (2018),

8–10.

[3] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. 2019. SZZ

Unleashed: An Open Implementation of the SZZ Algorithm-Featuring Example

Usage in a Study of Just-in-Time Bug Prediction for the Jenkins Project. arXiv
preprint arXiv:1903.01742 (2019).

[4] Chadd C. Williams and Jaime Spacco. [n. d.]. SZZ revisited: verifying when

changes induce fixes. In Proceedings of the 2008 Workshop on Defects in Large Soft-
ware Systems, held in conjunction with the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2008), DEFECTS 2008, Seattle, Washington,
USA, July 20, 2008.

[5] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019.

Not All Bugs Are the Same: Understanding, Characterizing, and Classifying Bug

Types. Journal of Systems and Software (2019).
[6] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E. Hassan.

2017. A Framework for Evaluating the Results of the SZZApproach for Identifying

Bug-Introducing Changes. IEEE Transactions on Software Engineering 43, 7 (July

2017), 641–657.

[7] Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto,

and Andrea De Lucia. 2017. A developer centered bug prediction model. IEEE
Transactions on Software Engineering 44, 1 (2017), 5–24.

[8] Norman E. Fenton andMartin Neil. 1999. A Critique of Software Defect Prediction

Models. IEEE Trans. Software Eng. 25, 5 (1999), 675–689.
[9] Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. 2006. Auto-

matic identification of bug-introducing changes. In 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06). IEEE, 81–90.

[10] S. Kim, T. Zimmermann, K. Pan, and E. J. Jr. Whitehead. 2006. Automatic Identifi-

cation of Bug-Introducing Changes. In International Conference on Automated
Software Engineering (ASE’06). 81–90.

[11] Valentina Lenarduzzi, Francesco Lomio, Davide Taibi, and Heikki Huttunen.

2019. Are SonarQube Rules Inducing Bugs? International Conference on Software
Analysis, Evolution and Reengineering (SANER 2020). Preprint: arXiv:1907.00376.

[12] Valentina Lenarduzzi, Antonio Martini, Davide Taibi, and Damian Andrew Tam-

burri. 2019. Towards Surgically-Precise Technical Debt Estimation: Early Results

and Research Roadmap. In 2019 IEEE Workshop on Machine Learning Techniques
for Software Quality Evaluation (MaLTeSQuE).

[13] V. Lenarduzzi, N. Saarimaki, and D. Taibi. 2019. On the Diffuseness of Code Tech-

nical Debt in Java Projects of the Apache Ecosystem. In International Conference
on Technical Debt (TechDebt). 98–107.

[14] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. Some Sonar-

Qube Issues have a Significant but Small Effect on Faults and Changes. A

large-scale empirical study. arXiv e-prints, Article arXiv:1908.11590 (Aug 2019),
arXiv:1908.11590 pages. arXiv:cs.SE/1908.11590

[15] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical

Debt Dataset. In 15th conference on PREdictive Models and data analycs In Software
Engineering (PROMISE ’19).

[16] Valentina Lenarduzzi, Christian Stan, Davide Taibi, Davide Tosi, and Gustavs

Venters. 2017. A Dynamical Quality Model to Continuously Monitor Software

Maintenance. In 11th European Conference on Information Systems Management
(ECISM2017).

[17] Bharavi Mishra and Kaushal K. Shukla. 2014. Software Defect Prediction Based

on GUHA Data Mining Procedure and Multi-Objective Pareto Efficient Rule

Selection. IJSSCI 6, 2 (2014), 1–29.
[18] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco

Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on

maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (2018), 1188–1221.

[19] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia,

and Rocco Oliveto. 2017. Toward a smell-aware bug prediction model. IEEE
Transactions on Software Engineering (2017).

[20] Gema Rodriguez, Gregorio Robles, and Jesus Gonzalez-Barahona. 2018. Repro-

ducibility and Credibility in Empirical Software Engineering: A Case Study based

on a Systematic Literature Review of the use of the SZZ algorithm. Information
and Software Technology (03 2018).

[21] Christoffer Rosen, Ben Grawi, and Emad Shihab. 2015. Commit guru: analytics

and risk prediction of software commits. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 966–969.

[22] Nyyti Saarimäki, Valentina Lenarduzzi, and Davide Taibi. 2019. On the diffuse-

ness of code technical debt in open source projects of the Apache Ecosystem.

International Conference on Technical Debt (TechDebt 2019) (2019).
[23] Emre Sahal and Ayse Tosun. 2018. Identifying Bug-inducing Changes for Code

Additions. In Proceedings of the 12th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM ’18). ACM, New York, NY,

USA, Article 57, 2 pages.

[24] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do

Changes Induce Fixes? SIGSOFT Softw. Eng. Notes 30, 4 (May 2005), 1–5.

[25] Le Hoang Son, Nakul Pritam, Manju Khari, Raghvendra Kumar, Pham Thi Minh

Phuong, and Pham Huy Thong. 2019. Empirical Study of Software Defect Predic-

tion: A Systematic Mapping. Symmetry 11, 2 (2019), 212.

[26] Ming Wen, Rongxin Wu, Yepang Liu, Yongqiang Tian, Xuan Xie, Shing-Chi

Cheung, and Zhendong Su. 2019. Exploring and Exploiting the Correlations

between Bug-Inducing and Bug-Fixing Commits. In 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2019). 326–337.

[27] Chadd Williams and Jaime Spacco. 2008. Szz revisited: verifying when changes

induce fixes. In Proceedings of the 2008 workshop on Defects in large software
systems. ACM, 32–36.

http://arxiv.org/abs/cs.SE/1908.11590

	Abstract
	1 Introduction
	2 The SZZ Algorithm
	3 SZZ: an Open Implementation
	3.1 Licensing Schema and Intended Follow-ups
	3.2 Current code version

	4 Evaluation
	5 Practical Impact and Implications
	6 Related Work
	7 Conclusions
	References

