
VITRuM - A Plug-In for the Visualization of Test-Related Metrics
Fabiano Pecorelli

SeSa Lab - University of Salerno, Italy
fpecorelli@unisa.it

Gianluca di Lillo
SeSa Lab - University of Salerno, Italy

g.dilillo1@studenti.unisa.it

Fabio Palomba
SeSa Lab - University of Salerno, Italy

fpalomba@unisa.it

Andrea De Lucia
SeSa Lab - University of Salerno, Italy

adelucia@unisa.it

ABSTRACT
Software testing is the first weapon against software faults, used
by developers to preventively locate implementation errors in the
exercised production code that may cause critical failures to the
inner-working of software systems. According to recent findings,
the effectiveness of testing might be not only due to its ability to
cover the production code but also to some other properties, like
code quality. Among other aspects, the literature reported that an ad-
vanced visualization of test-related metrics, e.g., test code coverage
on production code, result to be a key strength for developers when
dealing with software faults. In this paper, we propose VITRuM
(VIsualization of Test-Related Metrics), an IntelliJ plug-in able to
provide developers with an advanced visual interface of both static
and dynamic test-related metrics that has the potential of making
them more able to diagnose production code faults. The plug-in is
available in the official JetBrains Plugins Repository. A video show-
ing the tool in action is available at https://youtu.be/kFE81eYPgUg.

KEYWORDS
Software Testing; Advanced Visual Interfaces; Test Code Quality.
ACM Reference Format:
Fabiano Pecorelli, Gianluca di Lillo, Fabio Palomba, and Andrea De Lucia.
2020. VITRuM - A Plug-In for the Visualization of Test-Related Metrics. In
International Conference on Advanced Visual Interfaces (AVI ’20), September
28-October 2, 2020, Salerno, Italy. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3399715.3399954

1 INTRODUCTION
Pressure, continuous changes, strict deadlines: these reasons of-
ten enforce developers to deliver low-quality software and to rely
on testing to verify the compliance of software to predefined re-
quirements [12]. While testing has been often identified as a way
to improve software quality and reliability [3, 8, 14], researchers
have pointed out that its effectiveness heavily depends on how test
code-related metrics are made actionable to developers [4, 6, 7]. Par-
ticularly, Jones et al. [7] reported that visualization techniques can
effectively display to developers a large amounts of data that can
assist debugging activities; later on, Jones [6] and Cornelissen et al.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AVI ’20, September 28-October 2, 2020, Salerno, Italy
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7535-1/20/09.
https://doi.org/10.1145/3399715.3399954

[4] discovered that a proper visualization of source code coverage
information, i.e., the amount of lines of production code exercised
by a test, helps developers with understanding production code and
finding critical faults. More recently, researchers highlighted the
relevance of test code quality, i.e., test code metrics [9] and smells
[11], on the ability of tests to properly discover faults in production
code, suggesting that, when dealing with faults, developers should
not only rely on basic information on test coverage, but also on
indicators able to characterize the quality of a test suite.

In this paper, we aim at putting previous knowledge into action
by proposing a tool coined VITRuM (VIzualization of Test-Related
Metrics), an IntelliJ plug-in able to provide developers with an
advanced visual interface of a number of test code-related factors,
ranging from statically computable indicators (like quality metrics
and smells [9, 11]) to dynamic measures such as code coverage
indicators [5, 13]. We designed VITRuM to support developers with
both the immediate analysis of source code as well as the evolu-
tionary investigation of the capabilities of software tests, which
can be useful to delineate whether and which tests would deserve
maintenance operations [2].

2 METRICS EXTRACTED BY VITRUM
VITRuM is available in the JetBrains Plug-in Repository 1 and can
be run on any Java project. It allows the analysis of three fami-
lies of metrics. It is worth remarking that all the metrics can be
included/excluded in the analysis by VITRuM users through a con-
figuration panel.

Structural Metrics. Visualizing and monitoring structural as-
pects of test cases can help developers to assess the overall quality
of test suites and the extent to which they are in line with the good
practice of the object-oriented paradigm.

VITRuM includes the calculation of structural metrics related to
several aspects, such as size, cohesion, coupling, and complexity.

In addition to CK Metrics, the plug-in also computes the Asser-
tion Density, defined as the percentage of assert statements with
respect to the total number of statements in a test class.

Test Smells. Defined as bad design or implementation choices
applied by developers that could have a negative impact on under-
standability, maintainability, and effectiveness.

VITRuM includes the automatic identification of seven types of
test smells, based on the detection mechanism defined by Palomba,
et al. [10]. Details about the test smells are described in Table 1.

DynamicMetrics. Thesemetrics provide information about the
effectiveness of tests. The current version of the plug-in allows the

1https://plugins.jetbrains.com/plugin/14160-vitrum

https://doi.org/10.1145/3399715.3399954
https://doi.org/10.1145/3399715.3399954
https://doi.org/10.1145/3399715.3399954
https://plugins.jetbrains.com/plugin/14160-vitrum


AVI ’20, September 28-October 2, 2020, Salerno, Italy Pecorelli, et al.

Figure 1: VITRuM main panel

Test smell Description

Assertion Roulette A test method having multiple non-documented assertions
Eager Test A test method excercising more than one method of the produc-

tion class
General Fixture A test class having a too general setup (different tests only access

part of it)
Mystery Guest A testing accessing external resources like files or a database

records
Resource Optimism A test that makes optimistic assumptions about the existence of

external resources
Sensitive Equality A test using the toString method in assert statements
Indirect Testing A test exercising different classes with respect to the production

class corresponding to the test class

Table 1: List of test smells considered by VITRuM.

calculation of line and branch coverage, calculated as the percentage
of lines/branches exercised by the test with respect to the total
number of lines/branches in the production class. Moreover, it
also allows the calculation of mutation coverage, defined as the
percentage of mutated statements in the production class that is
covered by the test [1]. Note that we used JaCoCo 2 to calculate
line and branch coverage, and pitest 3 for the mutation coverage.

Finally, VITRuM also computes the analysis of flaky tests. Flaky
tests are tests exhibiting a non-deterministic behavior (i.e., they can
pass or fail with the same input). In order to detect the presence
of flaky tests, VITRuM executes each test 10 times: if the output
is different in at least one case than the test is flaky. Note that
the number of independent executions can be customized in the
configuration panel.

2https://github.com/jacoco/jacoco
3http://pitest.org

3 VITRUM VISUALIZATION
Figure 1 depicts the report shown after the computation of the met-
rics on the example project Apache commons-lang 4. The window
is composed of panels highlighted in the figure.

Panel 1○ lists all the test classes of the project under analysis. The
classes are ordered by the criticality of the test smells affecting them.
The list shows in black the classes that are not affected by any test
smell, in yellow the classes affected by at least one test smell, and in
red the classes critically affected by test smells, i.e., whose intensity
is above a given critical threshold. On the top of the list, the plug-in
presents a filter to narrow the search based on the selected test
smell. Clicking on the name of one of the test classes in the list, all
the other panels are shown. Panel 2○ reports the value for all the
metrics calculated for the selected test class. Panel 4○ contains a
plot that allows the analysis of the metrics over time starting from
the first execution of the plug-in on the subject project. The plot
also contains two dotted lines that represent the thresholds for test
smells analysis. In detail, the yellow line represents the threshold
to determine whether the class is affected by the test smell, while
the red line represents the criticality threshold. The slider on the
top of the plot (panel 3○) allows users to dynamically change the
starting date to consider for the analysis

4 CONCLUSION
This paper presents VITRuM, a plug-in for the IntelliJ IDE that
automatically compute a number of test-related factors and displays
the results through a easy-to-use visual interface. Future work
includes the integration of other metrics related to test code quality
and the addition of features to export data and plots.

ACKNOWLEDGMENTS
Palomba gratefully acknowledge the support of the Swiss National
Science Foundation through the SNF Project No. PP00P2_170529.
4https://commons.apache.org/proper/commons-lang/

https://github.com/jacoco/jacoco
http://pitest.org
https://commons.apache.org/proper/commons-lang/


VITRuM - A Plug-In for the Visualization of Test-Related Metrics AVI ’20, September 28-October 2, 2020, Salerno, Italy

REFERENCES
[1] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. 2006.

Using mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering 32, 8 (2006), 608–624.

[2] Paolo Benedusi, A Cmitile, and Ugo De Carlini. 1988. Post-maintenance testing
based on path change analysis. In Proceedings. Conference on Software Mainte-
nance, 1988. IEEE, 352–361.

[3] M-H Chen, Michael R Lyu, and W Eric Wong. 2001. Effect of code coverage on
software reliability measurement. IEEE Transactions on reliability 50, 2 (2001),
165–170.

[4] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, and Bart Van Rompaey. 2009.
Trace visualization for program comprehension: A controlled experiment. In 2009
IEEE 17th International Conference on Program Comprehension. IEEE, 100–109.

[5] Giovanni Grano, Fabio Palomba, and Harald C Gall. 2019. Lightweight assessment
of test-case effectiveness using source-code-quality indicators. IEEE Transactions
on Software Engineering (2019).

[6] James A Jones. 2004. Fault localization using visualization of test information. In
Proceedings. 26th International Conference on Software Engineering. IEEE, 54–56.

[7] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. IEEE, 467–477.

[8] Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan. 2017.
Code coverage and postrelease defects: A large-scale study on open source
projects. IEEE Transactions on Reliability 66, 4 (2017), 1213–1228.

[9] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2016. Automatic test case generation: What if test code quality mat-
ters?. In Proceedings of the 25th International Symposium on Software Testing and
Analysis. 130–141.

[10] Fabio Palomba, Andy Zaidman, and Andrea De Lucia. 2018. Automatic test
smell detection using information retrieval techniques. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 311–322.

[11] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the relation of test smells to software code quality. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 1–12.

[12] James A Whittaker. 2000. What is software testing? And why is it so hard? IEEE
software 17, 1 (2000), 70–79.

[13] W Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. 2007. Effective fault localiza-
tion using code coverage. In 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), Vol. 1. IEEE, 449–456.

[14] Shigeru Yamada, Hiroshi Ohtera, and Hiroyuki Narihisa. 1986. Software reliability
growth models with testing-effort. IEEE Transactions on Reliability 35, 1 (1986),
19–23.


	Abstract
	1 Introduction
	2 Metrics extracted by VITRuM
	3 VITRuM visualization
	4 Conclusion
	Acknowledgments
	References

