
Just-In-Time Test Smell Detection and Refactoring:
The DARTS Project

Stefano Lambiase, Andrea Cupito, Fabiano Pecorelli, Andrea De Lucia, Fabio Palomba
SeSa Lab - University of Salerno, Italy

s.lambiase7@studenti.unisa.it,a.cupito@studenti.unisa.it,fpecorelli@unisa.it,adelucia@unisa.it,fpalomba@unisa.it

ABSTRACT

Test smells represent sub-optimal design or implementation solu-
tions applied when developing test cases. Previous research has
shown that these smells may decrease both maintainability and
effectiveness of tests and, as such, researchers have been devising
methods to automatically detect them. Nevertheless, there is still a
lack of tools that developers can use within their integrated devel-
opment environment to identify test smells and refactor them. In
this paper, we present DARTS (Detection And Refactoring of Test
Smells), an Intellij plug-in which (1) implements a state-of-the-art
detection mechanism to detect instances of three test smell types,
i.e., General Fixture, Eager Test, and Lack of Cohesion of Test Meth-
ods, at commit-level and (2) enables their automated refactoring
through the integrated APIs provided by Intellij.
Video. https://youtu.be/sd3V2J7k8Zs
Source Code. https://github.com/StefanoLambiase/DARTS

CCS CONCEPTS

• Software and its engineering → Software maintenance

tools.

KEYWORDS

Test Smells, Refactoring, Software Testing.
ACM Reference Format:

Stefano Lambiase, Andrea Cupito, Fabiano Pecorelli, Andrea De Lucia, Fabio
Palomba. 2018. Just-In-Time Test Smell Detection and Refactoring: The
DARTS Project. In Proceedings of ICPC ’20: ICPC International Conference
on Program Comprehension (ICPC ’20). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Regression testing is the activity that allows developers to run test
cases as soon as a new change is committed onto a repository with
the aim of finding possible faults introduced by the modification
[2]. To this aim, with the help of testing framework (e.g., JUnit1)
developers write tests to enable regression analysis. However, while
developing them, programmers sometimes introduce sub-optimal
1https://junit.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’20, May 23–24, 2020, Seoul, South Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

implementation solutions that have the potential impact of reduc-
ing test code understandability, maintainability, and effectiveness:
these are called test smells [6]. Previous research has investigated
these smells under different angles, highlighting that tests affected
by them have reduced fault detection capabilities [9], other than
requiring more effort to be maintained and/or comprehended [1, 4].

In the recent past, researchers have been studying methods to
support developers with the identification of test smells. In partic-
ular, earlier approaches were defined by van Rompaey et al. [10]
and Greiler et al. [5], who defined detection strategies based on
the computation of code metrics. For example, van Rompaey et
al. [10] proposed to identify instances of Eager Test, i.e., the smell
that arises when a non-cohesive test exercises multiple methods
of the production class [6], by looking at the number of method
calls made by a test: if this is higher than a predefined threshold,
then an Eager Test is detected. More recently, Palomba et al. [8]
defined a novel technique, named Taste, which implements an in-
formation retrieval mechanism to identify three types of test smells
such as Eager Test, General Fixture, and Lack of Cohesion of Test
Methods. The empirical assessment of Taste showed that it can
overcome the performance of code metrics-based detectors, hence
being potentially more useful in practice.

Despite the effort spent by researchers so far, none of the detec-
tion proposed approaches has been implemented into a tool usable
by developers. Furthermore, to the best of our knowledge, there is
no tool able to support developers with the automatic refactoring
of test smells. As such, the practical relevance of the research made
in the field is still limited.

To overcome these limitations, we develop and propose Darts
(which is the acronym of Detection And Refactoring of Test
Smells), an Intellij plugin that (1) enables the identification of the
three test smell types originally supported by Taste [8] and (2) sup-
ports their removal through automatic refactoring. We implement
Darts so that it can work at commit-level, hence implementing
a just-in-time philosophy that allows developers to discover and
refactor test code as soon as a new commit is performed. We make
the plugin publicly available and open-source on Github, in an
effort of encouraging the research community to further extend
our tool with additional test smells and refactoring options.

2 TEST SMELL DETECTION AND

REFACTORING IN DARTS

This section reports details about the test smells involved in our
tool. For each of them we provide a definition, then we report
details about the automatic detection, following the detection rules
proposed by Palomba et al. [8], and finally we present the automatic
refactoring performed by Darts.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICPC ’20, May 23–24, 2020, Seoul, South Korea Lambiase, et al.

2.1 General Fixture

Definition There is a General Fixture when the fixture (initializa-
tion of setup variables) of a test suite is too general and the test
methods in the suite only use a part of it [6].

Identification The detection rule by Palomba et al. [8] is based
on the calculation of the number of disjoint pairs of methods in
a test class, where two methods are defined disjoint if they have
a cosine similarity = 0 and they use parts of the setup method.
The number of disjoint pairs of methods are then used to compute
the percentage of disjoint pairs as follows:

PGF (T) =
|Disjoint_Pairs |

|{(ti , tj) : ti , tj ∈ T }|
(1)

Finally, for each test class T, if PGF (T) is greater than 0.6, then T
is considered as a General Fixture.

Refactoring Once identified one (or more) class affected by Gen-
eral Fixture test smell, Darts provides an automatic refactoring
proposal based on the following implementation:

(1) First of all, Darts identifies the method in the test suite that
causes General Fixture. For the sake of comprehensibility let’s
call itmGF ;

(2) Then, Darts collects the list of all the instance variables used
by such method;

(3) Darts performs an Extract Method Refactoring in order to
split the set up in two methods. The first will contain only
the instance variables used by themGF ; the second one will
contain all the remaining instance variables. In so doing, Darts
exploits the data flow analysis engine of the IntelliJ APIs2 in
order to deduce local variables and parameters that are used
inside a method, but that are declared outside of it.

(4) Finally, Darts performs an Extract Class Refactoring creating
a new class that will contain (i) the instance variables used by
mGF , (ii) the set up method for their initialization, and (iii) the
methodmGF .

2.2 Eager Test

Definition Eager Test occurs when a test method exercises more
than one method of the production class under test [6].

Identification Given a test method t, Taste [8] computes the
probability that t is affected by Eager Test as follows:

PET (t) = 1 −TestMethodCohesion(t) (2)

where TestMethodCohesion(t) is the average textual similarity
between all the pairs of methods called by t. Also in this case, a
0.6 threshold is used to establish if the method is affected or not
by the smell.

Refactoring Given a method affected by Eager Test, Darts pro-
poses an automatic Extract Method Refactoring operation. In
particular, it is able to identify the portions of code that cause
Eager Test and move them in a new method.

2https://www.jetbrains.com/help/idea/analyzing-data-flow.html

2.3 Lack of Cohesion of Test Methods

Definition There is a Lack of Cohesion of Test Methods when
there is low cohesion between the test methods in a test suite.

Identification Given a test class, we rely on the Taste detection
strategy [8] in which a test class (t) is considered to be affected
by Lack of Cohesion of Test Methods if PLCTM (t) > 0.6.

PLCTM (T) = 1 −TestClassCohesion(T) (3)

where TestClassCohesion(T) is the average textual similarity
between all the methods in the class T.

Refactoring Given a class affected by Lack of Cohesion of Test
Methods, Darts proposes an Extract Class Refactoring in which
the methods with lower cohesion with the test class are moved
to a new class. Note that if such methods use part of the fixture,
Darts also performs an Extract Method Refactoring in order to
split the set up method and move it in the new class.

3 DARTS: A USE CASE SCENARIO

In this section we report a use case scenario of how Darts can be
used by developers—the companion video shows in more detail the
scenario described herein.

Let suppose that when maintaining the system she is work-
ing on, a developer modifies the production classes Example1 and
Example2 and, accordingly, makes a consistent change to the corre-
sponding test suites, called Example1Test and Example2Test, by
introducing test smell instances. When committing her changes
onto the repository, Darts automatically warns the developer about
the existence of some test smell instances in the tests she has mod-
ified. At this point, the developer can either decide to ignore the
warning, hence continuing with the commit, or review the test
files included in the newly committed changes. If the second op-
tion is selected, Darts shows the window depicted in Figure 1. In
particular, the plugin provides the developer with three main tabs,
one for each supported test smell type. For each of them, Darts
shows three pieces of information. Under the ‘Classes’ tab (panel
1○ in the figure), it indicates which test suite contains at least one
instance of test smells, while under the ‘Methods’ tab (panel 2○)
the developer can see the list of test methods involved in a smell.
More importantly, the right-hand side of the window allows the
developer to directly analyze the smelly test method (panel 3○) as
well as gather tips on how to refactor it (panel 4○). The template
used to give tips is automatically adapted based on the type of
test smell affecting the test under review. On the one hand, the
explanation of the smell comes directly from the analysis of how it
is detected: in the example shown in Figure 1, a General Fixture is
identified because the test ExampleTest1.doSomething1 only par-
tially uses the fixture of the class, thus making the test refactorable.
On the other hand, the text used to provide refactoring suggestions
is static and based on the specific operation associated to the smell:
in the figure, the developer receives the list of possible actions that
could be performed to refactor the code, i.e., an Extract Method and
Extract Class refactoring.

As a final step, the developer can decide to click the ‘Refactoring
Preview’ button: it will open a new dialog (panel 5○) where she can

Just-In-Time Test Smell Detection and Refactoring:
The DARTS Project ICPC ’20, May 23–24, 2020, Seoul, South Korea

21 3

4

5

Figure 1: Darts - Main window showing the results of the test smell detection process.

have indications of how the refactoring will be performed. In this
specific use case scenario, the developer will see all the elements
(e.g., methods, variables) involved in the two suggested refactoring
operations (Extract Method and Extract Class). Afterwards, the de-
veloper can decide to apply a refactoring and, in this case, the tool
will automatically modify the source code accordingly.

4 ARCHITECTURE OF THE TOOL

Figure 2 overviews the architecture of Darts, which has been
developed through the IntelliJ and Java 8 APIs. It consists of two
main layers, which are described in the following:

Interface Layer. The interactions with the user as well as the
logic pertaining to the creation of the contents to be displayed
are managed in this layer. Two subsystems contribute to this
component. First, the extensions package contains the classes
required to make the plugin working at commit-level: specifically,
the package implements the feature that allows Darts to keep
listening the activities made by a developer and interact with her
when she performs a commit onto a remote repository. Finally,
the toolWindowsConstruction package is the one responsible
for the definition of the graphical user interface and the UI com-
ponents that allow the user to interact with the detection analysis
and refactoring functionalities implemented by the tool.

Application Layer. The whole logic of the plugin, including
the detection and refactoring mechanisms, is placed in this
layer. Here there are two main subsystems which we named
testSmellDetection and refactoring. The former contains
the test smell detection rules, one for each smell considered. In
this regard, it is important to note that we implemented a Strat-
egy design pattern [3] that defines a common interface, named
ITestSmellDetection, that eases the extensibility of Darts, al-
lows other researchers to implement new detection rules without

compromising the existing ones, and enables the definition of a
strategy to dynamically change the detection mechanism based
on some condition. The second subsystem concerns with the
refactoring operations implemented by the tool. Classes in this
package are called once the detection phase is completed with
the aim of manipulating the smelly test code and modifying the
source code according to the refactoring that the developer wants
to perform. From a practical perspective, the subsystem heav-
ily relies on PSI3 (that stands for Program Structure Interface),
the IntelliJ library for code manipulation: it allows to navigate
the source code elements and modify them implementing the
refactoring actions associated to the considered test smells. It is
worth noting that, as done in the previous case, we implemented
a Strategy design pattern to define an interface called IRefactor,
that could enable the definition of different refactoring strategies
than those applied in the context of this tool demo.

5 EVALUATION OF THE TOOL

The performance of Darts strongly depends on the identification
mechanism it implements. As explained in Section 2, the proposed
tool builds on top of Taste, a textual-based detector we previously
designed and evaluated [8]. More specifically, the test smell detec-
tor has been ran against a manually-validated oracle reporting a
total amount of 494 actual test smell instances pertaining to 12
open-source software projects coming from the Apache Software
Foundation—21 of these instances related to General Fixture, 268
to Eager Test, and 205 to Lack of Cohesion of Test Methods.4

On the one hand, Taste was evaluated in terms of detection
capabilities through the computation of precision, recall, and F-
Measure. On the other hand, it has been empirically compared to

3https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/navigating_psi.html
4The dataset is also publicly available in the Landfill platform [7].

ICPC ’20, May 23–24, 2020, Seoul, South Korea Lambiase, et al.

Figure 2: DARTS architecture

code metrics-based detectors such as those by van Rompaey et
al. [10] and Greiler et al. [5]. From this two-step assessment, we
first discovered that Taste can identify General Fixture, Eager Test,
and Lack of Cohesion of Test Methods with an overall F- Measure
of 67%, 76%, and 62%, respectively. Furthermore, the detector im-
proves upon the metrics-based techniques by up to 44%, 29%, and
9%, respectively, for the three smell types. This practically indicated
that Taste could better support the developer’s activities when
compared to the baselines. Nonetheless, the performance could still
be improved, for instance by combining different sources of infor-
mation. This is the main reason why we decided to release Darts
as an open-source product: researchers can build upon our tool to
improve its performance and directly see their results implemented
in a plugin usable by developers.

As for the refactoring mechanisms available in our tool, it is
first worth discussing the fact that we do not rely on any refac-
toring recommender to suggest how to refactor test smells. This
was a conscious decision that came from two observations. In the
first place, to the best of our knowledge there is no refactoring
recommender available in literature and, as such, this is something
that goes beyond the scope of this tool demo but that can poten-
tially be integrated in our tool. In the second place, most of the
refactoring operations implemented by Darts follow the removal

steps suggested in the test smell and refactoring catalog defined
by Meszaros [6], which can be easily implemented through the use
of the Intellij APIs. For these reasons, we deem this initial refac-
toring implementation as satisfactory and helpful for providing
developers with a useful tool to improve test code quality.

As a final note, Darts directly exploits the Intellij APIs when
applying refactoring operations. This first ensures that the result-
ing source code is compilable and error-free. When it comes to
behavior preservation, Darts implements refactoring actions that
are supposed to only improve quality aspects of test code without
altering the way it exercises production classes. Nevertheless, we
implemented the ‘Undo’ functionality to allow developers to restore
previous versions of test code in case they realize some change in
the expected behavior of the tests.

6 DEMO REMARKS

In this paper, we presented Darts, an Intellij plugin that enables
the detection and refactoring of three test smell types such as Ea-
ger Test, General Fixture, and Lack of Cohesion of Test Methods at
commit-level. We made the tool publicly available and open-source
with the aim of encouraging the research community in further
improving our tool with additional test smells, detectors, and/or
refactoring recommendations.

Our future research agenda includes (1) the integration of other
detectors, e.g., the code metrics-based approaches by van Rompaey
et al. [10] and Greiler et al. [5] and (2) the evaluation of how Darts
is used in practice: to this aim, we plan to release the tool in the
Intellij plugin store and make it downloadable by developers.

ACKNOWLEDGMENTS

Palomba gratefully acknowledges the support of the Swiss National
Science Foundation through the SNF Project No. PZ00P2_186090.

REFERENCES

[1] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20, 4 (2015), 1052–1094.

[2] Boris Beizer. 2003. Software testing techniques. Dreamtech Press.
[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design

patterns: Abstraction and reuse of object-oriented design. In European Conference
on Object-Oriented Programming. Springer, 406–431.

[4] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Harald C
Gall. 2019. Scented since the beginning: On the diffuseness of test smells in
automatically generated test code. Journal of Systems and Software 156 (2019),
312–327.

[5] Michaela Greiler, Arie Van Deursen, and Margaret-Anne Storey. 2013. Automated
detection of test fixture strategies and smells. In Software Testing, Verification and
Validation (ICST). 322–331.

[6] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

[7] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. 2015. Landfill: An open dataset of
code smells with public evaluation. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. IEEE, 482–485.

[8] Fabio Palomba, Andy Zaidman, and Andrea De Lucia. 2018. Automatic test
smell detection using information retrieval techniques. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 311–322.

[9] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the relation of test smells to software code quality. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 1–12.

[10] Arie Van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001). 92–95.

	Abstract
	1 Introduction
	2 Test smell detection and refactoring in DARTS
	2.1 General Fixture
	2.2 Eager Test
	2.3 Lack of Cohesion of Test Methods

	3 DARTS: A Use Case Scenario
	4 Architecture of the tool
	5 Evaluation of the tool
	6 Demo remarks
	Acknowledgments
	References

