
Understanding Community Smells Variability:
A Statistical Approach

Gemma Catolino1,2, Fabio Palomba3, Damian Andrew Tamburri2,4, Alexander Serebrenik4
1Tilburg University, NL - 2Jheronimus Academy of Data Science, NL
3University of Salerno, IT - 4Eindhoven University of Technology, NL

g.catolino@tilburguniversity.edu, fpalomba@unisa.it, d.a.tamburri@tue.nl, a.serebrenik@tue.nl

Abstract—Social debt has been defined as the presence in
a project of costly sub-optimal organizational conditions, e.g.,
non-cohesive development communities whose members have
communication or coordination issues. Community smells are
indicators of such sub-optimal organizational structures and may
well lead to social debt. Recently, several studies analyzed actors
affecting presence of community smells and their harmfulness, or
proposed refactoring strategies to mitigate them. However, to the
best of our knowledge, there is still a limited understanding of the
factors influencing the variability of community smells, namely
how they increase/decrease in magnitude over time. In this paper,
we aim at conducting the first statistical experimentation on the
matter, by analyzing how a set of 40 socio-technical factors,
e.g., turnover or communicability, impact the variability of four
community smells on a dataset composed of 60 open-source
communities. The results of the study reveal that communicability
is, in most cases, important to reduce the risk of an increase of
community smell instances, while broadening the collaboration
network does not always have a positive effect.

Index Terms—Community Smells; Social Debt; Statistical
Models; Empirical Study.

I. INTRODUCTION

Developing software is by nature a social activity [1]: the
way developers interact between each other not only has
implications on social debt [2] but also on software code
quality [3]. Communication and collaboration challenges can
arise because of multiple reasons, such as different cultures
and culture clashes [4], [5] and differences in expertise or
power distance [6], [7]. In these circumstances, sub-optimal
organizational and socio-technical situations that hamper or
altogether impede the straightforward production, operation,
and evolution of software [8] may occur: research has named
them community smells [9].

The research on community smells has gained attention over
the last years. Recent work has established the interaction be-
tween community smells and their technical counterparts [10]
as well as, more generally, technical debt in its various forms
[11], [12]. Moreover, researchers have been investigating how
community smells appear [2], [13], what are the major factors
that may influence community smells [13]–[15], and how
developers refactor community smells in practice [16]. For
instance, Tamburri et al. [13] showed that community smells
are highly diffused and perceived harmful, and some existing
socio-technical factors correlate with their presence. Moreover,
in certain cases the emergence of community smells may be
potentially reduced by increasing gender diversity and women

participation [14], [15], even though there exist specific actions
that can be performed to modify the structure of a community
and get rid of these smells [16].

Despite the relevant body of knowledge built so far, there
is still a limited understanding of whether and which are the
socio-technical factors, such as turnover [17]–[19] or commu-
nicability [20], contributing to the variability of community
smells: we define variability as the extent to which community
smell instances increase or decrease over time. An improved
understanding of this aspect is crucial for two main reasons:
(1) it would be possible to keep known socio-technical factors
affecting such a variability under control, possibly estimating
how changes in these factors would impact the emergence
of issues in the community; (2) it would be possible to
derive additional aspects influencing the phenomenon, hence
providing the research community with insights on the future
steps to take to deal with community smells.

For the aforementioned reasons, in this paper we study how
40 previously identified socio-technical factors contribute to
the variability of four well-known and harmful community
smells, i.e., Organizational Silo, Black Cloud, Lone Wolf, and
Radio Silence, considering the dynamics of 60 open-source
communities. In this study we adopt a statistical approach:
the idea is to shed lights on the factors that influence the
phenomenon with enough statistical significance to support
further research based on the findings of our study. The key
results report that communicability metrics are those that in
most cases increase the chances of community smells being
stable over time, while increasing the collaboration network
does not always lead to a reduction of community smells.
Based on these results, we formulate a number of research
avenues and challenges to tackle the risks associated to the
variability of community smells.

To sum up, our paper offers three main contributions:

1) The first, large-scale empirical exploration of the vari-
ability of four community smells based on a set of 40
socio-technical metrics;

2) A research roadmap that other researchers can use to
derive the next challenges in the field of community smell
prevention and identification;

3) A publicly available replication package [21] supporting
further studies of the characteristics of community smells
as well as corroborating our findings.

II. RELATED WORK

Effective communication and organization of a software
development team might influence the quality of both de-
velopment process and software created [22]. Costs of poor
communication are estimated as $37 billion.1 This motivated
the research on “social debt”, i.e., the presence of non-cohesive
development communities whose members have communica-
tion or coordination issues [23]. One of most harmful and re-
curring forms of social debt has the name of community smells,
which represent suboptimal socio-technical patterns appearing
within a software community and causing coordination and/or
communication problems that not only increase social debt but
may even lead to the emergence of technical debt [10].

Community smells started receiving particular interest since
the release of CODEFACE [24]. By mining code repositories
and developer’s interactions, the tool can first construct the
so-called developer networks, namely graphs describing the
relations of collaboration and communication actually in place
among developers, and then build upon these networks to
automatically identify software communities. The availability
of this tool has naturally allowed further research in the field.

Tamburri et al. [13] extended CODEFACE to enable the auto-
matic identification of the four community smells selected for
our study. The resulting tool, named CODEFACE4SMELLS, has
been empirically evaluated on a set of 60 projects: according to
the findings, the tool does not output false positives/negatives
and the community smells identified match in 100% of the
cases the developer’s expectations. As explained in Section
III, the availability of this detection tool allowed us to identify
community smells in the context of this work.

Later on, Palomba et al. [10] showed that community smells
are among the top factors influencing the emergence of code
smells in source code. Along the same line, other researchers
focused on establishing the impact of community smells on
other dimensions of software engineering, e.g., architecture
debt [11] and organization structure types [25].

Researchers have been also investigating how these smells
appear, what are the major factors that may influence them,
and the way developers refactor community smells in practice.
Catolino et al. [14] showed how in certain situations the
emergence of community smells may be potentially reduced
by increasing gender diversity. A further survey study of the
practitioners’ opinions [15] reported that developers do not
perceive gender diversity and presence of women in software
teams as relevant factors to avoid community smells, while
they believe that other aspects, like developer’s experience or
team size, may make a community more prone to be smelly
[15]. Catolino et al. [16] also studied how developers remove
community smells: by surveying 76 experts, the authors were
able to elicit and distill a set of refactoring operations generally
applied by practitioners to remove the four community smell
types identifiable through CODEFACE4SMELLS.

A more recent and promising trend is represented by the
definition of modeling mechanisms able to describe the future

1https://tinyurl.com/ydfjf4p6

structure of a community and alert project managers of the
presence of social debt [26]–[28].

The closest work to the one presented in this paper is the
paper by Tamburri et al. [13]. They performed a large-scale
empirical study on 60 open-source ecosystems to evaluate the
diffuseness of community smells, how they are perceived and
how smells relate to existing socio-technical factors. They
found that community smells are highly diffused in open-
source and are perceived by developers as relevant problems
for the evolution and sustainability of software communities.
Finally, they performed a correlation analysis between some
socio-technical metrics and the presence of community smells,
identifying a number of positive correlations. With respect
to this paper, ours must be considered as complementary:
indeed, we do not aim at finding simple correlations between
metrics and community smells, but providing a finer-grained
view of how existing socio-technical metrics influence the
variability of community smells. The variability perspective
is, therefore, a novelty of this paper along with the analysis of
how socio-technical metrics impact the increment/decrement
of the number of different types of community smells.

III. RESEARCH METHODOLOGY

This section describes the methodology of our study, which
followed the guidelines of Wohlin et al. [29].

A. Research Questions

The goal of the study is to analyze community smells
with the purpose of investigating whether and which are the
socio-technical metrics that affect their variability. The quality
focus is on community smells and their variability within
software projects. The perspective is of both researchers and
practitioners: the former are interested in gathering a deeper
understanding of the variability of community smells and their
connected causes, while the latter in better monitoring the
presence of community smells using socio-technical metrics.

Based on these objectives, we asked:

RQ1. How do socio-technical metrics affect the variability
of community smells?

With RQ1, we analyzed whether and how existing socio-
technical metrics may affect the variability of community
smells, namely their increment or decrement over time. In
so doing, we adopted a statistical approach: in other words,
we sought to identify the relevant factors for the variability
of community smells by defining a statistical model relating
socio-technical metrics to the increment/decrement of com-
munity smells. It is important to point out that the research
questions also allowed us to establish commonalities and
differences among different community smells.

B. Context Selection

The context of the study consisted of software projects,
socio-technical factors, and community smells.

https://tinyurl.com/ydfjf4p6

TABLE I
SOCIO-TECHNICAL METRICS CONSIDERED IN OUR STUDY.

Category Metric Description
devs Number of developers present in the global Developers Social Network
ml.only.devs Number of developers present only in the communication Developers Social Network
code.only.devs Number of developers present only in the collaboration Developers Social Network
ml.code.devs Number of developers present both in the collaboration and in the communication DSNs
perc.ml.only.devs Percentage of developers present only in the communication Developers Social Network
perc.code.only.devs Percentage of developers present only in the collaboration Developers Social Network
perc.ml.code.devs Percentage of developers present both in the collaboration and in the communication DSNs
sponsored.devs Number of sponsored developers (95% of their commits are done in working hours)

Developer Social Network metrics

ratio.sponsored Ratio of sponsored developers with respect to developers present in the collaboration DSN
st.congruence Estimation of socio-technical congruence
communicability Estimation of information communicability (decisions diffusion)
num.tz Number of timezones involved in the software developmentSocio-Technical Metrics

ratio.smelly.devs Ratio of developers involved in at least one Community Smell
core.global.devs Number of core developers of the global Developers Social Network
core.mail.devs Number of core developers of the communication Developers Social Network
core.code.devs Number of core developers of the collaboration Developers Social Network
sponsored.core.devs Number of core sponsored developers
ratio.sponsored.core Ratio of core sponsored developers with respect to core developers of the collaboration DSN
global.truck Ratio of non-core developers of the global Developers Social Network
mail.truck Ratio of non-core developers of the communication Developers Social Network
code.truck Ratio of non-core developers of the collaboration Developers Social Network
mail.only.core.devs Number of core developers present only in the communication DSN
code.only.core.devs Number of core developers present only in the collaboration DSN
ml.code.core.devs Number of core developers present both in the communication and in the collaboration DSNs
ratio.mail.only.core Ratio of core developers present only in the communication DSN
ratio.code.only.core Ratio of core developers present only in the collaboration DSN

Core community members metrics

ratio.ml.code.core Ratio of core developers present both in the communication and in the collaboration DSNs
global.turnover Global developers turnover with respect to the previous temporal window
code.turnover Collaboration developers turnover with respect to the previous temporal window
core.global.turnover Core global developers turnover with respect to the previous temporal window
core.mail.turnover Core communication developers turnover with respect to the previous temporal window
core.code.turnover Core collaboration developers turnover with respect to the previous temporal window

Turnover

ratio.smelly.quitters Ratio of developers previously involved in any Community Smell that left the community
closeness.centr SNA degree metric of the global DSN computed using closeness
betweenness.centr SNA degree metric of the global DSN computed using betweenness
degree.centr SNA degree metric of the global DSN computed using degree
global.mod SNA modularity metric of the global DSN
mail.mod SNA modularity metric of the communication Developers Social Network
code.mod SNA modularity metric of the collaboration Developers Social Network

Social Network Analysis metrics

density SNA density metric of the global Developers Social Network

As for the former, our study targeted 60 active open-source
software projects extracted from GITHUB. In particular, we
relied on the publicly available dataset provided by Tamburri
et al. [13]. The software systems in such a dataset have
been originally selected based on various criteria: (1) code-
base size - the dataset contains 20 medium-sized (200–500
KLOC), 20 large (500–850 KLOC) and 20 very large (>
850 KLOC) systems; (2) programming language - it contains
projects developed using Java, C#, C, Python, YAML and other
languages; (3) community size - the dataset contains equal
numbers of projects with i.e., medium (<50 members), large
(50–150) and very-large (>150) communities; (4) age - the
distribution in this case is evenly split among three ranges,
i.e., young projects (<24 months), established projects (24–
32), and mature projects (>32). Due to the space limitation,
the complete list of the projects is available in our online
appendix [21]. More details on the project selection and data
extraction are available in the paper by Tamburri et al. [13].

Table I reports the socio-technical metrics considered in
the scope of this paper. As shown, we took into account
factors covering five different aspects characterizing a software

community, e.g., turnover metrics that measure, under different
perspectives, the extent to which developers join and leave a
project. Their selection was based on two key points. In the
first place, all the metrics have been previously correlated to
the presence of community smells [13]: as such, we selected
these metrics to enlarge our knowledge on the matter and
verify the role they can play when assessing the variability
of community smells. In the second place, these metrics are
broadly and widely connected to social debt, as established
by previous work (e.g., [20], [24], [41]: for the sake of
comprehensiveness, Table II summarizes the insights provided
by researchers in the past with respect to the relation between
the selected socio-technical metrics and community smells.
Hence, our selection procedure allowed us to analyze a wide
range of relevant metrics and provide additional insights into
their potential practical usefulness.

Finally, as for the community smells, we focused on:

1) ORGANIZATIONAL SILO EFFECT: This form of social
debt refers to the presence of siloed areas of the developer
community that do not communicate, except through one
or two of their respective members;

TABLE II
METRICS SELECTION RATIONALE; METRICS AND RATIONALES FOLLOW THE SAME CLUSTERING SCHEMA FROM TABLE I.

Metric
Rationale

Developer Social Network Metrics These metrics are largely derived from the works of Meenly et al. [20], [30] and Joblin et al. [24] who,
respectively, (1) introduced the fundamental roles of Developer Social Networks in predicting failures and (2)
prototyped technologies for the verifiable investigation of fully-formed developer communities. DSN metrics
are not only relevant to specify the stability and predictive characteristics of organisational structures but also
that they reflect relevant technical characteristics in code which reflect socio-technical issues.

Socio-Technical Metrics These metrics are derived from the state-of-the-art in social software engineering. Previous research
highlighted the relation between these metrics and sub-optimal conditions in the organisational structure,e.g.,
Kwan et al. [31] who investigate build failures connected to sub-optimal coordination patterns or Tamburri
[32] who studies sub-optimal architectural decision patterns connected to incommunicability.

Core-Community Members Metrics Metrics in this cluster range between the truck-factor (whose relation to sub-optimal organizational conditions
is highlighted in [33], [34]) to core-periphery numbering metrics, which are largely inspired by the work of
Manteli et al. [35], [36] who investigate core-periphery organizational (anti-)patterns and their relation with
community member descriptors as well as core-periphery mismatches.

Turnover Metrics These metrics are derived directly from the original committers of the studies reported in [10], [13], [32] who
desired to investigate their turnover rates across several distributed software development sites across the world.

Social-Network Analysis Metrics These metrics are derived from the state of the art in organisations’ research and reflect the most relevant
centrality measures recurrently used in connection to sub-optimal organisational conditions such as
prima-donna effects (e.g., see Dekker et al. [37]) or lack of boundary-spanning [38]–[40].

2) BLACK CLOUD EFFECT: This community smell reflects
an information overload due to lack of structured com-
munications or cooperation governance;

3) LONE WOLF EFFECT: This smell arises when the de-
velopment community presents unsanctioned or defiant
contributors who carry out their work with little consid-
eration of their peers, their decisions and communication;

4) RADIO-SILENCE EFFECT: This smell appears when one
member interposes herself into every formal interaction
across two or more sub-communities with little or no
flexibility to introduce other parallel channels.

These and additional community smell types have been
originally introduced by Tamburri et al. [42]. We opted for
these four smell types since they have been shown to have
a strong negative impact on both social aspects of software
communities [8], [9] and the resulting technical processes and
products [10], [14], [15]. Moreover, the relevance of these
community-related issues has been previously investigated in
open-source [13], and in our previous studies [14]–[16], thus,
their analysis could lead to confirm or refine the available find-
ings. They have been extracted using the CODEFACE4SMELL
tool [13]. It is important to point out that the dataset we
relied on provides the set of community smells for each three-
month time window from the conception of the systems along
with the socio-technical metrics computed in the same time
windows: this detail is key to enable our study, since we could
compute how the instances of the four considered community
smell types varied over time as well as how the socio-technical
metrics impacted their variability.

C. Building the Statistical Model

To address our research question, we defined a statistical
model relating the considered set of socio-technical metrics
presented to community smells, defined as follows.

Response Variable. We were interested in explaining the
variability of community smells. To this aim, we modeled the

response variable similarly to the previous study of Palomba
et al. [43]. For each time window pair (TWi, TWi+1) of a
project, we first computed the difference between the number
of community smells in TWi+1 and TWi: if the resulting
difference was higher than 0, this means that the number
of community smells from TWi to TWi+1 was increased,
hence we labeled the event as an “increase” ; if the difference
was negative, then we labeled the case as a “decrease” ;
otherwise, the event was labeled as a “stable”. These three
labels represented the response variable of our model. It is
worth noting that the labeling process was repeated four times,
one for each community smell considered, i.e., we ended up
with the construction of one model for each smell, so that we
could assess the differences among them.

Independent Variables. These are represented by the 40
socio-technical metrics introduced in Section III-B.

Control Variable. The variability of community smells may
depend on the considered socio-technical metrics, but also on
some intrinsic peculiarities of the projects, e.g., a community
might have a code of conduct that promoted standards of ethi-
cal behavior [44], hence naturally influencing the variability of
community smells. To account for these aspects, we considered
the variable project as our control factor, i.e., we left the model
decide whether the specific project is relevant when explaining
the variability of community smells.

D. Data Analysis

Given our dependent variable, which is categorical and can
assume value in the set {decrease, stable, increase}, we fit
a Multinomial Log-Linear model [45]. This is a classifica-
tion method that generalizes logistic regression to multiclass
problems and can handle either categorical and continuous
independent variables, hence perfectly fitting our case - the
control variable is categorical. From a technical perspective,
multinomial models were built using R, and particularly ex-

ploiting the function multinom available in the package
nnet,2 i.e., the model is fitted via neural networks.

A common step to perform when building a statistical model
is to take into account the problem of multicollinearity, which
appears when two or more independent variables are highly
correlated and can be predicted one from the other, possibly
biasing the way the model fits and, consequently, how the
results are interpreted. In our work, we have applied the
guidelines by Allison [46], that describe how to control a
model for multicollinearity and when to ignore it: as a result,
we did not remove any of the variables. This is because, as
reported by Allison [46], the standard errors of the independent
variables are narrow enough not to negatively influence the
interpretability of the model: in our case, for all models they
are lower than 0.9—note that standard errors must be ≤ 2.5
to produce a sufficiently narrow 95% prediction interval [47].

When it comes to the interpretation of the model, the logit
coefficients that the model outputs are relative to a reference
category and indicate how the independent variables change
the chances of the dependent variable being affected with
respect to the reference category. We set such a category to
“stable” : in this way, we could understand how the different
independent variables vary, in either positive or negative
manner, the likelihood of community smells being stable over
two time windows. It is worth remarking that a negative logit
coefficient for a variable suggests that for one unit increase of
that variable, the chances of variation of the response variable
are increased of the amount indicated by the coefficient—in
other words, the coefficients must be inversely interpreted.
As an example, suppose that the variable devs has a logit
coefficient of -0.02 in the statistical model built for Black
Cloud: this would mean that a one-unit increase of devs would
lead to an increase of the chances of Black Cloud being stable.

E. Replication Package

We release all scripts and data used ro tun the four models.
These were made available in our online appendix [21].

IV. ANALYSIS OF THE RESULTS

This section reports the results to RQ1 for each community
smell, We report only the statistically significant variables—
full results are available in our online appendix [21].

A. Results for Organization Silo

Table III reports the significance of the considered socio-
technical factors with respect to the variability of Organization
Silo instances in our dataset. For the sake of space limitation,
the table only reports the factors that appeared to be statis-
tically significant - the complete results are available in our
online appendix [21].

As shown in the table, the first two significant factors
are perc.code.only.devs and perc.ml.code.devs, which respec-
tively represent the percentage of developers only present
in the collaboration network of the project’s members and
the percentage of developers present in both communication

2Link: https://cran.r-project.org/web/packages/nnet/nnet.pdf

TABLE III
RESULTS ACHIEVED BY THE MODEL BUILT FOR ORGANIZATIONAL SILO.

∗ means p < 0.1; ∗∗—p < 0.05; ∗∗∗—p < 0.01.

Dependent Variable
Factors Decrease Increase
perc.code.only.devs -4.816*** -4.926***
perc.ml.code.devs 7.593*** 3.753***
ratio.sponsored 1.872**
ratio.sponsored.core -4.157*** -1.633**
core.global.devs 0.486*** 0.441***
core.mail.devs -0.261*** -0.240***
st.congruence 2.708***
communicability -10.101*** -8.997***
code.turnover -0.203**
core.code.turnover 0.297**
global.truck 12.894*** 12.732***
mail.truck -5.099*** -5.134***
code.truck -1.274* 3.220***
closeness.centr -2.187** -1.664*
betweenness.centr -2.823*** -1.793**
degree.centr 2.851***
mail.mod -1.818***
code.mod -1.415**
density -8.369*** -1.417**
mail.only.core.devs -0.224*** -0.210***
ratio.mail.only.core 2.445*** 1.155***
ratio.code.only.core -2.093*** -3.967***
ratio.ml.code.core 3.285*** 2.741***

and collaboration networks. As for perc.code.only.devs, we
observe that the logit coefficients are negative either when
considering the decrease and increase of community smells
over different time windows. This indicates that a one-unit
increase of the metric leads to an increase of the chances of
Organization Silo being stable. In more practical terms, the
more developers are involved in the collaboration the lower
the risk of variability in the number of Organization Silo
instances. This result was somehow expected, since the smell
has to do with a lack of communication/collaboration between
developers. As such, community shepherds may monitor this
factor, possibly involving more developers into collaboration,
to reduce the emergence of issues caused by the presence
of siloed areas of the community. As for perc.ml.code.devs,
the results report something different, namely that a one-unit
increase of this factor decreases the chances of Organization
Silo being stable. While this seems to contradict the finding of
perc.code.only.devs other than being counter-intuitive, there is
a clear motivation for this result. As shown by Singh et al.
[48], an increase of the collaboration network does not only
have positive effects on the structure of a community: indeed,
there may be other specific external factors, e.g., the tech-
nology diversity, that may worsen the ability of developers to
work in a cohesive manner. Our findings not only confirm what
discovered by Singh et al. [48], but also highlight the need
for comprehensive tool-suites that can provide community
shepherds with the possibility to consider both internal and
external metrics when assessing the implications of enlarging
the developer’s collaboration network.

The core.global.devs positively influences the variability of
Organizational Silo. This metric refers to the number of core

developers in the developer’s social network: as also reported
by previous work [49], [50], the availability of a high number
of core developers increases the overall awareness of the com-
munity as well as its ability to jointly work toward the success
of the project. In our case, we discovered that this aspect
also impacts the variability of Organizational Silo instances.
Additionally, we can confirm the importance of sponsored
developers (characterized by the variable ratio.sponsored.core)
[51], who help increase the cohesion of the community.

According to the statistical results, other socio-technical
metrics reduce the chances of emergence of Organizational
Silo. Among them, it is worth mentioning the st.congruence,
which measures the agreement between social and technical
organization of the work [52], as well as the communicability,
that is an indicator of the extent to which the information is
shared among the team members. These metrics can be used,
along with the others, as a means though which community
shepherds can take informed decisions on how to (re-)structure
the community to avoid the emergence of information losses
typical of the Organizational Silo.

Main findings for Organizational Silo

Our findings report that there exist several factors whose
monitoring may be helpful to reduce the likelihood of
a community to be affected by the Organizational Silo
smell. As expected, these mainly relate to communication-
related metrics. However, our results also report that an
increase of the collaboration network may be detrimental
in terms of social debt. As such, we argue the need for (au-
tomated) instruments able to balance communication and
collaboration aspects to optimize the community health.

B. Results for Lone Wolf

The results achieved when analyzing the Lone Wolf smell
are in Table IV. Also in this case, we can observe that
there are a number of aspects affecting the variability of the
smell. Nevertheless, some metrics appear to be more relevant
than others. The first interesting observation can be done by
considering the coefficients for perc.ml.code.devs: these are
negative, thus meaning that an increase of the developers
in both communication and collaboration network leads to
increase the chances of stability of this smell—conversely to
what discovered in the case of Organizational Silo.

The explanation of this result relates to the peculiarities
of the Lone Wolf smell. Since it highlights the presence of
defiant contributors who carry out their work with little or no
consideration of their peers, it seems clear that its effects or
even emergence can be mitigated by means of a more inclusive
community. In this sense, an increase of the perc.ml.code.devs
metric may have benefits with respect to this smell.

The importance of having sponsored developers within the
community—as indicated by the ratio.sponsored.core metric—
is confirmed. This finding possibly sheds lights on a new
perspective of the involvement of commercial developers into
open-source projects: besides significantly contributing to the

TABLE IV
RESULTS ACHIEVED BY THE MODEL BUILT FOR LONE WOLF. NOTE THAT

∗ means p < 0.1; ∗∗—p < 0.05; ∗∗∗—p < 0.01.

Dependent Variable
Factors Decrease Increase
perc.ml.only.devs 2.270*** 1.687**
perc.code.only.devs -3.221*** -3.092***
perc.ml.code.devs 5.017*** 3.716***
ratio.sponsored 6.739*** 5.721***
sponsored.core.devs 0.488* 0.463*
ratio.sponsored.core -13.324*** -11.435***
core.global.devs 0.191*
st.congruence -5.096*** -2.970***
communicability -3.194*** -3.385***
code.turnover -0.229** -0.312***
core.code.turnover 0.372***
ratio.smelly.quitters -1.590**
global.truck 7.797*** 5.798***
mail.truck -6.697*** -4.448***
code.truck -2.567*** 1.519**
closeness.centr -2.738*** -3.319***
betweenness.centr -1.581**
degree.centr 3.673***
global.mod -1.516** -2.445***
density -4.739***
mail.only.core.devs -0.187*** -0.186***
code.only.core.devs -0.234*** -0.209***
ml.code.core.devs 0.170*** 0.185***
ratio.mail.only.core -0.940* -0.748**
ratio.code.only.core 2.038*** 1.149*
ratio.ml.code.core 3.325*** 2.187***

creation and evolution of a social capital [53], it seems
that they may lead the community to be more cohesive,
hence damping the emergence of situations where individual
contributors start working independently.

It is also worth commenting the results of global.truck,
mail.truck, and code.truck : the first refers to the ratio of non-
core developers of the global developer’s social network, the
second to the ratio of non-core developers of the communi-
cation network, the latter to the ratio of non-core developers
of the collaboration network. In all cases, the coefficients are
negative and indicate that their increase may lead to a stability
in terms of Lone Wolf emergence. These results somehow
reinforce the conclusions drawn so far: indeed, involving
more developers, including non-core ones, into the community
reduces the risk of having lone wolfs. Finally, our findings also
suggest that a keeping a good amount of core developers (see
the coefficients of ratio.code.only.core) provide an additional
mitigation strategy for the emergence of Lone Wolf instances.

Main findings for Lone Wolf

We argue that the stability of Lone Wolf strictly depends
on the community structure implemented and, particularly,
on its cohesiveness. Some preliminary studies into these
aspects have been conducted [2], [14], [25], yet further
analyses aiming at understanding and/or devising the
mechanisms that community shepherds should employ to
keep a community cohesive and inclusive may be worthy.

TABLE V
RESULTS ACHIEVED BY THE MODEL BUILT FOR BLACK CLOUD. NOTE

THAT ∗ means p < 0.1; ∗∗—p < 0.05; ∗∗∗—p < 0.01.

Dependent Variable
Factors Decrease Increase
code.only.devs 0.012*
perc.ml.only.devs -5.745*** -8.191***
perc.code.only.devs 3.438**
perc.ml.code.devs -3.924**
sponsored.devs 0.042**
ratio.sponsored -3.866*** -8.627***
ratio.sponsored.core 3.505***
num.tz -0.064*** -0.034*
core.global.devs -0.092*
core.code.devs 0.040*
st.congruence -1.965*
ratio.smelly.quitters 3.199***
ratio.smelly.devs 3.201** 4.524***
global.truck -11.587*** -29.948***
mail.truck 19.148*** 44.307***
code.truck -2.472*
degree.centr 5.424**
global.mod -2.512*
mail.mod 4.168**
density -4.104***
ratio.mail.only.core 2.850*** 2.216**
ratio.code.only.core -6.049*** -12.678***
ratio.ml.code.core -2.396**

C. Results for Black Cloud

The results achieved when considering the Black Cloud
community smell are depicted in Table V. They are very much
in line with the discussion points raised so far and, indeed,
most of the relevant variables are the same as the previous
community smells. On the one hand, the results confirm the
fact that certain metrics, like the involvement of non-core
developers into the community, represent valid measures to
use to monitor the health status of a community and take
informed decisions on how to evolve it. On the other hand,
there are different reasons making the same metrics relevant
for a variety of smells; in the following we elaborate on what
makes perc.ml.only.devs, global.truck, and mail.truck the most
relevant metrics influencing the emergence of Black Cloud.

By definition, a community suffers from a Black Cloud
smell in cases where there is an information overload due
to a lack of structured communications. As such, an increase
of one-unit of perc.ml.only.devs can improve the community
with respect to this smell simply because the more developers
are involved in the communications, the easier the information
is received by all developers hence reducing the risk associated
to the emergence of Black Could instances. Much in the same
way, the results achieved when considering global.truck and
mail.truck indicate that a good mechanism to deal with the
smell is to improve the cohesion of the community through
the involvement of the developers within communications.

Two new, different points of discussion are given by the
ratio.smelly.devs and ratio.smelly.quitters metrics. The former
measures the ratio of developers involved in at least one
community smell: our findings show that having developers
previously involved in a social debt may lead to a reduction

of the chances of Black Cloud being stable. In other words,
it seems that developers that reiterate behaviors causing com-
munication and/or coordination issues increases the likelihood
of introducing information overload that, in turn, can not only
produce social debt but also lead to code quality issues [10].
As for the ratio.smelly.quitters metric, it measures the ratio of
developers previously involved in any community smell that
left the community. Also in this case, our analysis reveals
that this factor possibly reduces the likelihood of stability
of the Black Cloud smell, even if with a lower extent (the
coefficient stability/increase is slightly negative, i.e.,-0.469, but
not statistically significant).

Main findings for Black Cloud

We can argue, once again, that the involvement of com-
munity members into the communication network seems
to be a good practice to reduce the risk of incurring
in Black Cloud instances. Nevertheless, community shep-
herds should particularly take care of involving members
that have been involved in community smells in the past,
so that they could avoid reiterating behaviors that may
cause new sources of social and technical debt.

TABLE VI
RESULTS ACHIEVED BY THE MODEL BUILT FOR RADIO SILENCE. NOTE

THAT ∗ means p < 0.1; ∗∗—p < 0.05; ∗∗∗—p < 0.01.

Dependent Variable
Factors Decrease Increase
perc.ml.only.devs -1.762** -1.346*
perc.code.only.devs 4.448*** 4.700***
perc.ml.code.devs -2.057*** -1.395**
ratio.sponsored 1.802*
ratio.sponsored.core 3.846*** 2.290***
core.global.devs 0.486*** 0.441***
core.mail.devs -0.261*** -0.240***
communicability 5.096*** 3.581***
core.global.turnover -0.443*
core.mail.turnover 0.738*
ratio.smelly.quitters -2.046**
ratio.smelly.devs 9.852*** 1.772**
global.truck -12.677*** -12.286***
mail.truck 10.084*** 13.121***
code.truck -6.747*** -6.095***
betweenness.centr -3.289*** -1.535*
degree.centr 1.935**
global.mod -3.890*** -3.961***
mail.mod 2.518***
density -4.850*** -1.716***
ratio.mail.only.core 4.904*** 3.695***
ratio.code.only.core -4.317*** -2.674***

D. Results for Radio Silence

The results for the Radio Silence community smell are
reported in Table VI. Most of the significant metrics are in line
with those discussed so far. For instance, we confirm that an
improvement of key communication aspects, as measured by
perc.code.only.devs, perc.ml.code.devs, ratio.sponsored.core,
communicability, and code.truck, should be carefully taken
into account when analyzing and addressing the health status

of an open-source community. However, some of these metrics
have a positive sign, meaning that they negatively affects
the stability of the smell. As an example, let us consider
the case of ratio.sponsored.core: so far we have discussed
this factor as relevant to reduce the risk of community smell
emergence, while it seems to be detrimental for the stability
of Radio Silence. One of the possible reasons behind this
result falls into the fact that, despite increasing the overall
cohesiveness of a community, the presence of sponsored and
possibly more authoritative developers may favor the spillage
of an authoritarian leadership by some of the community
members who may feel the need to express their strong
personality within the community [54]. In other words, we can
conjecture that the Radio Silence smell is different in nature
with respect to the others and may be more related to the
individual personalities of the developers of a community. As
such, our findings seem to suggest the need for additional tools
or instruments able to profile developers so that community
shepherds may understand how changes in the community can
impact the community itself.

In such a context, however, it is worth discussing the
two new factors emerging as relevant for this smell, namely
global.mod, density, both contributing in a positive manner to
the stability of Radio Silence. The first measures the strength
of division of the developer’s social network into modules: its
statistical significance possibly indicates that the creation of
cohesive subgroups may reduce the risk of the emergence of
Radio Silence instances, confirming previous findings in the
field [55]. The second measures the proportion of direct ties
in the developer’s social network. In this case, the positive
effect is likely due to the close relationships that are installed
between community members: in other words, the results seem
to confirm that cohesion exercises could actually lead to the
mitigation of this smell [16].

Main findings for Radio Silence

We can argue that the Radio Silence smell is all but
easy to analyze and mitigate since it revolves around
aspects that go beyond what can be currently minable,
like the personalities of developers. Nevertheless, some
preventive refactoring strategies, like a re-structuring of
the community in more sub-communities can reduce the
risk of appearance of Radio Silence instances.

V. THREATS TO VALIDITY

In this section,we discuss possible threats that could have
affected our results and how we mitigated them.

Construct Validity. Threats in this category refer to the
correctness of the dataset exploited in the study. We relied on
a publicly available source built in the context of previous
research [25]; both the independent and response variables
used in our models were already available and computed for
all the time windows considered in the study. Furthermore,
it is worth noting that the response variable was computed

by means of the CODEFACE4SMELLS tool: this has been
previously validated through a qualitative investigation with
developers [25]. According to the results, the community
smells output by the tool are all true positives and additional
smell instances were not highlighted by developers, hence
reducing the risk of having false negatives. This validation
makes us confident of the reliability of the response variable.

Conclusion Validity. A major threat to the conclusions
drawn is related to the statistical methods employed. The
selection of the Multinomial Logistic Linear statistical ap-
proach [45] was driven by the fact that our response variable
was categorical and composed of three possible values. The
statistical approach is able to handle multiclass problems with
categorical and continuous independent variables, therefore
fitting the problem of interest. In addition, we also take into
account the multicollinearity among independent variables: by
relying on the guidelines by Allison [46], we verified that the
standard errors of the coefficients were narrow enough not to
influence the interpretability of the model.

External validity. Threats in this category mainly concern
the generalization of results. We analyzed a total of 60 soft-
ware systems coming from different application domains and
having different characteristics (size, programming languages,
number of classes, etc.). Of course, we cannot claim the
generalizability of the findings to other systems; our future
research agenda includes the extension of the study with more
different set of systems.

VI. DISCUSSION AND IMPLICATIONS

Our results highlighted a number of points to be further
discussed and several implications for the research community.

Communication as a key factor for reducing social debt.
Our results clearly pointed out the relevance of
communicability and other factors related to the way
developers communicate among each other to avoid the
proliferation of community smells. Despite being expected,
we believe that our work provides additional motivations
to the research around the identification and definition
of novel communication methods to improve developer’s
productivity. In particular, further research may want to
consider the inclusion of predictive mechanisms [26], [28]
within communication tools in order to establish how
the likelihood of the emergence of community-related
issues varies based on the current types/strength of
communications among developers.

Increasing collaboration network is not a golden hammer.
We noticed a different trend when investigating the role of
collaboration on the stability of community smells. While in
some cases the increase of the collaboration network seems
to provide some benefits (e.g., in the case of Lone Wolf),
our results report that in other cases it can be detrimental
and even lead to increasing the chances of new social debt.
On the one hand, it is clear that further investigations,
for instance in the form of ethnographic studies, into this
matter would be beneficial to more precisely understand

this phenomenon and how the increase of collaboration
may impact the emergence of community smells. On the
other hand, our results also highlighted that external factors
may have an impact on collaboration itself: hence, we argue
the definition of novel, comprehensive tool boxes that may
support community shepherds providing them with both
internal and external factors to establish the health status
of a community as well as the implications of enlarging it.

Community evolution as a multi-objective problem. The
dichotomy between communication and collaboration as
well as the influence of other socio-technical factors on
the stability of community smells allowed us to indicate
the need for brand new automated assistants able to
combine together pieces of information coming from
different sources in order to recommend the actions to be
performed on the community to see it successfully evolved.
As an example, we envision the adoption of search-based
software engineering methods for the creation of intelligent
algorithms that find a compromise between contrasting
desirable objectives to achieve within the community.

Learning not to reiterate community smells. Some com-
munity smells (e.g., Black Cloud) may manifest themselves
again as a consequence of the engagement of community
members previously involved in a smell. This has clearly to
do with the governance and management policies applied in
a software community: on the one hand, it is not convenient
to isolate developers only because they have been involved in
community smells; on the other hand, it is not convenient to
create new social debt too. As such, this is again a compro-
mise to consider when taking decisions on the evolution of
the community. In this respect, our findings seem to suggest
the need for tools or methods that community shepherds
can employ to assess the impact of involving individual
developers into communication and collaboration networks.
At the same time, our findings can inform refactoring
recommendation approaches [16] so that they can be more
aligned to the needs of community shepherds.

Personalities matter. Last but not least, we discovered that
the developer’s personality can have an impact on the emer-
gence and variability of certain community smells (this is the
case of Radio Silence, for instance) and, therefore, having in-
formation on this matter may be useful to properly integrate
a member in the community as well as to successfully evolve
the entire community. This is, however, not easy to achieve.
First, in most cases personality data cannot be automatically
minable from open repositories, hence limiting their actual
extraction. Second, there are evident privacy concerns that
may even preclude the extraction/usage of personality data.
For these reasons, a possible new research avenue is repre-
sented by the definition of methodologies able to estimate
developer’s personality through the extraction of data that
do not interfere with the private sphere of developers. In
addition, we also recommend community shepherds as well
as automated tools to consider personality when splitting a
community in sub-teams.

VII. CONCLUSION

In this paper, we sought to understand the variability of
community smells, considering 60 software projects and sta-
tistically analyzing how 40 socio-technical metrics relate to the
increase/decrease of four community smell types. Our findings
revealed the factors that community shepherds should monitor
to avoid the proliferation of specific community-related issues.

Our future research agenda reflects the main findings of
our work. We aim at corroborating the results by considering
different projects as well as systems developed in other settings
(e.g., industrial projects). Secondly, we envision further ethno-
graphic studies with companies to verify on the ground the
effect of socio-technical factors on community smells. Finally,
we aim at focusing on the creation of usable tools and methods
that can visualize and report to community shepherds the key
data to enable appropriate governance mechanisms.

ACKNOWLEDGMENT

Gemma and Damian are partially supported by the European
Commission grant no. 825040 (RADON). Fabio acknowledges
the support of the Swiss National Science Foundation through
the SNF Project No. PZ00P2 186090 (TED).

REFERENCES

[1] P. Ralph, M. Chiasson, and H. Kelley, “Social theory for software
engineering research.” in EASE, S. Beecham, B. A. Kitchenham, and
S. G. MacDonell, Eds. ACM, 2016, pp. 44:1–44:11.

[2] M. De Stefano, F. Pecorelli, D. A. Tamburri, F. Palomba, and A. De Lu-
cia, “Splicing community patterns and smells: A preliminary study,”
in Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, 2020, pp. 703–710.

[3] N. Bettenburg and A. E. Hassan, “Studying the impact of social struc-
tures on software quality,” in 2010 IEEE 18th International Conference
on Program Comprehension. IEEE, 2010, pp. 124–133.

[4] H. Sharp, H. Robinson, and M. Woodman, “Software engineering:
Community and culture.” IEEE Software, vol. 17, pp. 40–47, 2000.

[5] H. Jaakkola, “Culture sensitive aspects in software engineering.” in
Conceptual Modelling and Its Theoretical Foundations, ser. Lecture
Notes in Computer Science, A. Dusterhoft, M. Klettke, and K.-D.
Schewe, Eds., vol. 7260. Springer, 2012, pp. 291–315.

[6] G. J. Hofstede, C. M. Jonker, and T. Verwaart, “Modeling power distance
in trade.” in MABS, ser. Lecture Notes in Computer Science, N. David
and J. S. Sichman, Eds., vol. 5269. Springer, 2008, pp. 1–16.

[7] D. J. Greenhoe, “Properties of distance spaces with power triangle
inequalities.” PeerJ PrePrints, vol. 4, p. e2055, 2016.

[8] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt
in software engineering: Insights from industry,” Journal of Internet
Services and Applications, pp. 1–17, Oct. 2014.

[9] ——, “What is social debt in software engineering?” in Cooperative
and Human Aspects of Software Engineering (CHASE), 2013 6th Inter-
national Workshop on, May 2013, pp. 93–96.

[10] F. Palomba, D. A. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman,
and A. Serebrenik, “Beyond technical aspects: How do community
smells influence the intensity of code smells?” IEEE Transactions on
Software Engineering, 2018.

[11] A. Martini and J. Bosch, “Revealing social debt with the CAFFEA
framework: An antidote to architectural debt,” in 2017 IEEE Interna-
tional Conference on Software Architecture Workshops. IEEE Computer
Society, 2017, pp. 179–181.

[12] A. Martini, T. Besker, and J. Bosch, “Technical debt tracking: Current
state of practice: A survey and multiple case study in 15 large organiza-
tions,” Science of Computer Programming, vol. 163, pp. 42–61, 2018.

[13] D. A. A. Tamburri, F. Palomba, and R. Kazman, “Exploring community
smells in open-source: An automated approach,” IEEE Transactions on
Software Engineering, 2019.

[14] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and F. Ferrucci,
“Gender diversity and women in software teams: How do they affect
community smells?” in Proceedings of the 41st International Conference
on Software Engineering: Software Engineering in Society. IEEE Press,
2019, pp. 11–20.

[15] ——, “Gender diversity and community smells: insights from the
trenches,” IEEE Software, vol. 37, no. 1, pp. 10–16, 2019.

[16] ——, “Refactoring community smells in the wild: The practitioner’s
field manual,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Society.
Association for Computing Machinery, 2020, p. 25–34.

[17] A. Mockus, “Organizational volatility and its effects on software de-
fects,” in Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering. ACM, 2010.

[18] B. Lin, G. Robles, and A. Serebrenik, “Developer turnover in global, in-
dustrial open source projects: Insights from applying survival analysis,”
in 12th IEEE International Conference on Global Software Engineering,
ICGSE 2017, Buenos Aires, Argentina, May 22-23, 2017. IEEE
Computer Society, 2017, pp. 66–75.

[19] B. Vasilescu, D. Posnett, B. Ray, M. G. J. van den Brand, A. Serebrenik,
P. T. Devanbu, and V. Filkov, “Gender and tenure diversity in github
teams,” in Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI 2015, Seoul, Republic of Korea,
April 18-23, 2015. ACM, 2015, pp. 3789–3798.

[20] A. Meneely, L. Williams, W. Snipes, and J. A. Osborne, “Predicting fail-
ures with developer networks and social network analysis.” in SIGSOFT
FSE. ACM, 2008, pp. 13–23.

[21] G. Catolino, F. Palomba, D. A. Tamburri, and A. Serebrenik, “Toward
an understanding of the community smell variability: A statistical
perspective - online appendix - https://tinyurl.com/y6rp7kul,” 2021.

[22] G. Catolino, F. Palomba, and D. A. Tamburri, “The secret life of software
communities: What we know and what we don’t know.” in BENEVOL,
2019.

[23] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,” IEEE Trans. Softw. Eng., vol. 37, no. 3, pp. 307–324,
May 2011.

[24] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle, “From
developer networks to verified communities: A fine-grained approach,”
in Proceedings of the 37th International Conference on Software Engi-
neering - Volume 1. IEEE Press, 2015, pp. 563–573.

[25] D. A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman, “Discov-
ering community patterns in open-source: A systematic approach and its
evaluation,” Empirical Software Engineering, vol. 24, no. 3, pp. 1369–
1417, 2019.

[26] N. Almarimi, A. Ouni, and M. W. Mkaouer, “Learning to detect
community smells in open source software projects,” Knowledge-Based
Systems, vol. 204, p. 106201, 2020.

[27] N. Almarimi, A. Ouni, M. Chouchen, I. Saidani, and M. W. Mkaouer,
“On the detection of community smells using genetic programming-
based ensemble classifier chain,” in Proceedings of the 15th Interna-
tional Conference on Global Software Engineering, 2020, pp. 43–54.

[28] F. Palomba and D. A. Tamburri, “Predicting the emergence of commu-
nity smells using socio-technical metrics: a machine-learning approach,”
Journal of Systems and Software, p. to appear, 2020.

[29] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in EASE’14, 2014.

[30] A. Meneely and L. Williams, “Socio-technical developer networks:
should we trust our measurements?” 2011 33rd International Conference
on Software Engineering (ICSE), pp. 281–290, 2011.

[31] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,” IEEE Transactions on Software Engineering, vol. 37,
no. 3, pp. 307–324, 2011.

[32] D. A. Tamburri, “Software architecture social debt: Managing the
incommunicability factor,” IEEE Transactions on Computational Social
Systems, vol. 6, no. 1, pp. 20–37, Feb 2019.

[33] G. Avelino, M. T. Valente, and A. C. Hora, “What is the truck factor of
popular github applications? a first assessment.” PeerJ PrePrints, vol. 5,
p. e1233, 2017.

[34] F. Ricca, A. Marchetto, and M. Torchiano, “On the difficulty of
computing the truck factor.” in PROFES, ser. Lecture Notes in Business
Information Processing, D. Caivano, M. Oivo, M. T. Baldassarre, and
G. Visaggio, Eds., vol. 6759. Springer, 2011, pp. 337–351.

[35] C. Manteli, B. van den Hooff, H. van Vliet, and W. van Duinkerken,
“Overcoming challenges in global software development: The role of
brokers.” in RCIS, M. Bajec, M. Collard, and R. Deneckere, Eds. IEEE,
2014, pp. 1–9.

[36] C. Manteli, B. van den Hooff, and H. van Vliet, “The effect
of governance on global software development: An empirical
research in transactive memory systems.” Information & Software
Technology, vol. 56, no. 10, pp. 1309–1321, 2014. [Online]. Available:
http://dblp.uni-trier.de/db/journals/infsof/infsof56.html#ManteliHV14

[37] S. W. A. Dekker, “Deferring to expertise versus the prima donna syn-
drome: a manager’s dilemma.” Cognitive Technoogy Workshop, vol. 16,
no. 4, pp. 541–548, 2014.

[38] R. Leifer and A. Delbecq, “Organizational/environmental interchange:
A model of boundary spanning activity,” The Academy of Mgmt. Rev.,
vol. 3, no. 1, pp. 40–50, Jan. 1978.

[39] N. Levina and E. Vaast, “The emergence of boundary spanning
competence in practice: Implications for implementation and use
of information systems.” MIS Quarterly, vol. 29, no. 2, pp. 335–
363, 2005. [Online]. Available: http://dblp.uni-trier.de/db/journals/misq/
misq29.html#LevinaV05

[40] W. Du and S. L. Pan, “Boundary spanning by design: Toward aligning
boundary-spanning capacity and strategy in it outsourcing.” IEEE Trans.
Engineering Management, vol. 60, no. 1, pp. 59–76, 2013.

[41] D. Tamburri, F. Palomba, and R. Kazman, “Success and failure in
software engineering: a followup systematic literature review,” ArXiv,
vol. abs/2006.12086, 2020.

[42] D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role in
community shepherding.” IEEE Software, no. 6, pp. 70–79, 2016.

[43] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“The scent of a smell: An extensive comparison between textual and
structural smells,” IEEE Transactions on Software Engineering, 2018.

[44] P. Tourani, B. Adams, and A. Serebrenik, “Code of conduct in open
source projects,” in 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER). IEEE, 2017, pp. 24–33.

[45] H. Theil, “A multinomial extension of the linear logit model,” Interna-
tional economic review, vol. 10, no. 3, pp. 251–259, 1969.

[46] P. Allison, “When can you safely ignore multicollinearity,” Statistical
horizons, vol. 5, no. 1, pp. 1–2, 2012.

[47] D. N. McCloskey and S. T. Ziliak, “The standard error of regressions,”
Journal of economic literature, vol. 34, no. 1, pp. 97–114, 1996.

[48] P. V. Singh, Y. Tan, and V. Mookerjee, “Network effects: The influence
of structural capital on open source project success,” Mis Quarterly, pp.
813–829, 2011.

[49] S. A. Licorish, “Collaboration patterns of successful globally distributed
agile software teams: the role of core developers,” Ph.D. dissertation,
Auckland University of Technology, 2013.

[50] J. Long, “Understanding the role of core developers in open source
software development.” Journal of Information, Information Technology
& Organizations, vol. 1, 2006.

[51] J. West and S. O’mahony, “The role of participation architecture in
growing sponsored open source communities,” Industry and innovation,
vol. 15, no. 2, pp. 145–168, 2008.

[52] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: a framework for assessing the impact of technical and work
dependencies on software development productivity,” in Second ACM-
IEEE international symposium on Empirical software engineering and
measurement. New York, NY, USA: ACM, 2008.

[53] D. Homscheid, M. Schaarschmidt, and S. Staab, “Firm-sponsored de-
velopers in open source software projects: a social capital perspective,”
2016.

[54] B. Bazelli, A. Hindle, and E. Stroulia, “On the personality traits of
stackoverflow users,” in 2013 IEEE international conference on software
maintenance. IEEE, 2013, pp. 460–463.

[55] P. Sfetsos, I. Stamelos, L. Angelis, and I. Deligiannis, “An experimental
investigation of personality types impact on pair effectiveness in pair
programming,” Empirical Software Engineering, vol. 14, no. 2, p. 187,
2009.

https://tinyurl.com/y6rp7kul
http://dblp.uni-trier.de/db/journals/infsof/infsof56.html#ManteliHV14
http://dblp.uni-trier.de/db/journals/misq/misq29.html#LevinaV05
http://dblp.uni-trier.de/db/journals/misq/misq29.html#LevinaV05

	Introduction
	Related Work
	Research Methodology
	Research Questions
	Context Selection
	Building the Statistical Model
	Data Analysis
	Replication Package

	Analysis of the results
	Results for Organization Silo
	Results for Lone Wolf
	Results for Black Cloud
	Results for Radio Silence

	Threats to Validity
	Discussion and Implications
	Conclusion
	References

