
Textual Analysis for Code Smell Detection
Fabio Palomba

Department of Management & Information Technology
University of Salerno, Fisciano (SA), Italy
Advisors: Andrea De Lucia, Rocco Oliveto

Abstract—The negative impact of smells on the quality of
a software systems has been empirical investigated in several
studies. This has recalled the need to have approaches for the
identification and the removal of smells. While approaches to
remove smells have investigated the use of both structural and
conceptual information extracted from source code, approaches
to identify smells are based on structural information only. In
this paper, we bridge the gap analyzing to what extent conceptual
information, extracted using textual analysis techniques, can be
used to identify smells in source code. The proposed textual-based
approach for detecting smells in source code, coined as TACO
(Textual Analysis for Code smell detectiOn), has been instantiated
for detecting the Long Method smell and has been evaluated on
three Java open source projects. The results indicate that TACO
is able to detect between 50% and 77% of the smell instances
with a precision ranging between 63% and 67%. In addition, the
results show that TACO identifies smells that are not identified
by approaches based on solely structural information.

I. RESEARCH PROBLEM AND MOTIVATION

Technical debt is a metaphor used to describe the conse-
quences of poor software design and bad coding. Specifically,
the debt represents a piece of code that needs to be re-
written or completed before a particular task can be consid-
ered complete [9]. The metaphor explains well the trade-offs
between delivering the most appropriate but still immature
product, in the shortest time possible [7], [9], [13], [14],
[24]. Code smells (shortly smells), i.e., symptoms of poor
design and implementation choices [11], are one of the most
important factors contributing to technical debt. In the past
and, most notably, in recent years, several studies investigated
the relevance that code smells have for developers [21], [32],
the extent to which code smells tend to remain in a software
system for long periods of time [2], [8], as well as the side
effects of code smells, such as increase in change- and fault-
proneness [12] or decrease of software understandability [1]
and maintainability [25], [31], [30].

The results achieved in these studies have suggested the
need to properly manage smells aiming at improving the
quality of a software systems. Thus, several approaches and
tools have been proposed for detecting smells [17], [18],
[19], [20], [22], [23], [26], [27], [28], and, whenever pos-
sible, triggering refactoring operations [5], [4], [27]. While
approaches to remove smells have investigated the use of both
structural and conceptual information extracted from source
code, approaches to identify smells are based on structural
information only. Recently, Palomba et al. [22] have also used
historical information to identify smell. In the context of their
study, the authors obtained that using historical information

is possible to identify smell instances that are missed using
structural information only. In this paper, we conjecture that
also by using conceptual information is possible to identify
smell instances that are missed by using other sources of
information. In other words, we believe that, as obtained
in other software engineer tasks (see e.g., [6], [15], [16]),
conceptual properties can provide complementary information
to structural properties when identifying smells in source code.

In order to verify our conjecture, we present TACO (Textual
Analysis for Code smell detectiOn), a textual-based smell de-
tection approach. TACO has been instantiated for the detection
of a specific smell, i.e., Long Method. However, the approach
can be easily extended to other smells. The choice of Long
Method is not random, but guided by the idea that such a smell
is a perfect candidate to evaluate the benefits of conceptual
information. Indeed, a method with a high number of lines
of code likely implements different responsibilities and thus
textual analysis could be particularly suitable to identify such
responsibilities.

II. APPROACH AND UNIQUENESS

Fowler [11] described the Long Method as a method in
which there is the implementation of a main functionality
together with auxiliary functions that should be managed in
different methods. Thus, the key idea behind TACO is that
a Long Method contains a set of code blocks conceptually
unrelated each that should be managed separately.

Figure 1 overviews the main steps of the proposed approach.
First, TACO extracts from a method Mi the blocks composing
it, applying the technique proposed by Wang et al. [29].
Then, from each block TACO extracts the identifiers and
comments cleaning the text from non-relevant words, such as
language keywords. Each cleaned block of code is viewed
as a document, and for each pair of code block is computed
a value of similarity using Latent Semantic Indexing (LSI)
[10]. The similarity values between all the possible pairs of
blocks are stored in a block similarity matrix, where a generic
entry ci,j represent the similarity between the method blocks
bi and bj . If in the block similarity matrix there is an entry
(i.e., similarity between two code blocks) lower than α, then a
Long Method istance is identified. The parameter α has been
empirically evaluated and set to 0.4.

III. PRELIMINARY EVALUATION

We evaluate the accuracy of TACO in detecting Long
Method smell instances in three software systems, namely

1



Method mi Block bi

Pruned 
Block bi

extract blocks
extract identifiers 
and comments

compute similarity for 
each pairs of blocks

similarity matrix

blocks with 
similarity < α

yes

Long Method 
identified

Fig. 1. TACO: Identification of Long Method smell.

TABLE I
RESULTS OBTAINED ON THE THREE OBJECT SYSTEMS

Project
DECOR TACO
Prec. Recall F-measure Prec. Recall F-measure

Apache Cassandra 0.84 0.5 0.63 0.63 0.5 0.56
Apache Xerces 0.63 0.71 0.67 0.67 0.57 0.62
Eclipse Core 0.10 1 0.19 0.67 0.77 0.71
Overall 0.52 0.74 0.51 0.65 0.61 0.63

Apache Cassandra1, Apache Xerces2 and Eclipse Core3. Be-
sides the analysis of the accuracy of TACO we also com-
pare the proposed approach with a structural-based technique,
namely DECOR [18].

In order to evaluate the accuracy of the experimented
techniques, we compare the set of Long Method instances
identified by a specific technique with the set of instances
manually identified in the object system. Details on how these
smells have been manually identified can be found in the paper
by Palomba et al. [21]. Then, we measure the accuracy of
the experimented techniques by using three widely-adopted
Information Retrieval (IR) metrics, namely recall, precision,
and F-measure [3]. In addition, we also measure the overlap
between TACO and DECOR by measuring the smell instances
identified by both the technique (TACO ∩ DECOR), the
instances identified by TACO only (TACO \ DECOR) and
the instances identified by DECOR only (DECOR \ TACO).

Table I shows the results achieved. As we can see, TACO is
able to detect Long Method instances with good accuracy in all
the object systems. Indeed, TACO is able to achieve, overall, a
precision of 65% and a recall of 61% (F-measure=63%), while
DECOR is able to achieve a precision of 52% and a recall of
74% (F-measure=51%). An interesting case regards Eclipse
Core, where DECOR detects a large number of candidate
smells (i.e., 122), obtaining a very low value of precision.
On this system, TACO detects 6 instances of Long Method,
achieving a good compromise between precision and recall (F-
measure=71%). Analyzing more in details the reasons behind
this result, we observed that Eclipse Core has several number
of methods having more than 100 lines of code, and this
is why they are detected as Long Methods by the code

1http://cassandra.apache.org
2http://xerces.apache.org
3http://www.eclipse.org/eclipse/platform-core/

TABLE II
OVERLAP BETWEEN TACO AND DECOR

System TACO ∩ DECOR TACO \ DECOR DECOR \ TACO
Apache Cassandra 12% 44% 44%
Apache Xerces 0% 43% 57%
Eclipse Core 77% 23% 0%

analysis technique. However, the most part of these methods
manage a single responsibility, but in a long piece of code.
For example, the method findTypesFromImports of the
class CompletionEngine in identified by DECOR as Long
Method since it has 125 lines of code, but it only contains
the implementation of an algorithm that finds the references
of a class looking at its imports. On the other hand, our
approach is able to identify different types of Long Method. As
an example, the method findTypesAndPackages of the
class CompletionEngine, allows to discover the classes
and the packages of a given project. Clearly, this method
manages different tasks, even if its size is not high. This
means that the use of textual analysis is actually useful to
avoid the identification of many false positive candidates, but
also to detect instances of Long Method that the structural
technique is not able to detect. This claim is supported by the
results achieved when analyzing the overlap between TACO
and DECOR (see Table II). The two approaches are highly
complementary on two out of three systems analyzed in
the study. This result suggests that structural and conceptual
information are complementary when used to identify smells
and thus better accuracy might be obtained by combining the
two approaches. Future work will be devoted to investigate
such an aspect.

IV. CONTRIBUTIONS AND FUTURE DIRECTIONS

We presented TACO (Textual Analysis for Code smell de-
tectiOn), an approach to detect Long Method smells in source
code by analyzing the textual information extracted by the
code blocks in a method. The analysis of textual information
for smell detection represent a premier of this paper, since
all the detection approaches proposed in the literature so far
use structural or historical information. As future work, we
plan to instantiate TACO for detecting other kinds of smells.
For example, Blob and Promiscuous Package smells can be
detected applying the same technique presented in this paper
at a higher level of granularity, i.e., instead of computing
similarity between code blocks it is necessary to compute the
similarity between methods (in case of Blob) or classes (in
case of Promiscuous Package). Also the Feature Envy smell
can be detected by using TACO. In this case it is necessary
to compute the similarity between a method and all the used
classes aiming at identifying the envied class. In addition, the
preliminary evaluation of TACO indicated a quite low overlap
between the set of smells identified by TACO and a structural-
based detection technique. The possibility of combine the two
approaches to define a hybrid and more accurate smell detector
is also part of the agenda of our future work.

2



REFERENCES

[1] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in 15th European Conference on Software
Maintenance and Reengineering, CSMR 2011, 1-4 March 2011, Old-
enburg, Germany. IEEE Computer Society, 2011, pp. 181–190.

[2] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory survey,”
in Proceedings of the International Workshop on Refactoring Tools.
ACM, 2011, pp. 33–36.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[4] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia,
“Improving software modularization via automated analysis of latent
topics and dependencies,” ACM Transactions on Software Engineering
and Methodologies, vol. 23, no. 1, pp. 1–33, 2014.

[5] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia,
“Methodbook: Recommending move method refactorings via relational
topic models,” IEEE Transactions on Software Engineering, 2014.

[6] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “An empirical study on the developers&#039; perception
of software coupling,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 692–701. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486879

[7] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. L. Nord, I. Ozkaya, R. S. Sangwan, C. B. Seaman,
K. J. Sullivan, and N. Zazworka, “Managing technical debt in software-
reliant systems,” in Proceedings of the Workshop on Future of Software
Engineering Research, at the 18th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering. Santa Fe, NM, USA:
ACM, 2010, pp. 47–52.

[8] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of
bad smells in object-oriented code,” in International Conference on
the Quality of Information and Communications Technology (QUATIC).
IEEE, 2010, pp. 106–115.

[9] W. Cunningham, “The wycash portfolio management system,” SIGPLAN
OOPS Mess., vol. 4, no. 2, pp. 29–30, Dec. 1992. [Online]. Available:
http://doi.acm.org/10.1145/157710.157715

[10] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[11] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[12] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[13] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, 2012.

[14] E. Lim, N. Taksande, and C. B. Seaman, “A balancing act: What
software practitioners have to say about technical debt,” IEEE Software,
vol. 29, no. 6, pp. 22–27, 2012.

[15] A. Marcus and D. Poshyvanyk, “The conceptual cohesion of classes,”
in Proceedings of 21st IEEE International Conference on Software
Maintenance, Budapest, Hungary, 2005, pp. 133–142.

[16] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual
cohesion of classes for fault prediction in object-oriented systems,” IEEE
Transaction on Software Engineering, vol. 34, no. 2, pp. 287–300, 2008.

[17] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in 20th International Conference on Software Mainte-
nance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA. IEEE
Computer Society, 2004, pp. 350–359.

[18] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2010.

[19] M. J. Munro, “Product metrics for automatic identification of “bad
smell” design problems in java source-code,” in Proceedings of the 11th

International Software Metrics Symposium. IEEE Computer Society
Press, September 2005.

[20] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Numer-
ical signatures of antipatterns: An approach based on b-splines,” in
Proceedings of the 14th Conference on Software Maintenance and
Reengineering, R. Capilla, R. Ferenc, and J. C. Dueas, Eds. IEEE
Computer Society Press, March 2010.

[21] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do
they really smell bad? a study on developers’ perception of bad code
smells,” in In Proceedings of the 30th IEEE International Conference
on Software Maintenance and Evolution (ICSME’14), Victoria, Canada,
2014, to appear.

[22] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, 2015.

[23] D. Ratiu, S. Ducasse, T. Gı̂rba, and R. Marinescu, “Using history
information to improve design flaws detection,” in 8th European Confer-
ence on Software Maintenance and Reengineering (CSMR 2004), 24-26
March 2004, Tampere, Finland, Proceeding. IEEE Computer Society,
2004, pp. 223–232.

[24] F. Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman, Perspectives
on the Future of Software Engineering. Springer, 2013, ch. Technical
Debt: Showing the Way for Better Transfer of Empirical Results, pp.
179–190.

[25] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dybå, “Quantifying the effect of code smells on maintenance effort,”
IEEE Trans. Software Eng., vol. 39, no. 8, pp. 1144–1156, 2013.

[26] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting
defects in object-oriented designs: using reading techniques to increase
software quality,” in Proceedings of the 14th Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM
Press, 1999, pp. 47–56.

[27] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2011.

[28] E. van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Proceedings of the 9th Working Conference on Reverse
Engineering (WCRE’02). IEEE CS Press, Oct. 2002. [Online].
Available: citeseer.ist.psu.edu/vanemden02java.html

[29] X. Wang, L. Pollock, and K. Vijay-Shanker, “Automatic segmentation of
method code into meaningful blocks to improve readability,” in Reverse
Engineering (WCRE), 2011 18th Working Conference on, Oct 2011, pp.
35–44.

[30] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell rela-
tions on software maintainability: An empirical study,” in International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 682–691.

[31] A. F. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in 28th IEEE International Conference on
Software Maintenance, ICSM 2012, Trento, Italy, September 23-28,
2012. IEEE Computer Society, 2012, pp. 306–315.

[32] ——, “Do developers care about code smells? an exploratory survey,”
in 20th Working Conference on Reverse Engineering, WCRE 2013,
Koblenz, Germany, October 14-17, 2013. IEEE, 2013, pp. 242–251.

3


