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ABSTRACT
Simulating terrorist scenarios in cyber-physical spaces—that is, ur-
ban open or (semi-) closed spaces combined with a cyber-physical
systems counterparts—is challenging given the context and vari-
ables therein. This paper addresses the aforementioned issue with
AL𝑇𝑒𝑟 a framework featuering computer vision and Generative
Adversarial Neural Networks (GANs) over terrorist scenarios. We
obtained the data for the terrorist scenarios by creating a synthetic
dataset, exploiting the Grand Theft Auto V (GTAV) videogame,
and the Unreal Game Engine behind it, in combination with Open-
StreetMap data. The results of the proposed approach show its
feasibility to predict criminal activities in cyber-physical spaces.
Moreover, the usage of our synthetic scenarios elicited fromGTAV is
promising in building datasets for cybersecurity and Cyber-Threat
Intelligence (CTI) featuring simulated videogaming platforms. We
learned that local authorities can simulate terrorist scenarios for
their own cities based on previous or related reference and this
helps them in 3 ways: (1) better determine the necessary security
measures; (2) better use the expertise of the authorities; (3) refine
preparedness scenarios and drills for sensitive areas.
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1 INTRODUCTION
While the world has never been safer than today, the news seems
to be dominated by headlines of terrorist attacks, whether it is a
vehicle ramming in a large crowd or a mass shooting [35]. Conse-
quently, authorities trying to secure urban spaces are faced with
countless different possibilities of attacks. At the same time, such
authorities are limited to the experience and imagination of lo-
cal law-enforcement, which, especially in smaller cities, lacks the
knowledge and infrastructure to be fully-prepared for these events
as well as the speculative technology that would allow them for
better-instrumented preparedness plans [21]. To support such en-
deavours, we investigate how computer vision approaches can help
law-enforcement agencies and municipalities in the protection of
urban spaces against terrorism [29].

On the one hand, our goal is to inform law-enforcement agents
(LEAs) about the consequences of these attacks on the locations
they protect.

On the other hand, we aim at simulating the behaviour that the
agents should have.

To this aim, we designed and prototyped AL𝑇𝑒𝑟—Adversarial
Learning for counterTerrorism—a new framework to simulate com-
plex terrorism scenarios based on computer vision and deep learn-
ing. The purpose of AL𝑇𝑒𝑟 is two-fold. On one side, the AL𝑇𝑒𝑟
solution helps LEAs to identify vulnerable locations and prepare
appropriate responses and contingency plans [13]. On the other
side, AL𝑇𝑒𝑟 provides city policy-makers a simulation of the conse-
quences that attacks could have in specific areas of public spaces,
hence giving the LEAs and municipalities the possibility to predict,
manage, and avoid terrorist attacks with a surgically-precise lens of
analysis. Finally, AL𝑇𝑒𝑟 would allow local law-enforcement agen-
cies to provide landmark images from their location and simulate
different scenarios that occurred in other locations, thus enabling
the actionable use of counter-terrorism information sharing for the
purpose of preparedness and urban contingency-planning beyond
terror-understanding.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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To this end, in the scope of designing AL𝑇𝑒𝑟 , we also proposed a
novel approach to elicit terrorist scenarios from images and trans-
ferring them to different landmarks [34]. In particular, we adopt a
computer vision approach that trains Generative Adversarial Net-
works [18] by means of images of terrorist attacks extracted from
video-gaming scenarios. In the scope of AL𝑇𝑒𝑟 , GANs are used as a
key design artifact since they were previously used to reproduce
fake images which are almost indistinguishable to real ones (e.g.,
deep fakes) [17] and therefore we assumed they may be suitable to
terrorist attack simulation as well.

To the best of our knowledge, AL𝑇𝑒𝑟 is the first attempt in this
direction.

To demonstrate the feasibility of our approach we implement a
proof-of-concept and simulate terrorist attacks via gamification [19].
In particular, we extract video recordings of terrorist attacks from
Grand Theft Auto V1 (GTAV), a well-known action-adventure video-
game. We conducted several controlled-gaming sessions and we
recorded the fragments in which criminal and terrorist activity are
perpetrated. We use such gaming environment because of the lack
of data available about these scenarios and the privacy sensitivity of
the data [37]. To extract the location of the events where to simulate
the attacks, we rely on OpenStreetMap2 (OSM), a collaborative
project to create a free editable map of the world. Both these source
of information were used to create a synthetic dataset which could
be reused in the future for other purposes as well. Finally, we use
StyleGAN [24] to map the features of the extracted terrorist attack
scenes to the latent space. Afterwards, we change such latent space
to extract terrorist attacks (e.g., a vehicle ramming humans in an
image) and transfer them to another locations.

We evaluate our proof-of-concept in the real-world scenario of
the city of Malaga (ES) in which we simulated a small scale terrorist
attack (i.e., a terrorist starting a fire in main square of the city). The
primary goal of our evaluation was to assess the extent to which we
could transfer the scenarios from a simulated environment to the
real-world cyber-physical spaces counterparts existing in the same
city. From these experiments, we learned several lessons concerning
scope and limitations of GANs, for example, that training GANs
on cyber-physical spaces is challenging because of the stochastic
variance of the real world [31]. More specifically, the virtual world
encoded by programmers clasheswith the countless variableswhich
need specific approximation systems and assumptions in real-life
cyber-physical spaces [31].

The contributions of this paper are:
(1) a computer vision framework to simulate terrorist attacks

in other locations;
(2) a proof-of-concept featuring StyleGAN to implement such

framework;
(3) an initial evaluation of the StyleGAN architecture [25] in the

context of terrorist attack simulation.
The remaining of the paper is organized as follows. Section 2

presents the technologies used in this paper. Section 3 outlines the
problem definition, the framework, and the data required by our
approach. Section 4 reports on the previously introduced proof-of-
concept, while Section Section 5 concludes the paper.

1https://www.rockstargames.com/V/
2https://www.openstreetmap.org/

2 BACKGROUND
In the last few years, computer vision—namely, the interdisciplinary
study of algorithms that train models to gain high-level understand-
ing from digital images or videos—has received increasing attention
given the multitude of application fields where it can play a role
[36]. Indeed, computer vision is a branch of Artificial Intelligence
(AI), which focuses on partially replicating the complexity of hu-
man vision systems to enable computers to identify and process
objects in images and videos in the same way that humans do. In
this research paper, we present a computer vision approach to give
to municipalities and local law enforcement agencies a new tool to
prevent and minimize the effects of terrorist attacks. In this section,
we describe (i) how artificial intelligence can be used to model crim-
inal scenarios and (ii) generative adversarial networks for computer
vision.

2.1 Artificial Intelligence to Model Criminal
Scenarios

Conte et al. [8] use Artificial Intelligence to model complex scenar-
ios. To generate data regarding criminal activities, usually multi-
agent-based simulations are used [4, 9, 20, 28]. Bosse et al. [4] and
Hao et al. [20] identify targets for burglary and other criminal ac-
tivity. Devia and Weber [9] evaluated the performance of current
practices for reduce the resources required throughout a city. More
recently, Birks et al. [3] criticized the top-down approach for ana-
lyzing crime. They argued that computational models could allow
researchers to evaluate the interactions of the different components
in a dynamic social systems. Their purpose was to investigate the
effect of manipulating one or more components to on the social sys-
tem. The current state-of-the-art for analyzing terrorism scenarios
focuses on risk assessment, which is based on regression models
and probability theory [12, 26]. However, this approaches can lead
to misleading results as terrorist activities are surrounded by high
uncertainty [6]. Currently, there is no successful approach to simu-
late terrorist scenarios by considering all the different parameters
that entail a terrorist attack.

2.2 Generative Adversarial Networks and
Computer vision

To simulate terrorist scenarios, we rely on Generative Adversarial
Networks [18] (GANs). The ability of GANs in generating realis-
tic images has rapidly increased in recent years. The concept of
transferring the content of an image to another one has been ini-
tially introduced by Gatys et al. [16]. However, their framework
has limited practical application [23]. To solve this issue Huang
et al. [23] proposed AdaIN, a new approach to enable arbitrary
style transfer in real-time. For the same purpose two networks able
to generate high-quality images were proposed: BigGANs [5] and
StyleGANs [24].

BigGANs have been introduced by Brock et al. [5] and improve
GANs in terms of scalability, robustness, and stability. BigGANs
are suitable to encode diverse pictures by isolating the different
aspects of the images. This approach is suitable for modelling com-
plex scenarios such as terrorist attacks. However, the network size
prevented us to apply this network due to the huge computing
power needed to train the model.

https://www.rockstargames.com/V/
https://www.openstreetmap.org/


Counterterrorism for Cyber-Physical Spaces:
A Computer Vision Approach AVI’20, June 08–12, 2020, Ischia, Italy

Table 1: Parameters needed to simulate a counterterrorism event.

Environment
Location 3D composition of the location of the main site, including all the buildings and access areas
# of Entries number of places that people are able to enter the main site
# of Exits number of places that people are able to exit the main site
# Access Control number of secured entry points
# of Barriers number of access points with barricades (including natural ones) to protect against the attack
Surveillance if there are surveillance systems in place for early alerting against an attack
Event
Activity the type of event that is taking place
Attack the type of attack
Crowd Density how many people per square meter will be at the event
Agents
Type citizens = people attending the event or which are in close proximity, these are the targets of terrorists

terrorist = a criminal attack on citizens, with the intent of inflicting death or serious bodily injury
police = police officers (either on foot or in a vehicle) which are responsible for protecting citizens
fire and rescue = firefighters/rescue personal which are part of emergency response
health = ambulances and hospitals which are responsible for emergency response in case when people are injured

Groups groups of agents (e.g., police agents or families) should be together
Speed the speed of the agent
Vision Radius the distance in which an agent is able to detect another agent
Route route that the agent follows
Response Time the response time of agent

Figure 1: Difference a traditional and a style-based generator
architecture from Karras et al. [24].

For this reason, we relied on StyleGANs, a new architecture
proposed by Karras et al. [24] that combines GANs and AdaIN and
was successfully applied to other domains than paintings [15].

Figure 1 depicts the differences between the style-based gen-
erator architecture and the traditional GANs. StyleGAN extends
the progressive training with a mapping network with to goal of
encoding the input into a feature vector whose elements control
different visual features and styles that translate the previous vector
into its visual representation. By using separate feature vectors for
each level, the model can combine multiple features. For example,

given two images, the model can use coarse granularity features
from the first, fine granularity features from the second to generate
a third image that combines the two. With respect to other equally
effective GANs (e.g., BigGANs [5]), this model requires less training
time to produce high-quality realistic-looking images [38].

3 TOWARDS AL𝑇𝑒𝑟 : COMPUTER VISION FOR
CONTERTERRORISM SIMULATION

As previously mentioned, this paper elaborates ALTer, a framework
to describe the elements needed to simulate the protection of a pub-
lic cyber-physical space against terrorism. Previous work already
established that due to the high dimensionality of the involved
variables this problem is complex [30]. In particular, we describe
the data that should feed the simulation implemented by Generative
Adversarial Networks.

3.1 Framework Parameters
Based on previous work [4, 28], we analyzed the factors that should
be considered in the simulation of counterterrorism on public
spaces. Table 1 lists the parameters we elicited from the state of the
art grouped in categories namely: (i) the environment where the
terrorist attack happen, (ii) the event happening in the environment,
and (iii) the agents that move in the environment.

Environment. The environment reflects the placewhere the event
takes place. It entails the entire cyber-physical terrain, the security
measures, and the cyber-tech which are in place and interacting
with the terrain itself (e.g., fixed-cams, drones, aerial recognition
intelligence, etc.). Most of such data can be accurately gathered
using online data. However, it is worth considering that terrorist
attacks can come from everywhere (e.g., from the sky, buildings
etc.) Therefore, a two-dimensional representation is useless while a
more complex three-dimensional representation should be adopted.
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Environment

Event

StyleGAN
Training

Figure 2: 𝐴𝐿𝑇𝑒𝑟 Pipeline; extracting environments (top), events (bottom), and train the Generative Adversarial Network.

Event. The event describe the type of terrorist scenario, the activ-
ity that was taking place during the attack, and the crowd density.
For example, when a concert is playing, people might have loud
music which would prevent people hearing/seeing when something
happens but digital technology can be present to track and direct
people towards specific event location areas (e.g., emergency exits).

Agents. Agents are all the different individuals that we consider
in the simulation. As described in Table 1, there are five types
of agents. A single scenario should be composed at least of (i)
the citizens who are in the environment, (ii) the terrorist who is
are attacking the main site, and (iii) the emergency services (i.e.,
police, fire and rescue, and health). The main difference between
the emergency services and the other agents is that the former have
a response time before acting if they are not at the main site as
they need to be notified first. For the terrorist, we created another
subclass which defines the attack they are committing, the kind
of weapon they are wielding. Each agent has a certain speed that
for example could be determined by the means of transportation.
Regarding the route, it generally predetermined as Malleson and
Birkin [28] already indicated, as police generally have a certain

route and citizens, as well as terrorists, have a goal which they
work towards.

3.2 Using Generative Adversarial Networks to
Protect Cyber-Physical Spaces

After defining the framework parameter, we need to successfully
train the Generative Adversarial Network to encode the world in-
side the network. With this respect Bau et al. [2] showed that it
is possible to map specific components of images back to causal
units inside the layers of a GAN. They used segmentation masks
to effectively distinguish between trees or humans and map them
back to the different layers of the network. They also showed that
by adjusting the network they could force it to generate a door an
place it on a building. Once the GAN has been successfully trained,
the next step is to reverse the GAN to map the image features back
to their variables in their latent representation. Donahue et al. [10]
and Dumoulin et al. [11] proposed an encoder to map the created
images back to their representation in the latent space. Alterna-
tively, Luo et al. [27] introduced inverse mapping and reformulated
the problem as a minimization problem. For sake of simplicity,
please consider that neural networks have three basic components:



Counterterrorism for Cyber-Physical Spaces:
A Computer Vision Approach AVI’20, June 08–12, 2020, Ischia, Italy

(i) input, (ii) parameters, and (iii) output of the network. In our
framework, we keep the input and output fixed, and we map the
parameters through backpropagation from the input to output dif-
ferently from Luo et al. [27] who keep the output and parameters
fixed and map the output images back to the latent input vector.
To implement scalable GAN, we could rely on BigGANs [5] and
StyleGANs [24]. However previous research [1, 14, 33] showed that
StyleGAN are more suitable for large datasets, hence motivating
our choice towards such networks.

4 PROOF OF CONCEPT
An initial part of framework defined above has been implemented
in a proof of concept, which we describe and preliminary evalu-
ated in the following sections. The goal of this proof of concept
is to demonstrate that it is possible to use Generative Adversarial
Networks to transpose an event in a different environment.

4.1 Prototype Implementation
Figure 2 shows the𝐴𝐿𝑇𝑒𝑟 pipeline to extract the data needed to feed
and train the Generative Adversarial Network: the environment
and the event.

4.1.1 Retrieving the Environment. To retrieve the data concerning
the environment, we collect and assemble multiple images that
represent real-world sites, i.e., the environment on which our ap-
proach should be applied to predict criminal activities. To this aim,
we create a low-quality representation of the environment using
the Unreal engine3. We start with the lowest level of detail by using
the Unreal Engine through which we can simulate a real-world
environment as a set of blocks. To this end, we first acquire the
information about the building size and dimensions from Open-
streetmap4, an open-source project whose aim it to create and
distribute editable maps of the whole world. Afterwards, to simu-
late the presence of humans, we add some basic mannequins that
walk around although their interactions are extremely basic, they
represent typical real-world interactions. Examples of these simu-
lations can be found in the four images in the centre of Figure 3,
which represent squares in the city of Malaga (Spain). One of the
drawback of using OpenStreetMap is that it is based on volunteers,
thus data could be incomplete. In the third step, frames of 256x256
pixels are extracted using the Microsoft AirSim plugin [32]. Finally,
these frames are encoded within the StyleGan architecture, i.e., they
represent the first input required for 𝐴𝐿𝑇𝑒𝑟 , our computer vision
approach to simulate counterterrorism events.

4.1.2 Generating and Collecting Events. The second step toward
this proof of concept concerns the events. As explained in the pre-
vious sections, to the best of our knowledge there are no publicly
available sources reporting terrorist scenarios that can be used
without violating privacy constraints. As such, we have to find an
alternative through the creation of a synthetic dataset. In particular,
we exploit GTAV and collect data coming from several gameplay
sessions recorded from different perspectives. Overall, we collect
around 10, 000 images which have elements involving terrorist at-
tacks from multiple views which even includes a helicopter filming

3https://www.unrealengine.com/
4https://www.openstreetmap.org/

a truck ramming into people/buildings. For testing whether the
network is able to distinguish the features of terrorist attacks, we
use another dataset which contains sequences of urban spaces of
GTAV and was previously employed by Huang et al. [22]. This
dataset provide to us unseen images that we could use in the in-
terpolation operations to test the disentanglement. Figure 2 shows
the steps required to extract the data. After playing the scenarios
and recording them by using the built-in capabilities of Playstation
(stage 1), we uploaded them on YouTube: this allowed us to extract
the video frames (stage 2) Then, we analyze them with the aim of
discarding low-quality images as well as images from bad angles
(stage 3). Therefore, we could clean the dataset from noise and
resize the remaining images to the required dimension (256x256
pixels). These images represent the second input for the StyleGAN
architecture i.e., they represent the second input required for𝐴𝐿𝑇𝑒𝑟 ,
our computer vision approach to simulate counterterrorism events.

4.1.3 Training the Generative Adversarial Network. To model our
simulation, we rely on the StyleGAN architecture. We consider this
model as a black box as we do not have control over how it learns
the elements of the scenario. As for the loss function, apriori we
do know which one works best for a two-fold reason: there is no
previous research which encoded real world images to synthetic
dataset and previous experiments were not in the context of terrorist
scenarios. Therefore, we considered a combination of several loss
functions considered in the state-of-the-art that are depicted in
Table 2: (i) Pixel-wise loss, (ii) MS-SSIM loss, (iii) LPSIS loss, and
(iv) VGG loss.

To converge, a GAN requires that the output of the loss function
for both the generator and the discriminator are around−0.5 and 0.5
in terms of Mean Squared Error (MSE). During the training phase,
we observed large problems with the network convergence for both
the discriminator and the generator. Generally, we observed that
training low resolution layers is easier than training higher quality
layers. An example is provided in Figure 4, where the Y-axis is
the loss and the X-axis is the amount of steps the network trained.
Here the loss gradually moves towards the targeted loss until the
network switches to an higher resolution: from that point the loss
moves in the opposite direction.

We analyzed the reasons behind the issue and we discovered
that the network is not able to converge due to the diversity of
the images in the event dataset. Hence we decided to train the
network using only the images from the dataset by Huang et al. [22].
We observed that when increasing the quality of the images, the
training session tends to break down as well. Finally, we retrained
the network on a dataset created from the Unreal engine in which
some mannequins representing people were running around the
environment. To simulate an attack, we included a fire in a random
location of the square. The images of this dataset were less diverse
and generally of the same shape. Furthermore, the initial location
was encoded as block. To diversify the dataset, we included several
images of squares in the city of New York as well. The network did
converge smoothly to the target loss of -0.5/0.5 as is shown by the
loss graphs in Figure 5.

https://www.unrealengine.com/
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Figure 3: GTAV urban spaces images (left), skeleton representations Malaga (centre), real world locations Malaga (right). For
the real-world locations, we choose 4 squares in the city centre of Malaga: Plaza de FéLix Sáenz, Plaza Enrique Garcia-Herrera,
Plaza de Las Flores, and Plaza de la Constitución.

Table 2: The loss functions used to train the StyleGAN.

Loss function Formula

Pixel-wise loss

𝐿𝑃𝑖𝑥𝑒𝑙−𝑤𝑖𝑠𝑒 = 1
𝑁

∗ 𝑙𝑜𝑔(𝑐𝑜𝑠ℎ(𝐺 (𝑤) − 𝐼 ))
𝑁 is the number of scalars (height, width and channel in our cases; 𝑁 = ℎ𝑥𝑤𝑥3)

𝐺 (.) is the generator you trained
𝑤∗ is the input latent code you try to optimize

𝐼 is the target image you trained
Note: (𝐺 (𝑤) is the generated image by the generator with the latent code𝑤

MS-SSIM loss

𝐿𝑚𝑠−𝑠𝑠𝑖𝑚 = [𝑙𝑚 (𝑥,𝑦)]𝛼𝑀 ∗∏𝑀
𝑗=1 [𝑐 𝑗 (𝐺 (𝑤), 𝐼 )𝛽 𝑗 ] [𝑠 𝑗 (𝐺 (𝑤), 𝐼 )]𝛾 𝑗

- 𝑙 (𝑥,𝑦) = 2𝜇𝑥 𝜇𝑦+𝐶1
𝜇2𝑥+𝜇2𝑦+𝐶1

- 𝑐 (𝑥,𝑦) = 2𝜎𝑥𝜎𝑦+𝐶2
𝜎2
𝑥+𝜎2

𝑦

- 𝑠 (𝑥,𝑦) = 𝜎𝑥𝑦+𝐶3
𝜎𝑥𝜎𝑦+𝐶3

𝑥 = 𝐺 (𝑤∗), 𝑦 = 𝐼 represent two images that you compare

LPSIS loss

𝐿𝑙𝑝𝑠𝑖𝑠 =
∑𝑙

𝑗=1
1
𝑁 𝑗

∥𝐹 𝑗 (𝐺 (𝑤) − 𝐹 𝑗 (𝐼 )∥22
𝑙 is the number of layers

𝑗 is the j-th layer of the network
𝑁 𝑗 is the number of scalars in the feature map of the j-th layer

VGG loss
𝐿𝑉𝐺𝐺 = 1

𝑁 𝑗
|𝐹 𝑗 (𝐺 (𝑤)) − 𝐹 𝑗 (𝐼 ) |

𝑗 is the j-th layer of the network
𝑁 𝑗 the number of scale in the feature map of the j-th layer

4.2 Limitations and Lessons Learned
This section describes the limitations and the lesson learned from
our initial implementation.

Feature Spatial Location. The preliminary observations on the
results of the proof of concept that not always the network is able
to effectively disentangle all features within the latent code. Cur-
rent StylegGAN applications enroll datasets which contain images
whose features have similar spatial location. For example, a face
can have different forms (e.g., round or diamond shape) but yet the
locations of the eyes, mouth and ears are generally on the same

place. In our case the locations of buildings, streets, cars, or people
moving around vary considerable. This constitues an additional
challenges for the Generative Adversarial Networks=.

Alternatives to StyleGANs. The network is not able to cope with
high diversity. StyleGANs seem not being able to isolate the differ-
ent aspects of the images. Indeed, as outlined in Section 2, one of
the drawbacks of the StyleGANs is the diversity they can encode;
Therefore, BigGANs [5] might be a better choice for modelling
something as complex and diverse as terrorist scenarios because of
the size of the network, but such size could also prevent to correctly
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Figure 4: Loss progress while training on the events generated with GTA V with a resolution of 256px.

Figure 5: Loss progress while training on the events generated with the Unreal Engine.

reverse engineering the features to the latent space. However, Big-
GANs could be a suitable alternative that we will analyse as part of
our future agenda.

Loss Functions. We could conclude that StyleGANs are not suit-
able to model complex simulations such as terrorist attack. Indeed,
the StyleGAN was not able to successfully encode the images. How-
ever, we also showed that currently there is no perceptual loss
function which can be used to effectively encode the urban spaces
in the latent space. Therefore, future efforts should be devote in
experimenting and analysing different loss functions to be used for
real-world scenarios.

5 CONCLUSIONS
In this paper we introduced AL𝑇𝑒𝑟 , a framework for Law-Enforce-
ment Agencies to simulate real-life terrorist attack scenarios in their
own cities to support a number of counter-terrorism and crime-
fighting activities, e.g., a better-intrumented preparedness plan to
counter terrorist attacks. Our approach and tool features a novel
way for simulating terrorism scenarios by using computer vision
and GANs, that is, generative adversarial neural networks that
learn automatically the features of terrorist scenarios and are able
to simulate such features in the scope of real-life cyber-physical
systems and spaces.

Our proof-of-concept shows we were able to simulate real-life
cyber-physicial spaces as subject to terrorist threats, but we were

not able to do so effectively and with a low margin of error. How-
ever, our proof-of-concept shows that the future of this approach
is promising and further experimentation is needed, possibly with
different architectures, more data and better quality data as well as
data-fusion approaches between real and simulated data. Further-
more, as part of this study, we show a new way of generating data
for terrorism scenarios based on video-gaming, thus addressing the
lack of data and the sensitivity criticalities around terrorism data.

To conclude, we introduced AL𝑇𝑒𝑟 a framework to use GANs
for simulation of terrorist threats in the context of cyber-physical
spaces. In the context of AL𝑇𝑒𝑟 , we trained GANs on multiple
datasets, varying their diversity significantly. We evaluated in total
four different datasets: (a) images directly reflecting real terrorist
scenarios; (b) on a dataset that combines the images of urban space
and terrorist scenarios where the top view was filtered out; (c) on a
dataset containing first-person view of urban spaces, e.g., the view
of a law-enforcement agent occurring on the terror scene; and (d)
on a dataset with skeletal representations of the real world with a
minimum amount of detail. Results show that GANs are able to con-
verge on the dataset with the lowest amount of detail—i.e., dataset
(d) from the enumeration above—but even for this the accuracy
shows evident traces of overfitting. This makes us conclude that: (1)
the Stylegan architecture may not be capable of modelling the com-
plexity which comes with simulating terrorist or any other real-life
scenario; (2) the data available might be poor quality or too little to
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offer conclusive learning evidence to GANs; (3) the experimental
setup is still too preliminary and requires further work.

In the future we plan to address the aforementioned gaps with
further more concrete and larger-scale and scope data over both
simulated and real-life terrorist scenarios. On one hand, we aim
at testing further architectures for GANs underlying the core of
AL𝑇𝑒𝑟 . On the other hand, we plan to apply data-fusion approaches
which could, in principle, add multiple and diverse sources of data
to compound the overfitting risks of GANs themselves. Finally, we
plan to blend the AL𝑇𝑒𝑟 framework with trusted-computing tech-
nologies [7] such that its operations may be made more explainable
and its results more traceable.
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