
Pizza versus Pinsa: On the Perception and
Measurability of Unit Test Code Quality

Giovanni Grano,1 Cristian De Iaco,1 Fabio Palomba,2 Harald C. Gall1
1SEAL Lab - University of Zurich, Switzerland — 2SeSa Lab - University of Salerno, Italy

grano@ifi.uzh.ch, cristian.deiaco@uzh.ch, fpalomba@unisa.it, gall@ifi.uzh.ch

Abstract—Test cases are an essential asset to evaluate software
quality. The research community has provided various alterna-
tives to help developers assessing the quality of tests, like code or
mutation coverage. Despite the effort spent so far, however, little
is known on how practitioners perceive unit test code quality and
whether the existing metrics reflect their perception. This paper
aims at addressing this gap of knowledge. We first conduct semi-
structured interviews and surveys with practitioners to establish
a taxonomy of relevant factors for unit test quality and collect
a dataset of tests rated by developers based on their perceived
quality. Then, we devise a statistical model to measure how the
metrics available in literature reflect the perceived quality of
test cases. The findings of our study show that readability and
maintainability are the key aspects for developers to diagnose
the outcome of test cases and drive debugging activities. On the
contrary, code coverage metrics are necessary but not sufficient to
evaluate the capability of tests. Finally, we discover that available
metrics are effective in characterizing poor-quality tests, while
limited when distinguishing high-quality ones.

Index Terms—Software testing; Code Quality; Empirical SE.

I. INTRODUCTION

During software evolution, developers perform multiple
changes to the codebase to enhance existing features, imple-
ment new ones, and fix emerging defects [41]. In this context,
they periodically run test cases to verify that new changes do
not introduce regressions [53]. Both development and selection
of tests to be run are oftentimes driven by their ability to
actually catch defects in the codebase [2, 37, 64]. As it is not
possible to know a-priori the fault detection capabilities of
tests, researchers have been devising metrics to estimate the
quality of tests. Among all, code coverage, i.e., the amount
of production code exercised by a test, is considered the main
indicator for test code quality [11, 38] and, indeed, researchers
and tool vendors used it to assist practitioners during all the
activities connected to testing, from test selection to analysis
of production code fault-proneness [2, 40, 76]. However, code
coverage only indicates which part of the production code
is exercised, failing to provide indications on whether its
intended behavior is actually tested: as an example, Ellinms et
al. [20] found faults in projects having a high code coverage.

The main research alternative to code coverage is repre-
sented by mutation testing: in this case, defects are artificially
seeded into the production code to quantify the ability of
tests to find them [49]. While this is considered as a more
powerful metric for test case quality [35], its practical usage
is still under debate [28, 33]. Other devised metrics, e.g., test

flakiness [19, 43] or test smells [46], have been also connected
to software quality as well as test code effectiveness.

Recognizing the effort spent by the research community
in devising test code quality metrics, we identify a common
limitation with respect to the way the usefulness of these
metrics has been evaluated. Most of them, indeed, have been
experimented in-vitro with empirical studies aiming at mea-
suring their correlation with the fault-proneness of production
code (e.g., [2, 28, 35]). On the contrary, there is still a lack of
knowledge on (i) how practitioners define unit test code quality
and (ii) whether the existing metrics match their perception,
hence being considered useful in practice. An improved under-
standing of these aspects would be beneficial to comprehend
the way the research community supports practitioners and if
additional instruments would be worthwhile.

In this paper, we propose a mixed-method research approach
in order to (i) elicit a taxonomy of factors deemed relevant
by practitioners for unit test code quality and (ii) understand
how the metrics defined in literature match the developer’s
perception of unit test code quality. We start our investigation
by interviewing five software testing experts to let them
elaborate a set of factors influencing the quality of test cases.
Once established an initial taxonomy of these factors, we run
a survey study that involves 70 practitioners in which we (i)
evaluate the taxonomy on a larger-scale and (ii) ask them to
rate 210 test cases, overall, according to their perception of
quality. As a final step, we compute a number of state-of-the-
art test code quality metrics on the built dataset to study the
extent to which they are statistically related to what developers
perceive as test code quality.

The key results of our study first report that code and
mutation coverage are necessary but not sufficient indicators of
the quality of tests. We discover that test code design-related
attributes, like readability and maintainability, can better pin-
point test cases useful to discover defects in production code.
Finally, metrics defined in literature only partially align with
the developer’s perception of test code quality. As such, we
conclude that a novel, more comprehensive set of test code
metrics should be devised to better assist practitioners when
dealing with development and assessment of test cases.

To sum up, this paper provides three main contributions:
1) A novel taxonomy of factors deemed important by prac-

titioners for assessing test code quality;
2) A statistical study of how currently existing metrics

support the developer’s needs in test code assessment;

3) A research roadmap that researchers should follow to
better fit the practitioner’s needs.

II. BACKGROUND AND RELATED WORK

Test code quality represents a multi-faceted concept able
to express how useful a test will be for developers during
the understanding of the production code [61], the debugging
activities [34, 75], and the early catching of defects [26]. Over
the last decade, a number of researchers have been studying
test code quality with the aim of defining metrics able to
characterize it under different perspectives.

In the first place, code coverage has been widely used in
practice to assess the quality of test suites, as it is easy to
compute (e.g., by continuous integration tools) and easy to
interpret [69]. Similarly, a large body of research focused on
the relationship between code coverage and test quality and, in
particular, previous work investigated the role of code coverage
in fault localization [73, 74] and detection [11]. However, code
coverage has been shown to be an insufficient indicator when
it comes to assess test quality [32]. Rojas and Fraser [56]
stated that its main limitation is the inability to verify the
intended behavior while merely looking at the execute code.
Mutation testing, based on the idea of mutants, represents the
best alternative to code coverage [3, 33, 35]. However, it still
suffers from scalability issues—despite the attempts done by
researchers to alleviate this problem [28, 49, 77].

On another note, Beck [7] suggested that good design
principles, understandability, and maintainability are desirable
properties of test cases. For this reason, researchers [46, 66]
devised catalogs of poor design solutions named test smells.
Bavota et al. [5] investigated the diffusion of test smells
in large open source projects showing how their presence
has a negative impact on program comprehensibility and
maintainability. Along this line, Spadini et al. [62] studied the
relationship between smells and change- and fault-proneness
of both test and production code, reporting similar findings.

Another perspective of test code quality relates to the role
of assertions. Kudrjavets et al. [39] showed a relationship
between assertion density, defined as the number of assertions
over the KLOC of a class, and the decrease of faults in
production code. Their main finding is the inverse relationship
between bugs and assertion density, i.e., the higher the number
of assertions, the lower the fault-proneness of production code.
Similarly, Hoare [31] focused on the number of pre- and post-
conditions in the context of 21 different software projects,
showing a positive correlation between their number and the
stability of those projects. Moreover, previous work studied
the relationship between the usage of assertions and experi-
ence of software programmers [12] reporting that experienced
developers tends to rely more on assertions.

Source code readability is an important property when
it comes to perform maintenance and evolution tasks [42].
Previous research showed that readability metrics correlate to
the fault-proneness of source score [45, 58]. Grano et al. [28]
investigated this aspect in the context of test code, showing that
developers tend to neglect the readability of test cases. In so

doing, they relied on the state-of-art model for readability [59]:
being trained on both production and test code snippets, it is
suitable to analyze test readability as well [29].

From an empirical viewpoint, Nagappan et al. [47] were the
first trying to capture the quality of test suites using a variety of
product and assertion-related metrics. While sharing a similar
long-term objective, our goal is to better analyze the practi-
tioner’s perspective with respect to unit code quality in order
to understand how they assess tests in practice. Finally, the
closest related work is the one by Bowes et al. [8]. The authors
reported the results of a two-day workshop with practitioners
in which they elicited a set of testing principles that not only
address code coverage-related metrics, but also other quality
facets of testing. As a result, they identified 15 principles that
range from keeping maintainability into account to the need
for considering happy and sad paths when testing production
code. This work can be considered as complementary since
we aim at gaining a broader understanding of how developers
perceive unit test code quality and how the metrics defined in
literature match this perception.

III. RESEARCH GOALS AND QUESTIONS

The goal of the empirical study is to (i) elicit the factors
deemed important by practitioners when assessing the quality
of unit tests and (ii) understand how the test code quality met-
rics defined in literature align with those considered relevant in
practice. The purpose is to study if additional, complementary
test code metrics should be devised or whether the assistance
currently provided is sufficient. The perspective is mainly that
of researchers interested in analyzing the support they cur-
rently provide to developers with respect to test code metrics.
Our study is structured around two main research questions.
We start by focusing on the practitioner’s perspective of test
code quality, trying to investigate and extract a set of features
that developers consider relevant when assessing the goodness
of unit tests. Hence, we ask:

RQ1: What are the features of unit tests that, according to
developers, have an influence on unit test quality?

Afterwards, we turn our attention on the research perspec-
tive of test code quality, namely we analyze the support that
is currently provided by the research community with respect
to the assessment of test code quality as well as the alignment
between the metrics proposed in literature and the features
deemed important by developers in practice:

RQ2: Do existing test code quality metrics match the
developer’s perception of test code quality?

To address the two research questions, we feature a mixed-
method research approach [17] that combines insights from
semi-structured interviews and surveys with statistical results
investigating how existing test code quality metrics match the
developer’s perception of test code quality.

IV. RQ1 . THE PRACTITIONER’S PERSPECTIVE

As a first part of our investigation, we study what developers
perceive as important when it turns to test code quality.

A. Research Methodology

To address our first research question, we need to capture
a broad variety of practitioner’s opinions on test code quality.

Semi-structured Interviews. First, we conduct semi-
structured interviews with software testing experts in order to
start elaborating an initial taxonomy reporting the factors that
should matter when assessing the quality of unit tests. This
research approach is often used in exploratory investigations
to understand phenomena and seek new insights [70]. In
our case, we decide to start with semi-structured interviews
as we prefer letting emerge possible factors influencing test
code quality directly from the opinions of experts rather than
from our own view of the phenomenon: this reduces the
introduction of possible sampling and inclusion biases [60],
other than favoring the emergence of factors actually used by
practitioners in their daily development activities.

The general structure of the interviews is composed of
three parts. After some background questions aimed at char-
acterizing the sample of the involved practitioners, the first
part consists of a general discussion on the practices applied
when developing unit tests, with a particular focus on (i) the
granularity adopted to create unit tests (e.g., if they develop
test cases targeting specific production methods or follow a
different approach) and (ii) the tools used to assess state and
quality of test cases. In the second part, we discuss about
the developer’s definition of a high quality unit test. Once
provided a high-level interpretation, we ask the interviewee
to show and describe us one of her/his unit tests which s/he
deems to be of a high quality: in so doing, we expect the
interviewee to provide further and finer-grained insights into
the aspects making unit tests good. Finally, in the last part
of the interview we ask the participants to summarize their
thoughts on high quality unit tests into measurable factors or
software engineering methodologies that may possibly assess
or foster test case quality. The three parts, altogether, aim
at contributing to the construction of an initial taxonomy of
factors influencing test code quality.

After designing the structure of the interviews, we define the
recruitment strategy. Ours can be considered as a convenience
sample [36], in which we invite five software testing experts
from our personal industrial contacts. One of them hold a
Bachelor degree in Computer Science, two a Master degree,
and the remaining two a Ph.D. degree in Software Engineering.
Overall, they have between 3 and 10 years of experience in
testing and typically develop multiple unit tests per day.

The semi-structured interviews have a duration from 40 to
60 minutes and are conducted between December 2019 and
January 2020 through an either face-to-face meeting or remote
Skype call in which at least two of the authors of this paper
participate. All interviews are recorded and then transcribed
for analysis, preserving the anonymity of the interviewees. We
share these transcripts in our appendix [1].

The collected data are then analyzed by the first two authors
of this paper adopting the following methodology:

Step 1 - Summarization: Initially, one inspector summa-
rizes the semi-structured interviews and groups the available
pieces of information into three categories: (1) ‘Applied
practices’, (2) ‘Definition of unit test code quality’, and (3)
‘Possible features to compute it’. These correspond to the
three main parts of the interviews.

Step 2 - Microanalysis: The same inspector starts extracting
relevant pieces of information and assigns temporary labels
that represent concepts emerging from the interviews that
may be relevant for the assessment of test code quality.

Step 3 - Categorization: The two inspectors jointly analyze
the labels assigned in the previous step in order to cluster
those that are semantically similar or even identical [30].
This step also allows the second inspector to double-check
the operations done in the previous steps.

Step 4 - Saturation: The two inspectors iterate over the la-
bels assigned so far until they can reach a full agreement
with respect to names and meanings of all of them. This
step leads to a theoretical saturation [68], namely the phase
where the analysis does not propose newer insights and all
concepts expressed by the interviewees are well-developed.

Step 5 - Taxonomy Building: Based on the labels assigned,
the two inspectors proceed with the construction of the initial
taxonomy, i.e., they specify the factors deemed important for
test code quality by the interviewees.

Confirmatory Survey Study and Dataset Collection. While
the semi-structured interviews lead to an initial taxonomy of
factors contributing to test code quality, we conduct a larger-
scale survey study aimed at (i) confirming the validity of the
initial findings, (ii) suggesting additional factors not covered
by the interviews, and (iii) building a dataset of unit test cases
rated by developers according to their perceived quality.

The survey is composed of three main sections—for the
sake of space limitations, we report the full list of questions
included in the survey in our appendix [1]. In the first one, we
ask the participant’s opinion on the features that most influence
test code quality: particularly, we not only seek opinions on
the features considered relevant, but also on whether they
are effectively measured in the working environment of the
participants and, if so, how. In this stage, we allow participants
to report a maximum of six factors each. In the second
section, instead, we propose the source code pertaining to three
unit test cases, along with information about their code and
mutation coverage, and ask participants to rate them based
on (i) their overall quality and (ii) the features mentioned
in the first section of the survey. The test cases proposed
to each participant are randomly selected from a pool of ten
open-source tests that we mine from systems of the APACHE
ecosystem. We only proposed three tests to avoid having
an excessively long survey which may have resulted in an
increase of the abandonment rate [21]. In particular, before
running the survey we first extract all unit test cases (along
with the corresponded exercised classes [28]) belonging to
APACHE COMMONS. Then, we randomly pick ten distinct tests
coming from different suites: these tests form the pool used

in the survey [1]. The selection of APACHE COMMONS is
based on two main reasons: first, it contains a set of libraries
that are widely used by practitioners worldwide [54], possibly
letting survey participants to know (or to be able to acquire
knowledge on) the considered systems; second, it contains a
large amount of test cases written by hundreds of different
contributors [25], hence increasing the diversity of the unit
tests analyzed. It is important to note that we cannot provide
developers with tests developed by their own as the survey is
intended to be disseminated at large scale. Overall, we collect
210 evaluations that are used later in the context of RQ2. We
prefer collecting multiple ratings for a pool of unit tests rather
than individual scores on a larger amount of tests because
in this setting we can also analyze the variance of the ratings
and provide insights into the agreement reached on the sample
tests. Finally, the last section of the survey aims at collecting
background information on the participants.

The survey is implemented using LIMESURVEY.1 It is made
available from March 1st to 31st, 2020 and advertised through
personal contacts and social network accounts of the authors,
i.e., FACEBOOK, TWITTER, REDDIT, and LINKEDIN.

All in all, we receive 70 fully compiled questionnaires. The
same authors who were involved in the analysis of the semi-
structured interviews analyzed the survey responses. In so do-
ing, they apply exactly the same methodology described for the
analysis of the semi-structured interviews when considering
the factors emerged from the surveys. The only additional
step performed in this case is the activity of merging the
factors emerged from the survey with those highlighted by
the interviews in case the same concepts were expressed. The
final outcome consists of a validated taxonomy of factors in-
fluencing test code quality, which we describe in the following
section. As for the collected dataset, this is described and
analyzed when addressing RQ2 (see Section V).

B. Analysis of the Results

This section discusses the main findings for RQ1.

A taxonomy of unit test quality features. Five testing experts
were initially interviewed with the final aim of deriving a set
of features that impact on the quality of unit tests. In the first
place, however, it is worth to briefly discuss the main outcomes
coming from the analysis of the practices they typically use
to develop test cases as well as the tools employed to assess
state and quality of the test suites. As a matter of fact,
all our interviewees declared that they prefer adopting an
approach which is mostly inspired to test-driven development
[7], meaning that they like to start writing test cases before
production code or, at very least, proceeding with a test-as-
you-write strategy, i.e., they develop production and test code
in parallel. The testing experts revealed that such a strategy
typically allow them to spot edge cases first, being therefore
able to produce higher-quality production code. Hence, our
findings seem to confirm previous quantitative results showing
the positive effects of test-driven development on source code

1 Link: https://www.limesurvey.org

quality [44, 55]. Furthermore, our interviewees reported that
they typically start creating test cases by focusing on individual
use case scenarios of the production code, only later extending
the test suites to incorporate additional scenarios: for example,
interviewee #5 explained that s/he starts testing by developing
one single scenario, with a single assertion, per test.

Secondly, our interviewees reported the use of a wide
range of testing frameworks, from test automation (like testing
in continuous integration pipelines) to mocking frameworks
usable to effectively isolate the scope of unit tests. They
pointed out that these tools are necessary to enable the creation
of effective tests having a high fault detection capability.

Finally, Table I overviews the features characterizing unit
test code quality as well as how to measure/deal with them
according to the opinions of our interviewees. As shown
in the table, the extracted features could be classified into
three main categories such as ‘Behavioral’, ‘Structural’, and
‘Executional’, which we further analyze in the following.

Behavioral features. The first category is composed of four
macro-factors that relate to the nature and behavior of unit
tests. According to the involved testing experts, one of
the key characteristics making a test of high-quality is its
ability of being (self-)validated: this implies that the test
should neither be defective nor require additional checks
(e.g., other pieces of code) to be verified. This aspect,
besides being somehow expected to be critical for the
development of good tests, is actually one of the F.I.R.S.T.
(Fast, Independent, Repeatable, Self-validating, Thorough)
principles which originally inspired born and rise of test-
driven development [7]. The (self-)validation of test cases
was mentioned by three of the experts, who all reported
code review as the software engineering practice that could
assist the assessment of test cases—thus, suggesting that
tests should also be part of the code review process [61].
The scope of a test was the factor mentioned by all inter-
viewees. This refers to the extent to which the behavior of
the unit under test is actually exercised by a test. In other
words, a critical factor for developers concerns with the
ability of assessing whether a unit test actually exercises
the corresponding unit and, if so, how many use case
scenarios it covers. Accordingly, the first metric mentioned
was code coverage, i.e., how many lines of production code
are touched by a unit test. Nevertheless, the experts also
pointed out that the complexity of a test plays a role in
this case: indeed, the higher the complexity of the test, the
lower the developer’s ability to understand its scope, and
therefore its target. In a complementary manner, the experts
revealed the estimation of the effectiveness of a unit test as a
critical factor to consider. In so doing, all experts mentioned
code coverage as a metric to use for this purpose. However,
all of them agreed on the fact that this is just to consider
a proxy measure that is necessary to use, but definitively
not sufficient. To make her/his reasoning more practical,
interviewee #3 reported the case of a critical system:

“So, if we are building a critical system, then you

TABLE I
TAXONOMY OF UNIT TEST QUALITY FEATURES AND CORRESPONDING MEASURABLE FACTORS/PRACTICES.

Category Sub-Level Description Measurable factors/practices

Behavioral

(Self-)validation A test should behave as expected, i.e., it must not be
defective

Test code review

Scope Extent of the code under test exercised by a single unit test Code coverage; Test case complexity
Effectiveness Ability of revealing fault in the exercised production code Code coverage; Mutation coverage; Purpose
Diagnosability Features that facilitate fault detection and solving Comments to assertions; Failure reproduction;

Test code review

Structural

Size Size of the unit test case Lines of Code
Test Design Features about the general structure of a test Assertion density; Comments to assertions; Test

code complexity; Lines of Code
Reusability Reusability of unit tests in other suites
Readability Readability of the test code Readability
Maintainability Maintainability and evolvability of the test code. Test smells; Time required to fix an assertion
Independence Degree of isolation of a unit test with respect to the other

tests of the suite
Coupling metrics, like CBO [14]

Executional
Execution Time Time taken by a unit test to be executed Execution time
Reliability Unit tests should always produce the same results Test code flakiness
Execution Infrastructure Availability of information about the execution environment

of a test
Statistics of Continuous Integration servers

should have a decent branch coverage, because I mean
it is a critical system. So, you really need to test it very
well. And in that case, branch coverage is not really a
good metric of how good your test suite is, because I
can easily have 100% test coverage.”

The experts reported the lack of alternative metrics able
to provide more insightful indications of how effective a
test actually is. Only one of the experts reported to use
mutation coverage, i.e., the number of artificially created
defects that a test can find [50], in specific cases to better
understand the effectiveness of tests—somehow confirming
the limitations of mutation analysis in practice [3, 18, 28].
Finally, the purpose of the test, i.e., the requirement that a
unit test is exercising, was suggested by two experts as an
ideal metric to verify that a unit suite can actually exercise
the corresponding code in a thoroughly manner.
Last but not least, all experts agreed that the diagnosability
of the test outcome is key to enable the detection and
fixing of faults. In this case, they suggest that test code
documentation and, in particular, the addition of comments
to assertions can substantially help understanding why a test
fails. The reproducibility of a test is also a factor deemed
to be relevant: two of the experts referred to test flakiness
[43] as a metric to use to estimate how reproducible unit
tests are. Interviewee #1 recommended test code review as
a practice to spot possible threats to test reproducibility.

Structural features. This category collects the factors that
concern with the internal structure of a unit test. According
to our experts, structural aspects can influence not only the
understandability of a unit test, but also the overall resulting
effectiveness in both fault detection and diagnosability. For
example, they suggest that keeping the size low is a good
way to create concise tests that ease the comprehensibility
of the target behavior of the production code. Similarly, the

experts expressed the need for readable test code which can
be quickly interpreted in case of failure as well as maintain-
ability properties that enable tests to be evolved in an easier
manner: in these cases, they also named specific metrics
such as readability [10] and test smells [46], respectively.
Interestingly, we noticed that all experts were aware of the
concept of test smells and their potential negative effects.
While this seems to be in contrast with previous work
reporting that developers cannot often recognize smells in
test code [65], our findings suggest that experience matters
and that developers used to develop test cases are more
sensible to design issues and can recognize them as a threat.
Besides the factors discussed above, all interviewees re-
ported that test design is crucial for the development of high
quality tests. According to them, producing tests having a
good assertion density, i.e., the number of assertions per
test case size [39], is important but, at the same time, these
assertions should always be accompanied by some form of
documentation that can clearly point out which of them
fails as well as the reason behind the failure. This aspect is
strictly connected to the Assertion Roulette test smell, which
appears when a test includes a number of assertions without
comments [46]. Finally, avoiding the creation of complex
tests reduces the cognitive load needed to understand them.
The independence of unit tests was also named by three
experts. This basically refers to having poorly coupled tests
that do not interact between them. In this respect, intervie-
wee #4 reported that this reduces the risk of interference
of some unit tests toward others, which can normally cause
forms of test flakiness [43]. Finally, interviewee #2 men-
tioned reusability: in her/his opinion, having the possibility
to reuse tests in other suites leads to two benefits: (i)
it reduces the risk due to a new implementation and (ii)
increases the chance of relying and evolving effective tests

TABLE II
DEMOGRAPHIC INFORMATION OF SURVEY PARTICIPANTS.

Education Experience (years)

High School or eq. 12 17.14% 1-5 24 34.29%
Bachelor 28 40.00% 6-10 15 21.43%
Master 17 24.29% 11-20 10 14.29%
Ph.D 8 11.43% 20+ 5 7.14%
Other 4 5.71%

Current Employment Team Size

Student 15 21.43% 1-4 12 17.14%
Researcher 6 8.57% 5-10 22 31.43%
Prof. (paid) Dev. 55 78.57% 11-20 10 14.29%
Prof. (unpaid) Dev. 1 1.43% 20+ 10 14.29%

that can be used to catch defects in various parts of the code.
Nonetheless, the expert could not report a possible metric
or practice that could help measuring reusability.

Executional features. The last category refers to the execution
of the tests. While all experts agreed that the reliability
of a unit test is a relevant factor to avoid flaky tests, i.e.,
intermittent tests that pass and fail with the same code [43],
only interviewee #5 suggested two additional aspects. First,
s/he reported that the execution time of a unit test should be
kept low to have a quick feedback on the production code
quality. Second, the availability of information about the
infrastructure environment could provide additional knowl-
edge of whether a test risks to be flaky.

Insights from the survey. Once created an initial taxonomy
of factors contributing to unit test code quality, we proceeded
with its larger-scale validation through a survey study which
involved 70 developers worldwide. Table II summarizes de-
scriptive statistics of the survey participants: most of them are
currently professional developers working in teams composed
of 5-10 members and with an experience of up to 5 years. It
is worth noting that we did not make background questions
mandatory in the survey since some participants might not
feel comfortable with providing information about their status
[16]; hence, the table includes data concerning the participants
willing to fill the background part out.

Figure 1 shows the results achieved when inquiring the
participants on the features they consider important for unit
test code quality. We could immediately see an almost per-
fect match between their opinions and the initial taxonomy
extracted through the semi-structured interviews. Indeed, after
merging the factors named in the survey with those mentioned
by the testing experts, we discovered that the survey partic-
ipants had comparable thoughts when discussing test code
quality. For instance, the need for understanding the scope of
a unit test was mentioned 76 times by our survey participants,
i.e., some of them named multiple times characteristics falling
under the “Scope” sub-level. Survey participants named much
more frequently metrics related to structural properties of
unit tests rather than those belonging to other categories.

S
co

pe
Te

st
 D

es
ig

n
R

ea
da

bi
lit

y
In

de
pe

nd
en

ce
E

xe
cu

tio
n

R
es

ul
t

E
x.

 T
im

e
B

.E
xe

c.
 C

om
pr

eh
.

M
ai

nt
ai

na
bi

lit
y

D
ia

gn
os

ab
ili

ty
E

x.
 In

fra
st

r.
(S

el
f-)

va
lid

at
io

n
S

iz
e

R
eu

sa
bi

lit
y

0

10

20

30

40

50

60

70

oc

cu
rr

en
ce

s
pe

r s
ub

-c
at

eg
or

y

Structural
Behavioral
Executional

S
tru

ct
ur

al

B
eh

av
io

ra
l

E
xe

cu
tio

na
l

U
nc

la
ss

ifi
ed

0

20

40

60

80

100

120

140

160

oc

cu
rr

en
ce

s
pe

r c
at

eg
or

y

Fig. 1. Number of occurrences of the factors deemed important in the survey
for each category and subcategory of the taxonomy.

This result suggests that test code design is among the most
pressing contributors to unit test quality, as confirmed by the
amount of characteristics falling under the “Test design” and
“Independence” sub-levels named by the survey participants.
At the same time, maintainability and readability aspects
are considered important as well: as a matter of fact, the
“Readability” sub-level represents the third most frequent
aspect mentioned in the survey.

A few exceptions to this general discussion were also
registered. In 18 cases, survey participants defined character-
istics that could not be assigned to any of the categories of
the initial taxonomy—column “UNCLASSIFIED” in Figure 1.
These answers, however, did not provide any additional aspect
to consider for unit test code quality but rather reported either
too generic considerations (e.g., one participant explained
that tests “should be treated as a first-class citizen just as
production code”) or the description of philosophies to use
when developing source code (e.g., one of them suggested test-
driven development when inquired about the characteristics
of high quality unit tests). As such, those answers could not
be considered for extending the taxonomy. To conclude this
first analysis, we can therefore say that the initial taxonomy
was extensive enough to be considered complete by the larger
crowd of developers involved in the survey study.

RQ1 Summary. In the first place, RQ1 confirms the idea
that test code quality represents a multi-faceted concept
which is composed of a number of different aspects and
characteristics that can, to some extent, be measured. Not
only tests should effectively exercise the production code
and be able to detect faults, but developers tend to be
much more focused on non-functional aspects of test code.
Indeed, it is possible to delineate a trend in the answers
of testing experts and survey participants: readability and
understandability of tests are key factors, perhaps even

more important than their ability to cover specific paths
of the production code. These characteristics enable a finer-
grained verification of the executed paths and would allow
to have a clearer idea of what tests should be added to
properly exercise the source code; this is not always the
case of quantitative code coverage metrics, which cannot
“explain” and make immediately “comprehensible” the pro-
duction code that is exercised. In the second place, our
findings confirm that test code design and smells play a
role toward the making of meaningful test cases.

V. RQ2. THE RESEARCH PERSPECTIVE

In RQ2 we exploit a statistical model relating existing
metrics to the developer’s perception of unit test code quality.

A. Research Methodology

Response Variable Definition. It is represented by 210 scores
about perceived code quality given to 10 test cases (fully
detailed in [1]) by the participants of the study. We presented
to each participant three of them, along with the correspondent
production classes to give them the necessary context for their
understanding. The participants rated them by selecting a value
on a Likert scale. They also had the possibility to leave the
question blank or to answer with “I do not know”. After
cleaning the results of the survey by discarding such cases,
we ended up with 199 different evaluations lying on a Likert
scale from 1 to 5, representative of the following values: very
poor, poor, fair, good, and very good. We report in [1] the
descriptive statistics for the collected evaluations, describing
for each rated test the mean of the attributed scores along with
the median, the standard deviations and the total number of
evaluations. From their analysis, we could observe that the
scores given to the tests have a standard deviation of ≈1,
meaning that the developers tend to assess the quality of the
unit tests in a similar manner—hence, we have a homogeneous
dataset that does not present outliers and that can be actually
useful to understand which are the features related to the
general perception that developers have of unit test quality.

Independent Variables Definition. We use the outcome of
RQ1 to establish a set of computable metrics that may relate
to the dependent variable. This leads to the definition of 11
metrics, described as follow.
Mutation score. This is the ratio between the mutants, i.e.,

artificially created defects seeded in production code, effec-
tively detected by the test over the total number of generated
mutants [50]. This is considered the high-end criteria when
it comes to measure test code quality [33] and, according
to the results of RQ1, testing experts suggested that this
metric could be actually used to assess test effectiveness. We
compute the mutation score relying on PIT [15]. This choice
is due to the fact that PIT has been employed in previous
research about mutation testing [28, 32, 78]. Moreover, it
represents the most reliable and mature mutation testing
engine freely available [18].

Code coverage. This metric is largely used in practice to
assess test code quality and report immediate feedback to
developers [69]. The testing experts interviewed in RQ1

reported that it may be useful to measure scope and effec-
tiveness of unit tests. In this work, we use line coverage, i.e.,
the percentage of lines of code covered on the production
code by the execution of a test, computing it using PIT.

Code metrics. We select a set of 5 code metrics related to
code complexity (RFC, WCM, NOSI), coupling (CBO) and
size (LOC). We include these metrics because (i) testing
experts reported them to be potentially useful for test code
quality and (ii) they capture various structural aspects of
source code that may contribute to the response variable. To
compute those metrics, we rely on the ck tool developed by
Aniche [4]. It is worth to remark we calculate those metrics
at method level, i.e., uniquely on the test methods included
in the study and rated by the participants.

Test smells. Test smells are sub-optimal implementation
choices related to tests [46, 65, 66]. Previous research
showed that they affect maintainability and effectiveness
of test code [6, 62]. Based on the results from RQ1, we
first consider the Assertion Roulette smell [66]: this smell
is detected when a test has a number of assertions without
explanation. As such, we can capture the impact of (lack
of) assertion documentation, which has been mentioned by
testing experts as a relevant factor for unit test quality.
Secondly, we consider Eager Test [66], which affects unit
tests exercising more than one production method: this may
affect the maintainability of tests but also intuitively hinder
the identification of the scope of a test. To compute test
smells, we rely on the detection tool proposed by Bavota et
al. [5], which has been largely exploited and validated by
previous studies [28, 65].

Assertion density. For a test class Ti, assertion density is
defined as the number of assertions in Ti over the thousands
lines of code of Ti [39]. Previous research has shown that
high value of assertion density relates to fewer faults in
production code [13, 39]. Furthermore, it was mentioned in
RQ1 as a potential factor contributing to test code quality.

Readability. This has been not only highlighted by testing
experts in RQ1, but also considered as one of the most
important factors by the survey participants as it eases main-
tenance and evolution tasks [42]. To compute the readability
we rely on the original implementation of the state-of-the-
art model proposed by Scalabrino et al. [59]. This model
outputs a readability score in the [0, 1] range and can be used
on test code, since it has been trained on both production
and test code snippets [29].
From the model we exclude some of the factors mentioned

in the context of RQ1 such the executional factors and reusabil-
ity. As for the former, the main reason for this choice lies in
our willingness to avoid the presentation of information that
developers could not directly access and assess by looking at
the evaluated code, e.g., they could only analyze the unit test
and its corresponding production class but could not assess

its execution time or whether it had an intermittent behavior.
If we would have included those pieces of information, we
would have potentially risked the introduction of the so-called
extreme bias [52], which is a type of cognitive bias where
participants decide based on information they could not have
access to. To further examine the role of behavioral metrics
on unit test quality, our future research agenda includes the
execution of a controlled study where developers actively
perform tasks on unit tests before assessing their quality. As
for reusability, none of the involved developers was able to
provide us with a concrete metric to compute it.

Control Variable Definition. While the taxonomy proposed
in this paper reflects the developer’s opinions on unit test code
quality, it is worth remarking that their perception and, thus,
the scores they assigned to the evaluated snippets may be a
reflection of their experience with testing software systems.
In other words, it could be possible that their expertise has
influenced the way they evaluated unit test code quality. For
this reason, we decide to account for this aspect and consider
the experience developers declare while compiling the survey
as a control factor of the model: in this way, we verify the
effect of developer’s experience on the response variable.

Statistical Modeling. After selecting and computing the
model variables, we devise a proportional odds model [72]
to determine the relation between the perceived test quality
and the test code metrics. Proportional odds model is a class
of generalized linear model that is used to predict an ordinal
variable, i.e., a variable that assumes values on an ordinary
scale where the ordering of the values is relevant, on a set of
discrete or continuous independent values [72]. This kind of
regression fits our problem, being our response variable a value
on a Likert scale. More formally, let indicate with Y a possible
outcome with J different categories, where |J | ≥ 2. Let define
γj = P (Y ≤ j) as the cumulative probability of an outcome
Y less than or equal to a specific category j ∈ 1, ..., J − 1.
Note that P (Y ≤ J) = 1. The general form a linear logistic
model for the jth cumulative response can be formalized as:

logit(γj) = αj − βT
j x

in which both the intercept α and the covariate coefficients β
depend on the category j. Since in a proportional odds model
the intercepts depend on j but the slopes are equals, the odds
ratio of an outcome Y ≤ j can be simplified as αj − βTx.

To implement the model, we use the polr function from
the MASS R package. We check the assumption of absence
of multicollinearity, occurring when two or more covariates
are highly correlated to each other [48]. This might cause
problems in understanding the contribution of each variable in
explaining the dependent one as well as issues in estimating
the coefficients of the regression [48]. To this aim, we first
apply hierarchical clustering, based on the Spearman’s rank
correlation coefficient ρ [63], on the independent variables by
using the varclus function from the Hmisc R package.
Thus, we inspect pairs of variables with ρ > 0.6 and we

TABLE III
RESULTS OF THE REGRESSION MODEL.

Coefficient:

Estimate Std. Error Sig.

Assertion Roulette −2.002 0.792 *
Assertion Density 4.165 2.649
Readability −2.349 1.614
CBO −0.944 0.462 *
WMC −0.095 0.143
RFC −0.247 0.151
NOSI −0.162 0.071 *
LOC 0.051 0.043
Mutation Score 2.886 1.256 *
Experience −0.010 0.020

Intercepts:

very poor | poor −8.887 2.589 ***
poor | fair −7.380 2.562 **
fair | good −5.926 2.524 *
good | very good −4.418 2.253 .

Signif. codes: .p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

exclude one of them from the model, keeping the simplest
and easier to interpret for the model results.

B. Analysis of the Results

Table III shows the results of the proportional odds model.
The table lists the independent factors, the control variable
and the intercepts. For each of them, we report the estimate in
the model, the standard error and the statistical significance.
The statistical significance is given by the number of stars
as reported in Table III: ‘***’ indicates p < 0.001, ‘**’
p < 0.01, ‘*’ p < 0.05, and ‘.’ indicates p < 0.1. From
the hierarchical cluster analysis we discovered high correlation
between line coverage and mutation score, in line with what
suggested by previous research [28]. Thus, we decided to keep
only the latter factor in the model. Also, we excluded Eager
Test because all the tests were affected by this smell, hence
not allowing the model to use it as an independent variable.

Proportional odds models report the covariate coefficients
scaled in term of logs, making their interpretation harder.
For this reason, to ease the discussion of the results we
converted the coefficients into the odds ratio by exponentiating
the estimates—using the exp R command. The resulting
proportional odds ratios (ORs) have the same interpretation
as the odds ratios in a binary logistics regression [72].

Looking at the results, we could find that mutation score has
the highest proportional odds ratio (OR = 17.92) amongst the
significant covariants, with a p < 0.05: this indicates that a
higher mutation score increases the probability of having a
high quality unit test, as perceived by developers. This is in
line with previous research showing that mutants can be a
valid mechanism to assess unit test quality [35]. As explained
above, we excluded line coverage from the model because of
its correlation with the mutation score. To verify the impact of

this choice on the statistical results, we experimented with an
alternative model which includes line coverage as a feature
and discards the mutation score instead. We observed that
both this model and the original one, i.e., the one including
mutation score, have the same Akaike Information Criterion
(AIC) estimate of 482.17 and similar odds ratios for the two
metrics, meaning that line coverage has a similar correlation
with the scores given by developers.

Three independent variables show an inverse effect of the
perceived test code quality (all with p < 0.05). Specifically,
higher values of CBO (Coupling Between Objects) decrease
the probability of observing high quality scores (OR = 0.39).
This somehow confirms what developers reported in the
context of RQ1. Indeed, tests with high CBO might either
interact with other tests or with multiple production classes.
Therefore, they might have an excessively broad scope or
exercise multiple functionalities.

Similarly, the presence of the Assertion Roulette smell,
i.e., tests where assertions are not documented, negatively
impacts test quality perception (OR = 0.13). This is again
in line with the results of RQ1, where developers reported
that lack of assert documentation represents a key problem
for understanding what the test is supposed to do.

Finally, a similar relationship was observed when consid-
ering NOSI (Number Of Static Invocations) (OR = 0.85)
— this metric turned out to be highly correlated with the
absolute number of assertions in a test. Interestingly, however,
the assertion density variable, despite an insignificant p-value
and a high standard error, had a strong positive estimate. At
first glance, these two results seem to contrast each other. On
the one hand, the lower the NOSI, the higher the quality. On
the other hand, the higher the assertion density, the higher
the quality. However, we can intuitively say that our findings
suggest that the number of assertions to put in a unit test
should be proportioned to its purpose. Indeed, according to our
findings, too many assertions are correlated with a decrease of
perceived quality but, if the assertion density is proportioned,
then the resulting quality is perceived differently.

On the other side, we discovered that all other metrics
(size, complexity, and readability) are not statistically related
to the developer’s perception of test code quality. Particularly
interesting is the case of readability: despite it was mentioned
multiple times as a relevant feature by developers in RQ1,
the statistical results are not aligned. This finding is likely
due to the poor ability of current readability metrics, as well
as proxy indicators of this aspect like complexity metrics, to
capture the actual understandability of source code [51, 57].
In other words, our findings support the claim for which novel
metrics should be devised to better capture both structural
and conceptual aspects of test code. As a final note, the
control variable selected, i.e., the developer’s experience, did
not appear as significant, meaning that this factor did not act
as confound for the response variable.

To broaden the scope of the discussion, let consider the
value of the intercepts for the categories. Recall that each
intercept corresponds to P (Y ≤ j), i.e., the cumulative

probability of an outcome being a category lower or equals
than Y against being in categories above. As an example, the
〈very poor | poor〉 boundary corresponds to the probability of
an outcome Y to be not better than very poor against being in a
category from poor above. Looking at Table III, it is interesting
to note that the estimate of each level becomes less and less
statistically significant as the Likert scale increases. Indeed,
we observe a p < 0.001 for the first level, i.e., the model is
able to predict a very poor outcome by exploiting the variables
we presented. At the level 〈poor | fair〉, the model starts losing
statistical significance (p < 0.01), meaning that it becomes less
capable of discriminating tests whose quality was categorized
between poor and fair. The statistical significance lowers even
more when considering the boundaries 〈fair | good〉 (p < 0.05)
and 〈good | very good〉 (p < 0.1).

RQ2 Summary. The results of the intercepts suggest an
interesting finding: the main factors defined by researchers
as a proxy for unit test quality succeed to discern low-
quality tests from fair ones, while they are less effective
in doing the same for tests of higher quality. This finding
aligns with what observed in RQ1: widely used metrics, e.g.,
code coverage ones, are often necessary but not sufficient to
guarantee high test code quality. Mutation score is the factor
with the highest predicting power for high perceived quality,
while high test coupling and undocumented assertions show
an opposite impact. Our analysis partially confirms the
usefulness of existing metrics but, at the same time, reveals
a limitation: these metrics fail at providing a comprehensive
and complete model of perceived test quality.

VI. IMPLICATIONS OF THE STUDY

The results of our study provided a number of implications
for the software engineering research community.

The existing metrics are not enough. From the results
coming from both RQ1 and RQ2 we could derive important
insights into the practical relevance of existing test code
quality metrics. The practitioners involved in our study first
highlighted how code coverage metrics are necessary since
they provide information on the amount of exercised pro-
duction code. However, they are not enough to guarantee
neither the diagnosability of the faults discovered nor the un-
derstandability of the code under test. Furthermore, mutation
coverage is rarely applied in practice and, indeed, developers
tend to assess unit test quality by using different metrics. For
example, the testing experts involved in our study suggested
that important facets of test code quality are currently either
under-investigated, e.g., readability, or not considered yet, e.g.,
reusability. Moreover, these alternative aspects seem to be
among the most important for practitioners: as a matter of
fact, when inquired about the factors influencing unit code
quality, the survey participants often mentioned readability and
maintainability as top factors influencing unit code quality.
Perhaps more importantly, from the statistical exercise of
RQ2 we discovered that code and mutation coverage, as well

as other metrics defined by the research community, e.g.,
assertion density, effectively support developers in detecting
unit tests having a low code quality. We argue it would
be equally important to provide them with metrics able to
better characterize high quality tests: First, such metrics could
support selecting and/or prioritizing testing activities. Second,
features characterizing high quality tests could provide a
guideline for developer in writing more effective tests or
improving existing ones. To sum up, our findings represent
a call for new metrics that can enact a more comprehensive
view of the unit test code quality phenomenon, but also better
characterize high quality unit tests.

Toward explainable testing metrics. According to our
findings, a key factor influencing unit test quality is repre-
sented by the explanatory power of a test, i.e., by its ability to
describe which use case scenario or part of the production code
is exercised. Both testing experts and participants involved in
RQ1 reported the need for mechanisms fostering the explain-
ability of a unit test. This aspect also emerged in RQ2, where
we observed that the absence of assertion documentation (i.e.,
the presence of the Assertion Roulette smell) was one of the
few significant factors of our statistical model. These findings
directly impact the research community and, more particularly,
the way testing metrics should be presented to developers.
In the first place, quantitative metrics should be combined
with summarization mechanisms able to describe them as
well as their effects on production code. As such, our study
promotes and further stimulates the research done on source
code summarization [24]. At the same time, our findings
also stimulate the research around the under-investigated field
of test code refactoring: in particular, automated solutions
able to recommend appropriate assertion descriptions could
be worthwhile to improve the overall test code quality.

Design for test code quality. The ability of designing
high quality test cases is considered relevant by practitioners.
According to the findings of RQ1 and RQ2, this is especially
true when considering specific aspects like test coupling and
complexity. Besides the definition of novel metric able to bet-
ter model these aspects, our study leans toward the definition
of more structured methodologies to develop and maintain
test cases. This represents a crucial challenge for the research
community. While our findings motivate the growing research
area around test code design (e.g., how to best generate tests
automatically [22, 23, 27]), we believe that further efforts
should put in place for the definition of best and bad practices
that can help developers writing high quality unit tests, e.g.,
novel test code design patterns.

VII. THREATS TO VALIDITY

A number of factors could have influenced our findings.

Construct Validity. These threats refer to the research
instruments used. Our confirmatory survey was conducted in
a remote setting: as such, we could not verify the level of
engagement of the participants or their behavior while working
on the study. To tackle this issue, we did not include any

mandatory questions other than discarding the incomplete sub-
missions (more than 200 in total). To avoid any problem with
the survey infrastructure, we ran preliminary tests amongst
the authors as well as two external participants prior the
public release of the survey. Similarly, we conduct a first
pilot interview to consolidate and practice its structure. We
advertised the survey on several social media platforms, in an
attempt of reducing some selection bias. The majority of our
participants engaged to the study via REDDIT, an independent
forum that has been largely used in the past to ask for experts
opinion about research topics [67].

External Validity. As for the generalizability of the results,
in our study we first interviewed 5 expert with different
background and level of experience. Our confirmatory survey
collected answers from 70 participants with a diverse range
of experience, employment, and team size, limiting possible
threats to the validity of the given answer. Broader replication
would be still be profitable to corroborate our findings. We
selected 10 unit tests coming from the APACHE ecosystem.
We tackle this threat by applying a random sampling of the
tests while ensuring to not select more than one test from the
same suite. In our future agenda we plan to both enlarge and
diversify the application domain for the selected systems.

Conclusion Validity. With respect to the relation between
treatment and outcome, the main threat is the selection of
a wrong statistical model. To this aim, we verified the as-
sumptions made by a proportional odds model [71]. In the
first place, our dependent variable is naturally measured at
an ordinal level. Secondly, we checked for multicollinearity
amongst the covariants by exploiting hierarchical clustering
based on the Spearman’s rank correlation coefficient [63]. In
particular, we discarded one variable for each pair having a
ρ > 0.6. Finally, we check the assumption of proportional
odds implying that the relationship between each pair of the
outcome groups is the same. This assumes that the independent
variables have the same effects on the odds regards the
considered level. We test this assumption with the Brant
test [9] implemented in the brant R package. We took some
additional measures to avoid conclusion biases: in particular,
we define the experience of the developer as control factor.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigated how developers perceive unit
test code quality and how the metrics defined in literature
match this perception. Through a mixed-method approach,
featuring semi-structured interviews, a survey study, and a
statistical modeling approach we discovered that existing
metrics only partially match with the developer’s perception
of unit test quality, which should be complemented with (i)
alternative/additional metrics to diagnose the actual usefulness
of tests and (ii) automated documentation mechanisms that
help developers understanding various aspects of test code,
including assertions. These findings represent the main input
for our future research agenda, which will be devoted to
the development of novel metrics and mechanisms supporting
developers with the assessment of test code quality.

REFERENCES
[1] Pizza versus pinsa: On the perception and measurability of unit test

code quality — online appendix. https://anonymous.4open.science/r/
1d53bcfe-348d-4a14-87d7-7a0dfec704d7/.

[2] K. Aggrawal, Y. Singh, and A. Kaur. Code coverage based technique for
prioritizing test cases for regression testing. ACM SIGSOFT Software
Engineering Notes, 29(5):1–4, 2004.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th international
conference on Software engineering, pages 402–411. ACM, 2005.

[4] M. Aniche. Java code metrics calculator (CK), 2015. Available in
https://github.com/mauricioaniche/ck/.

[5] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance. In Software Maintenance (ICSM), 2012 28th
IEEE International Conference on, pages 56–65. IEEE, 2012.

[6] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. Are
test smells really harmful? an empirical study. Empirical Software
Engineering, 20(4):1052–1094, 2015.

[7] K. Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[8] D. Bowes, T. Hall, J. Petric, T. Shippey, and B. Turhan. How good are
my tests? In 2017 IEEE/ACM 8th Workshop on Emerging Trends in
Software Metrics (WETSoM), pages 9–14. IEEE, 2017.

[9] R. Brant. Assessing proportionality in the proportional odds model for
ordinal logistic regression. Biometrics, pages 1171–1178, 1990.

[10] R. P. Buse and W. R. Weimer. Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36(4):546–558, 2010.

[11] X. Cai and M. R. Lyu. The effect of code coverage on fault detection
under different testing profiles. ACM SIGSOFT Software Engineering
Notes, 30(4):1–7, 2005.

[12] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci. How the
experience of development teams relates to assertion density of test
classes. In ICSME, pages 223–234. IEEE, 2019.

[13] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci. How the
experience of development teams relates to assertion density of test
classes. page to appear, 2019.

[14] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on software engineering, 20(6):476–493,
1994.

[15] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. Pit:
a practical mutation testing tool for java. In Proceedings of the 25th
International Symposium on Software Testing and Analysis.

[16] J. M. Converse and S. Presser. Survey questions: Handcrafting the
standardized questionnaire. Number 63. Sage, 1986.

[17] J. W. Creswell. Mixed-method research: Introduction and application.
In Handbook of educational policy, pages 455–472. Elsevier, 1999.

[18] M. Delahaye and L. Bousquet. Selecting a software engineering
tool: lessons learnt from mutation analysis. Software: Practice and
Experience, 45(7):875–891, 2015.

[19] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. Understanding
flaky tests: The developer’s perspective. page to appear, 2019.

[20] M. Ellims, J. Bridges, and D. C. Ince. The economics of unit testing.
Empirical Software Engineering, 11(1):5–31, 2006.

[21] T. S. Flanigan, E. McFarlane, and S. Cook. Conducting survey research
among physicians and other medical professionals: a review of current
literature. In Proceedings of the Survey Research Methods Section,
American Statistical Association, volume 1, pages 4136–47, 2008.

[22] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering, 39(2):276–291, 2012.

[23] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering, 38(2):278–292,
2011.

[24] M. Gambhir and V. Gupta. Recent automatic text summarization
techniques: a survey. Artificial Intelligence Review, 47(1):1–66, 2017.

[25] M. Goeminne and T. Mens. Analyzing ecosystems for open source
software developer communities. In Software Ecosystems. Edward Elgar
Publishing, 2013.

[26] R. Gopinath, C. Jensen, and A. Groce. Code coverage for suite
evaluation by developers. In Proceedings of the 36th International
Conference on Software Engineering, pages 72–82, 2014.

[27] G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. C. Gall. Scented
since the beginning: On the diffuseness of test smells in automatically
generated test code. Journal of Systems and Software, 156:312–327,

2019.
[28] G. Grano, F. Palomba, and H. C. Gall. Lightweight assessment

of test-case effectiveness using source-code-quality indicators. IEEE
Transactions on Software Engineering, 2019.

[29] G. Grano, S. Scalabrino, R. Oliveto, and H. Gall. An empirical
investigation on the readability of manual and generated test cases. In
Proceedings of the 26th International Conference on Program Compre-
hension, ICPC, 2018.

[30] S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain. Semantic similarity
from natural language and ontology analysis. Synthesis Lectures on
Human Language Technologies, 8(1):1–254, 2015.

[31] C. A. R. Hoare. Assertions: A personal perspective. IEEE Annals of
the History of Computing, 25(2):14–25, 2003.

[32] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the 36th International
Conference on Software Engineering, pages 435–445. ACM, 2014.

[33] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering, 37(5):649–
678, 2010.

[34] H. Jin and F. Zeng. Research on the definition and model of software
testing quality. In The Proceedings of 2011 9th International Conference
on Reliability, Maintainability and Safety, pages 639–644. IEEE, 2011.

[35] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 654–665.

[36] C. D. Kam, J. R. Wilking, and E. J. Zechmeister. Beyond the “narrow
data base”: Another convenience sample for experimental research.
Political Behavior, 29(4):415–440, 2007.

[37] Y. W. Kim. Efficient use of code coverage in large-scale software
development. In Proceedings of the 2003 conference of the Centre for
Advanced Studies on Collaborative research, pages 145–155. IBM Press,
2003.

[38] P. S. Kochhar, F. Thung, and D. Lo. Code coverage and test suite
effectiveness: Empirical study with real bugs in large systems. In
Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on, pages 560–564. IEEE, 2015.

[39] G. Kudrjavets, N. Nagappan, and T. Ball. Assessing the relationship
between software assertions and faults: An empirical investigation. In
2006 17th International Symposium on Software Reliability Engineering,
pages 204–212, 2006.

[40] J. Lawrence, S. Clarke, M. Burnett, and G. Rothermel. How well
do professional developers test with code coverage visualizations? an
empirical study. In 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’05), pages 53–60. IEEE, 2005.

[41] M. M. Lehman. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980.

[42] K. M. Lui and K. C. Chan. Pair programming productivity: Novice–
novice vs. expert–expert. International Journal of Human-computer
studies, 64(9):915–925, 2006.

[43] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis
of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 643–653.
ACM, 2014.

[44] A. Marchenko, P. Abrahamsson, and T. Ihme. Long-term effects of test-
driven development a case study. In International Conference on Agile
Processes and Extreme Programming in Software Engineering, pages
13–22. Springer, 2009.

[45] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the conceptual
cohesion of classes for fault prediction in object-oriented systems. IEEE
Transactions on Software Engineering, 34(2):287–300, 2008.

[46] G. Meszaros. xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[47] N. Nagappan, L. Williams, J. Osborne, M. Vouk, and P. Abrahamsson.
Providing test quality feedback using static source code and automatic
test suite metrics. In 16th IEEE international symposium on software
reliability engineering (ISSRE’05), pages 10–pp. IEEE, 2005.

[48] R. O’Brien. A caution regarding rules of thumb for variance inflation
factors, 10 2007.

[49] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting the orthogonal.
In Mutation testing for the new century, pages 34–44. Springer, 2001.

[50] J. Offutt. A mutation carol: Past, present and future. Information and
Software Technology, 53(10):1098–1107, 2011.

[51] J. Pantiuchina, M. Lanza, and G. Bavota. Improving code: The (mis)

https://anonymous.4open.science/r/1d53bcfe-348d-4a14-87d7-7a0dfec704d7/
https://anonymous.4open.science/r/1d53bcfe-348d-4a14-87d7-7a0dfec704d7/

perception of quality metrics. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 80–91. IEEE,
2018.

[52] D. L. Paulhus. Measurement and control of response bias. 1991.
[53] L. S. Pinto, S. Sinha, and A. Orso. Understanding myths and realities

of test-suite evolution. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.

[54] D. Qiu, B. Li, and H. Leung. Understanding the api usage in java.
Information and software technology, 73:81–100, 2016.

[55] Y. Rafique and V. B. Mišić. The effects of test-driven development on
external quality and productivity: A meta-analysis. IEEE Transactions
on Software Engineering, 39(6):835–856, 2012.

[56] J. M. Rojas and G. Fraser. Is search-based unit test generation research
stuck in a local optimum? In SBST@ICSE, pages 51–52. IEEE, 2017.

[57] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshy-
vanyk, and R. Oliveto. Automatically assessing code understandability:
How far are we? In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 417–427. IEEE, 2017.

[58] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk.
A comprehensive model for code readability. Journal of Software:
Evolution and Process, 30(6):e1958, 2018.

[59] S. Scalabrino, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto.
Improving code readability models with textual features. In Program
Comprehension (ICPC), 2016 IEEE 24th International Conference on,
pages 1–10. IEEE, 2016.

[60] J. Smith and H. Noble. Bias in research. Evidence-based nursing,
17(4):100–101, 2014.

[61] D. Spadini, F. Palomba, T. Baum, S. Hanenberg, M. Bruntink, and
A. Bacchelli. Test-driven code review: an empirical study. In Pro-
ceedings of the 41st International Conference on Software Engineering,
pages 1061–1072. IEEE Press, 2019.

[62] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli.
On the relation of test smells to software code quality. In 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 1–12. IEEE, 2018.

[63] C. Spearman. The proof and measurement of association between two
things. American Journal of Psychology, 15:88–103, 1904.

[64] H. Srikanth, L. Williams, and J. Osborne. System test case prioritization
of new and regression test cases. In 2005 International Symposium on

Empirical Software Engineering, 2005., pages 10–pp. IEEE, 2005.
[65] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,

and D. Poshyvanyk. An empirical investigation into the nature of test
smells. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, pages 4–15, 2016.

[66] A. Van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring
test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001),
pages 92–95, 2001.

[67] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman. How developers engage with static analysis tools in
different contexts. Empirical Software Engineering, 25(2):1419–1457,
2020.

[68] J. L. Walker. Research column. the use of saturation in qualitative
research. Canadian Journal of Cardiovascular Nursing, 22(2), 2012.

[69] Y. Wei, B. Meyer, and M. Oriol. Is branch coverage a good measure of
testing effectiveness? In Empirical Software Engineering and Verifica-
tion, pages 194–212. Springer, 2012.

[70] R. S. Weiss. Learning from strangers: The art and method of qualitative
interview studies. Simon and Schuster, 1995.

[71] R. Williams. Generalized ordered logit/partial proportional odds models
for ordinal dependent variables. The Stata Journal, 6(1):58–82, 2006.

[72] C. Winship and R. D. Mare. Regression models with ordinal variables.
American Sociological Review, 1984.

[73] W. E. Wong, V. Debroy, and B. Choi. A family of code coverage-based
heuristics for effective fault localization. J. Syst. Softw., 83(2):188–208,
2010.

[74] W. E. Wong, Y. Qi, L. Zhao, and K. Cai. Effective fault localization
using code coverage. In COMPSAC (1), pages 449–456. IEEE Computer
Society, 2007.

[75] T. Yamaura. How to design practical test cases. IEEE software,
15(6):30–36, 1998.

[76] Y. Yu, G. Yin, T. Wang, C. Yang, and H. Wang. Determinants of pull-
based development in the context of continuous integration. Science
China Information Sciences, 59(8):080104, 2016.

[77] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang. Predictive
mutation testing. IEEE Transactions on Software Engineering, 2018.

[78] Y. Zhang and A. Mesbah. Assertions are strongly correlated with test
suite effectiveness. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 214–224. ACM, 2015.

	Introduction
	Background and Related Work
	Research Goals and Questions
	RQ1. The Practitioner's Perspective
	Research Methodology
	Analysis of the Results

	RQ2. The Research Perspective
	Research Methodology
	Analysis of the Results

	Implications of the Study
	Threats to validity
	Conclusion and Future Work

