
cASpER: A Plug-in for Automated
Code Smell Detection and Refactoring

Manuel De Stefano
m.destefano36@studenti.unisa.it

University of Salerno, Italy

Michele Simone Gambardella
m.gambardella24@studenti.unisa.it

University of Salerno, Italy

Fabiano Pecorelli
fpecorelli@unisa.it

University of Salerno, Italy

Fabio Palomba
fpalomba@unisa.it

University of Salerno, Italy

Andrea De Lucia
adelucia@unisa.it

University of Salerno, Italy

ABSTRACT
During software evolution, code is inevitably subject to continuous
changes that are often performed by developers within short and
strict deadlines. As a consequence, good design practices are often
sacrificed, possibly leading to the introduction of sub-optimal de-
sign or implementation solutions, the so-called code smells. Several
studies have shown that the presence of code smells makes the
source code more change- and fault-prone, reduces productivity,
and causes greater rework and more significant design efforts for
developers. Refactoring is the practice that developers may use
to remove code smells without changing the external behavior of
the source code. However, it requires much time and effort and is
poorly automated, often leading developers to prefer keeping low-
quality code instead of spending time in designing and performing
refactoring operations. To mitigate this problem and support de-
velopers throughout the process of code smell identification and
refactoring, in this paper we present cASpER, a IntelliJ IDEA plu-
gin that provides visual and semi-automatic support for detection
and refactoring four different types of code smells.
Tool. Jetbrains: https://plugins.jetbrains.com/plugin/13659-casper
Video. https://youtu.be/HBWF8fFJM8s

KEYWORDS
Code smells, Refactoring, Automated Software Engineering.
ACM Reference Format:
Manuel De Stefano, Michele Simone Gambardella, Fabiano Pecorelli, Fabio
Palomba, and Andrea De Lucia. 2020. cASpER: A Plug-in for Automated
Code Smell Detection and Refactoring. In AVI’20: ACM International Confer-
ence on Advanced Visual Interfaces, September 28–October 02, 2020, Island
of Ischia, Italy. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3399715.3399955

1 INTRODUCTION
Software life cycle inevitably demands continuous changes and
enhancements [7], which too often require to be completed un-
der strict deadlines. This too often leads developers to set aside

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AVI’20, September 28–October 02, 2020, Island of Ischia, Italy
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7535-1/20/09.
https://doi.org/10.1145/3399715.3399955

old good design principles in favor of quick solutions, allowing
the introduction of the so-called code smells [7], i.e., sub-optimal
design/implementation, which seriously impact on program com-
prehension, maintainability, as well as developer’s productivity [7].
Refactoring represents the activity to remove code smells without
altering the external behavior of the source code [7]. Unfortunately
this activity is conducted either with a great manual effort, or with a
limited automatic help, as few code smell detection and refactoring
research proposals [1, 6] have become usable tools.

In this paper, we propose cASpER (Automated code Smell dE-
tection and Refactoring), a novel IntelliJ IDEA plugin that (1)
integrates two state-of-the-art code smell detection approaches
such as Decor [8] and Taco [9] to support the identification of four
types of code smells (i.e., Feature Envy, Misplaced Class, Blob and
Promiscuous Package), (2) proposes refactoring recommendations
implementing approaches previously proposed in literature [2, 3],
(3) automatically modifies the source code according to the desired
refactoring operations, (4) and visualize, in a single view, source
code metrics, concepts and attributes. In the following sections, we
briefly describe the features of the tool and a use case scenario.

2 CASPER’S FEATURES
In this section, we provide a brief description of cASpER features,
focusing on the detection and the refactoring strategies adopted
for each supported code smell (i.e., Feature Envy, Misplaced Class,
Blob and Promiscuous Package). The tool offers two kind of well-
known and validated detection strategies: a structural one, relying
on metrics computation (which are pointed out in the online appen-
dix [10]), that is Decor [8], and a text-based one, Taco [9], which
focuses on the textual content of the component under analysis.

Feature Envy and Misplaced Class represent a problem of a mis-
placed component, respectively at class (a misplaced method) and
at package level (a misplaced class) [7]. Taco [9] detects them com-
puting their conceptual similarity (textual cosine similarity) with
external components and compares it with their container com-
ponent. If the similarity with the most similar external container
(envied container) is higher than the actual container, and the dif-
ference is higher than a given threshold, then the component is
marked as smelly and a move method/class refactoring is suggested
from the current container to the envied one. Decor [8], on the
other hand, computes the component external references (method
calls and dependencies respectively), and if they are more than
the component internal one (class to methods of the same class or



AVI’20, September 28–October 02, 2020, Island of Ischia, Italy De Stefano et al.

Figure 1: Results Wizard

dependencies to classes within the same package), than the compo-
nent is marked as smelly. The refactoring algorithm is very simple
for both: following Fowler’s guidelines [7], and exploiting IntelliJ
refactoring API, the smelly component is placed in the right spot.

The second couple of smell, Blob and Promiscuous Package,
represent two example of a large, low cohesive, component, group-
ing together elements that are not related to each other, at class
and package level respectively. Both the detectors use the concept
of cohesion to find out if a component is smelly, computing it
in different ways. Taco [9] computes the average textual similar-
ity of all the internal components, while Decor [8], on the other
hand, applies an heuristic based on the computation of structural
metrics [4, 5], using LCOM, ELOC, WMC and NOA for classes,
and MIntraC and MInterC for packages. If the cohesion is lower
than a given threshold, the component is considered smelly and
an extract class/package refactoring operation is suggested. The
refactoring is based on the algorithms by Bavota et al. [2, 3]. The
aforementioned code smell detection and refactoring approaches
have been presented and validated in previous papers [2, 3, 8, 9],
and so, cASpER accuracy is based on the accuracy of these ap-
proaches. Moreover it is important to remark that the automated
refactoring is directly performed using the IntelliJ APIs: as such,
the operations do not produce compilation errors.

3 CASPER ATWORK
For the sake of space limitation, we report only an example sce-
nario of the tool usage in this section. In particular, we describe
the whole procedure aimed to detect and correct occurrences of
Misplaced Class on a system under development, Book-A-Book, a
web application for libraries. Move Class Refactoring is supported
by a three-step wizard.1

In the first step, the software engineer starts the code analysis
selecting the cASpER command in the main menubar. Optionally,
the engineer can configure the thresholds selecting the configure
button in the same menu; otherwise, the default thresholds are used.
Once the analysis is completed, a dialog box shows the results, as

1The identification and refactoring of the other smells follow exactly the same wizard.

Figure 2: Refactoring wizard for Misplaced Class

shown in Figure 1. On the left side of the window, there are as
many checkboxes as the number of analyzed code smells, and some
text boxes showing the thresholds used for the analysis. On the
bottom side, there is a table showing the candidate smells found.
The table is made up of 5 columns: the name of the candidate smelly
component, the smell type, the degree of smelliness computed with
both textual and structural algorithms, and the severity of the smell.
Selecting one of the rows, the source code of the selected component
is shown on the right side of the window. In the reported example,
the engineer selects the class Libro, in the entities package, which
the structural code smell detector, marks asMisplaced. In the second
step, the tool shows a detailed view of the selected smelly class, the
current package, and the envied package. In our scenario, Libro
should be moved into the Dao envied package since this is the most
conceptually similar class. If developer selects the Find Solution
button to get the refactoring suggestion. cASpERshows a window
with the recommended refactoring(Figure 2). Four radar maps show
the five most frequent terms of the current package and the envied
package, before and after the refactoring operation. Clicking on the
Refactor button, the move class refactoring is performed, and the
class is placed in the package suggested by the tool.

4 CONCLUSION
In this paper, we presented cASpER, open-source IntelliJ plugin for
the automatic detection and refactoring of code smells. In our future
works, we plan to employ the tool in a study aimed at assessing
how developers react to cASpER recommendations. We also plan
to add new code smell support as well as new detection strategies.

ACKNOWLEDGMENTS
Palomba gratefully acknowledge the support of the Swiss National
Science Foundation through the SNF Project No. PP00P2_170529.



cASpER: A Plug-in for Automated
Code Smell Detection and Refactoring AVI’20, September 28–October 02, 2020, Island of Ischia, Italy

REFERENCES
[1] Jehad Al Dallal. 2015. Identifying refactoring opportunities in object-oriented

code: A systematic literature review. Information and software Technology 58
(2015), 231–249.

[2] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. 2013.
Using structural and semantic measures to improve software modularization.
Empirical Software Engineering 18, 5 (2013), 901–932.

[3] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. 2014.
Automating extract class refactoring: an improved method and its evaluation.
Empirical Software Engineering 19, 6 (2014), 1617–1664.

[4] S. R. Chidamber and C. F. Kemerer. 1991. Towards a metrics suite for object
oriented design. In Proceedings of 6th ACM Conference on Object-Oriented Pro-
gramming Systems Languages and Applications (OOPSLA). 197–211.

[5] S. R. Chidamber and C. F. Kemerer. 1994. A Metrics Suite for Object Oriented
Design. IEEE Transactions on Software Engineering 20 (June 1994), 476–493.

[6] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. 2016. A review-based comparative study of bad smell detection tools.
In Proceedings of the 20th International Conference on Evaluation and Assessment
in Software Engineering. 1–12.

[7] M. Fowler. 1999. Refactoring: improving the design of existing code. Addison-
Wesley.

[8] Naouel Moha, Yann-GaÃńl GuÃľhÃľneuc, Laurence Duchien, and Anne-
Francoise Le Meur. 2010. DECOR: A Method for the Specification and Detection
of Code and Design Smells. IEEE Transactions on Software Engineering 36 (01
2010), 20–36. https://doi.org/10.1109/TSE.2009.50

[9] Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy
Zaidman. 2016. A Textual-based Technique for Smell Detection. https://doi.org/
10.1109/ICPC.2016.7503704

[10] Manuel De Stefano, Michele Simone Gambardella, Fabiano Pecorelli, Fabio
Palomba, and Andrea De Lucia. 2020. cASpER: A plugin for Automated Code
Smell Refactoring Detection And Refactoring - Online Appendix. https://doi.org/
10.6084/m9.figshare.12046377


