
A Possibilistic Evolutionary Approach to Handle the
Uncertainty of Software Metrics Thresholds in Code

Smells Detection
Sofien Boutaib1, Maha Elarbi1, Slim Bechikh1, Fabio Palomba2, Lamjed Ben Said1

1SMART lab, University of Tunis, ISG, Tunisia
2SeSa Lab - University of Salerno, Italy

mohamedsofien.boutaib@isg.u-tunis.tn

Abstract—A code smells detection rule is a combination of
metrics with their corresponding crisp thresholds and labels.
The goal of this paper is to deal with metrics’ thresholds
uncertainty; as usually such thresholds could not be exactly
determined to judge the smelliness of a particular software
class. To deal with this issue, we first propose to encode each
metric value into a binary possibility distribution with respect
to a threshold computed from a discretization technique; using
the Possibilistic C-means classifier. Then, we propose ADIPOK-
UMT as an evolutionary algorithm that evolves a population of
PK-NN classifiers for the detection of smells under thresholds’
uncertainty. The experimental results reveal that the possibil-
ity distribution-based encoding allows the implicit weighting
of software metrics (features) with respect to their computed
discretization thresholds. Moreover, ADIPOK-UMT is shown to
outperform four relevant state-of-art approaches on a set of
commonly adopted benchmark software systems.

Index Terms—Code smells detection, uncertain metrics’
thresholds, possibility distribution, possibilistic K-NN, evolution-
ary algorithm

I. INTRODUCTION

The problem of code smell detection, i.e., the detection of
source code quality issues, is still relevant in the software
engineering research community, despite the effort spent in
the last decades [1]–[3]. In fact, code smells (anti-patterns)
[4] are associated to poor design or implementation of the
source code that hamper the software maintenance process
and may contribute to prone the occurrence of bugs during
time [5]. A considerable number of detection methods have
been suggested in the literature in which the used detectors
principally differ in the underlying technique such as rule-
based techniques, and machine learning-based ones. Despite
the good performance presented by these detectors, the search-
based detectors have shown their superiority comparing to
the other approaches thanks to their global search capability.
Code smell detection problem could be considered mainly as
a classification one. Therefore, the software classes are seen
as records, the structural software metrics are seen as features,
and the existence of code smell or not coincide with the class
labels. Similarly, to the detection problem, the identification
problem with a small modification consisting in assigning a
smell type to a class label. In this way, detection could be

formed as a binary classification problem, while identification
is a multi-class one.

Software engineers could have conflictual opinions about
the metrics thresholds of the detection rules as well as the
smell type identification ones [6]. As the data classification
problem, the code smell detection problem could have un-
certain metrics’ thresholds. For example, the specification
of the metric threshold value related to the long parameter
list smell type differs from one engineer to another. This
is essentially due to the subjective nature of human being
reflection, its knowledge, and its experience. Unfortunately, the
existing works in the literature, including SBSE (Search-Based
Software Engineering) ones, do not deal with the uncertainty
issue. In this context, rejecting and/or ignoring uncertain data
can cause a loss of information and significantly deteriorates
the detection performance [7]. To deal with the uncertainty
aspect, various uncertainty tools have been proposed such as
Fuzzy set theory [8], Rough set theory [9], Belief Function
Theory [10], and Possibility theory [8]. Motivated by the in-
teresting performance of the PK-NN (Possibilistic K-NN) [11]
algorithm in classifying uncertain data. In this work, we aim to
propose a new search-based method, named ADIPOK-UMT
(Anti-patterns Detection and Identification using Possibilistic
Optimized K-NNs under Uncertain Metrics’ Thresholds) that
evolves a set of smells detectors (each detector is a PK-NN)
using an evolutionary algorithm, more precisely, the Genetic
Algorithm (GA). To sum up, the principal contributions of this
paper are:

1) For the case of detection, a Base of Examples (BE)
that includes software classes characterized by uncertain
metrics’ thresholds values and certain class labels is
developed, where class label could be "smelly" and/or
"non-smelly" while each instance (i.e., software class)
pertains to the values of the considered metrics’ thresh-
olds in the BE with likelihood degrees;

2) For the case of identification, a BE of smelly classes
characterized by uncertain metrics’ thresholds values
and certain class labels is designed, where the class
labels are crisp and the software classes are assigned to
each value of each quality metric threshold value with

different likelihood degrees;
3) Proposing ADIPOK-UMT as a new SBSE method for

smells detection and identification under uncertainty;
4) Showing the outperformance of ADIPOK-UMT com-

paring to the most prominent baseline methods in the
literature on six open source software systems.

The rest of this paper is organized as follows. Section II briefly
presents the necessary background of the possibility theory.
The ADIPOK-UMT approch that allows coping with uncertain
metrics’ thresholds values, which mimics the subjectivity of
the software engineer on Section III. Section IV describes the
experimental setup, while Section V presents and analyses the
comparative results. Then, Section VI summarizes the related
work. Finally, Section VII provides conclusion and presents
some future avenues.

II. POSSIBILITY THEORY: BASIC CONCEPTS

In order to handle the uncertainty aspect, we propose to
use the possibility theory. In this section, we aim to show the
fundamental concepts of this theory used over this paper.

The Possibility theory is used to model the imprecise and
uncertain information. It is based on the possibility distribu-
tion function denoted by π, which allows to associate each
hypothesis ωi of the universe of discourse Ω = ω1, ..., ωn a
value called possibility degree in [0, 1].

By convention, for whatever hypothesis ωi ∈ Ω, π(ωi) = 1,
signifies that ωi is completely possible and π(ωi) = 0, means
that the realization of ωi is an impossible hypothesis (cannot
be the real word). A possibility distribution is considered
normalized if there is at least one hypothesis ωi ∈ Ω, where
max ω ∈ Ω, {π(ω)} = 1. Over this paper, only the normalized
possibility distributions are used.

To measure the similarity between two possibility distri-
butions (π1 and π2), we need to utilize a similarity measure
able to deal with the uncertain attribute value. To this end, we
propose to adopt the possibilistic similarity measure called
Information Affinity measure (see Equation 1) (denoted by
Affinity) [12].

Affinity (π1, π2) = 1− D(π1, π2) + Inc(π1, π2)

2
(1)

where D(π1, π2)1 corresponds to normalized Manhatten dis-
tance. Inc(π1, π2) is the inconsistency and it is useful in evalu-
ating the conflictual degree among two possibility distributions
π1 and π2 which is presented by Inc(π1, π2) 2.

III. PROPOSED APPROACH: ADIPOK-UMT

This section presents our proposed ADIPOK-UMT method.
First, we present an overview of the detectors generation
process working principle. Then, we describe how the BE with
uncertain metrics’ thresholds values are constructed. Besides,
we describe the details of the GA operators including the

1D(π1, π2)= 1
n
×

∑n
i=1 |π1(ωi) − π1(ωi)|; ∀ωi ∈ Ω = ω1, ..., ωn and

n = |Ω|
2Inc(π1, π2) = 1 − maxω(π1(ω), π2(ω)) with ∧ is selected as the

minimum operator.

TABLE I
LIST OF CODE SMELLS CONSIDERED IN THIS WORK.

adaptation of an adequate fitness assignment, the selection,
and the variation operators. Finally, we show how the software
engineer could employ the obtained PK-NN detectors for the
detection and/or identification of smell types.

A. A Brief Overview of ADIPOK-UMT

As shown by Figure 1, the first step to develop our
ADIPOK-UMT approach is the construction of the Possibilis-
tic BE (PBE). The first step to develop our ADIPOK-UMT
approach is the construction of the Possibilistic BE (PBE). In
this study, we considered six open-source software projects.
Based on the experimental studies of the existing works, we
have used 22 structural metrics (cf. Table II). Our proposed
approach could work independently from the existing code
smell types. To investigate the performance of our ADIPOK-
UMT, we have chosen 8 code smell types (cf. Table I). As
the BE includes continuous metrics’ values, a discretization
technique (called Random Boundary Threshold (RBT)) is ap-
plied to convert these continuous values into categorical ones
(i.e., thresholds) and then the Possibilistic C-Means classifier
[13] is employed to generate the possibility distribution for
each metric threshold value. Such process is used to mimic
the uncertainty of the expert regarding the metrics thresholds
values. Moreover, these binary possibility distributions (having
the form of [1, X] or [X, 1]) in addition to the fact they present
the uncertainty of the expert, they serve later to indicate the
importance of each metric with its corresponding threshold
value in the detection rule. Roughly speaking, once the PBE
is created (cf. Figure 2), the GA evolves a number of PK-NN
classifiers by optimizing a fitness function (i.e., F-measure)
that is calculated according to the BE. Once a number of
optimized possibilistic detectors are created, they are utilized
to detect and/or identify the existing anti-patterns on unseen
software classes (not used in the training phase) (cf. Figure
1). We remind that for the detection task, the PBE includes
both smelly and non-smelly classes; while for the identification
task, the PBE includes a single smell type.

B. Creation of Artificial Possibilistic BE

The real-world environment of the SE industry is far from
being ideal. Similar to other fields, the uncertainty problem
also exists in SE. Indeed, the BE could be submerged by

Fig. 1. A step by step illustration of the main framework of ADIPOK-UMT.

TABLE II
LIST OF QUALITY METRICS USED IN THIS WORK.

Fig. 2. The main schema of the ADIPOK-UMT approach.

subjectivity and doubtfulness of the software engineer at the
level of metrics’ values. This uncertainty could be explained by
the fact that the software engineers may suffer from the lack
of expertise or knowledge. Therefore, the software engineer
is able to express its opinion in the form of likelihood values

each corresponding to the membership of each attribute values
for a given software class. To cope with such uncertainty, the
possibility theory is a good solution since each software class
could be assigned a set of metrics’ thresholds values each
having possibility degrees.

As the SE studies have not treat any metrics’ thresholds
uncertainty in the BE construction level, we have proposed in
this work a construction process of a PBE, which could be
performed as follows. First, the numerical BE is transformed
into a categorical one using an existing discretization technique
[14]. All the software classes in the BE are sorted in ascending
order with respect to the values of the feature that will be
discretized according to the RBT method. This latter works
as follows. A boundary thresholds are identified as illustrated
by Figure 3. In fact, a boundary threshold of a given feature
corresponds to a midpoint among a successive pair of software
classes (i.e., one of the instance is positive and the next one
is negative). Finally, the threshold value of the considered
feature (metric) is randomly chosen from the effective created
thresholds as shown by Figure 3.

After transforming the BE into categorical one, the Possi-
bilistic C-means (PCM) [13] is applied on a a discretised BE
with certain metrics’ thresholds values to come up with pos-
sibility distribution for each metric threshold of each instance
(see Figure 4). PCM begins by creating the clusters for each
metric threshold. According to one attribute, PCM estimates
the distance among every instance and every cluster’ center. A
possibility distribution is created based on the calculated dis-
tance. Then, PCM attempts to minimize the objective function
(see Equation 2). PCM calculates recursively the center of the
clusters till the objective function stops changing. The PCM
permits us to create for every instance, according to each BE
metric threshold, a possibility distribution that corresponds to
its membership to every cluster.

JPCM (L,U) =

C∑
j=1

N∑
i=1

ωαijdist
2
ij +

C∑
j=1

ηj

N∑
i=1

(1−ωij)α (2)

Fig. 3. The discretization technique.

uij =
1

1 + (
d2ij
ηi

)
1

α−1

(3)

where C is the number of clusters, N is the total number of
metrics vectors in the BE, distij corresponds to the distance
of a metric xj and a prototype βi, α represents a weighting
exponent called the fuzzifier, which belongs to [1,∞), η is
the penalty parameter that is calculated based on Equation
3, L = β1, ..., βC is a C-tuple of prototypes, U = [uij] is a
C×N that corresponds to a matrix of possibilistic membership
degrees. Here, wij is the membership degree of the metric xj
in cluster βi. It is important to note that the idea of converting
the attribute values into uncertain ones using PCM is inspired
from the work of [15].

C. Individual encoding

The PK-NN performance depends on two parameters: (1)
the FS (Feature selection), and (2) the number of nearest
neighbors K. To optimize the parameters, the solution en-
coding in ADIPOK-UMT is a vector including all these
parameters as depicted by Figure 5.

As these parameters correspond to different numerical types,
we choose to apply the crossover per part as follows:

• The FS subset corresponds to a binary vector and is varied
via the uniform crossover [16];

• The K value is an integer in [1, T] and is varied via the
SBX crossover [16] with rounding to the nearest integer;

It is important to know that we randomly initialize these
parameters at the beginning of the GA process, while rep-
resenting the definition domain of every gene.

D. Fitness function assignment

This operator gives a quality value to every solution (PK-
NN) of the GA’s population. It is started after the population
initialization process and whenever a new offspring PK-NN is
born via the reproduction operators (crossover and mutation).
The generated fitness value will be later employed over the
selection process. It is worth noting that code smells detection
is considered as a binary classification problem. This operator
gives a quality value to every solution (PK-NN) of the GAs
population. It is started after the population initialization pro-
cess and whenever a new offspring PK-NN is born via the re-
production operators (crossover and mutation). The generated
fitness value will be later employed over the selection process.
It is worth noting that code smells detection is considered
as a binary classification problem. The classification process
of each PK-NN is performed as follows. First, we determine

TABLE III
CONFUSION MATRIX.

the similarity between a given software class (Class) and a
software class existing in the BE (classl) using the affinity
formula as follows:

affinity(classl, Class) =

∑m
j=1Affinity(πclasslj , πClassj)

m
(4)

where m represents the number of metrics (features), πclasslj
represents the possibility distribution of a software class l
existing in the BE with respect to a metric j, and πClassj rep-
resents the possibility distribution of an unseen software class
(Class) with respect to the metric j, respectively. Second, we
choose the K closest software classes to the unseen class based
on the obtained similarity values. Finally, the majority voting
is performed according to the proposed labels of the chosen
instances in order to predict the label of the unseen software
class. Thus, we use the confusion matrix (cf. Table III) to
assess the performance of the detectors. Formally, TP (True
Positives) is the number of actual smelly classes correctly
classified, TN (True Negatives) is the number of actual non-
smelly classes correctly classified, FN (False Negatives) is the
number of actual non-smelly classes misclassified as smelly
ones, and FP (False Positives) is the number of actual smelly
classes misclassified as non-smelly ones. Based on this matrix,
the widely used metric is the Accuracy. Despite the relevant
information presented by this metric, we should not rely on it
as it is biased due to the fact that the smelly and non-smelly
classes have different sizes [17]. Such bias could be managed
using the F-measure (see Equation 5) [18] metric as fitness
function as it is known by its insensitivity to the imbalanced
class sizes in binary classification.

F-measure =
2 ∗ TP

(2 ∗ TP + FP + FN)
(5)

E. Mating selection operator

The ADIPOK-UMT method encourages the selection of
good parents in each generation of the GA and gives chance to
the less effective individuals to participate in the reproduction
process in the aim to avoid the local optima and approach the
globally optimum detectors (PK-NN). Based on this fact, the
binary tournament selection operator [19] is used to select
parents for reproduction. In fact, in each generation (N/2)
individuals are chosen as parents as follows. In every iteration
of the parent selection process, two individuals are randomly
selected and the best (the fittest) one is kept and added to the
mating pool. This step is repeated with replacement till the
fulfilment of the mating pool. As the two chosen individuals

Fig. 4. Possibilistic BE generation process.

Fig. 5. Crossover opertaor of ADIPOK-UMT.

in every iteration is randomly carried out, the parents could
have good or bad quality (fitness) values. This permits the
acceptance of worse movements in the search space; which
permits avoiding locally-optimal PK-NN models. It is worth
noting that the convergence of the GA is assured by the choice
of the best individual between the chosen parents.

F. Reproduction operators

As we mentioned previously (in Sub-section III-C), the
chromosome is represented by two parts where the first one is
represented by a binary string and the second one is an integer.
As shown by Figure 5, the crossover is carried out per part.
The binary string part is varied via the uniform crossover [16],
which in turns utilizes a random binary mask. The K real value
is varied via the SBX crossover operator with rounding [16].
As the SBX generates real numbers and the K value should
be an integer value, the generated SBX value is rounded to
the nearest integer.

The mutation operator is also applied per part. The one-
point mutation operator [20] is applied on the first part, while
the second part is mutated using the polynomial mutation
operator for real numbers [16] with rounding to the nearest
integer.

G. Optimized possibilistic detectors application module

After evolving a set of optimized PK-NN detectors using
the GA, the software engineer could utilize them to detect
smells and/or identify their types on unseen software systems
as depicted by Figure 6. Indeed, the expert could utilize the
best detector(s) or all of them. Each detector determines the
similarity between the unseen software class and the software

classes existing in the BE. Then, a number of the most similar
software classes to the unseen class are chosen (for more
details, please refer to Sub-section III-D). As the obtained
detectors could generate different class labels, the majority
voting strategy is adopted to have an effective decision. We
recommend the software engineer to apply the identification
process on the smelly classes that have been detected over the
detection process.

IV. EXPERIMENTAL VALIDATION

To assess the performance of ADIPOK-UMT, we address
the following RQs (Research Questions):

• To what extent does ADIPOK-UMT well-perform in the
detection of smells under software metrics uncertainty?

• How is the performance of ADIPOK-UMT in the identifi-
cation of smell types under software metrics uncertainty?

A. Software Systems studied

The context of our work consists on six commonly
used Java software projects, which are ARGOUML3,
AZUREUS4, XERCES-J5, GRANTTPROJECT6, APACHE ANT7,
and JFREECHART8. ArgoUML is a well-known UML model-
ing tool. Xerces-J is a popular system for parsing XML files.
GanttProject is an open source cross-platform for project man-
agement. Apache Ant is a build automation system for the Java
applications. Azureus is a client program devoted to sharing
files. JFreechat is a powerful Java open-source library that
displays professional graphical charts. Table IV reports some
descriptive statistics about the considered systems. The choice
of these software systems is justified mainly by the following
two reasons: (1) These systems are publicly available as well
their code sources, and (2) they are widely used by the SBSE
community over their experimental studies as they are rich
in terms of code smells. In this study, we used the holdout
cross-validation strategy for the assessment of our approach.
As shown by Figure 7, the dataset is divided into 70% of the
BE for the training set and 30% of the dataset for the test
set. The former is used in the training phase while the test set

3http://argouml.tigris.org/
4http://vuze.com/
5http://xerces.apache.org/xerces-j/
6https://sourceforge.net/projects/ganttproject/files/OldFiles/
7http://ant.apache.org
8http://www.jfree.org/jfreechart/

Fig. 6. Illustration of the use of ADIPOK-UMT on the identification case.

Fig. 7. Illustration of the training and the evaluation phases for the ADIPOK-
UMT approach.

TABLE IV
USED SOFTWARE IN THE EXPERIMENTATION

(i.e., instances not used in the training set) is adopted for the
evaluation process. It is worth noting that in the training phase,
we applied the five-folds cross-validation in the aim to train the
classifiers (cf. Figure 7). Therefore, the training set is divided
into five chunks. Each chunk is considered as test data and
four times as training data. At the end, the obtained metrics
results on the test data are averaged over the five chunks.

B. Baselines under comparison

To compare our proposed approach with some of the
relevant state-of-the-art approaches, three relevant baselines
were chosen: DECOR [21], GP [22], and BLOP [23]. The
following is a brief summary of each baseline approach’s
working principle:

• DECOR: This approach employs a set of predefined
detection rules (called Rule cards) for the detection of
code smells.

• GP: This approach uses IF-THEN rules that are generated
from a BE (that encompasses code smells) using the
Genetic Programming.

• BLOP: This approach has tackled the problem of code
smell detection as a Bilevel optimization where the upper
level contains the detection rules that are evolved in the
aim to detect artificial code smells that are generated by
the lower level.

C. Evaluation metrics and statistical testing

To compare the performance obtained by the different meth-
ods, we employ two classification performance metrics that are
insensitive to the difference size between smelly classes and
non-smelly ones. The first one is the F-measure, previously
detailed in Sub-section III-D. The evaluation of the methods
should not rely solely on the F-measure as it could be biased
too. Based on this fact, we also calculate as a second metric,
the Matthews Correlation Coefficient (MCC) (see Equation
6) [24]. This metric has been shown to be insensitive to the
bias of the imbalance size of classes and report an accurate
description of the confusion matrix [17].

As all the considered methods for the comparison have
stochastic nature, except DECOR and the greedy PK-NN,
the generated results could change from one run to another
one on the same experiment. To cope with such stochastic
nature, we employ the Wilcoxon test [25] in a pairwise fashion
with a significance level of 5%. Thus, every experiment is
performed 31 times and then the medians’ values are obtained
and analysed to detect the performance differences among the
compared methods. However, the Wilcoxon test is not eligible
to produce any clearer and precise interpretation regarding
the difference magnitude. Therefore, we adopted the Vargha-
Delaney A measure [26] for the evaluation of the difference
magnitude since it is a non-parametric effect size measure.

TABLE V
PARAMETER SETTINGS

The A measure could be divided into three levels: (1) small
if A is less than 0.64 or greater than 0.64, (2) medium if A is
less than 0.36 or greater than 0.64, and (3) large if A is less
than 0.29 or greater than 0.71.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

D. Parameter configurations

An important problem that should be taken into account
before lunching search algorithms is the parameter settings.
Indeed, the parameters’ values have an important influence
on the performance. To manage this problem, we utilize the
trial-and-error method [27] to configure the parameters’ values
of ADIPOK-UMT and PK-NN. The other search methods’
parameters are settled according to their original papers (cf.
Table V).

For the fairness of comparison, the same stopping criterion
is utilized for all search algorithms, which corresponds to 256,
500 fitness evaluations. We highlight that the execution of the
different search algorithms is stopped as soon as the stopping
criterion is met.

V. ANALYSIS OF THE RESULTS

A. Results for RQ1

Table VI presents the metrics’ results of the five-peer
detection methods on the six different software systems. Over
this study, we need to prove that ADIPOK-UMT performs
well for both environments: (1) with uncertain uncertain
metrics’ thresholds values and (2) without uncertainty. For this
reason, we utilized two levels of uncertainty. The first level is
expressed with the rate of uncertain attributes in the dataset
P > 50%; while for the second level, P=0%. According
to this table, ADIPOK-UMT outperforms all the remaining
methods for the identification process under uncertainty with
an F-measure lying between 90.60 and 92.77. The second-
best method is PK-NN with an F-measure varying between
34.19 and 50.46. The three other methods DECOR, GP, and
BLOP, provide poor results with maximum F-measure values
of 27.40, 37.22, and 48.30, respectively. The outperformance
of ADIPOK-UMT and PK-NN over GP and BLOP could be
explained by the fact that these two latter methods do not
take into consideration the uncertainty factor when building
their classifiers, which is not the case of ADIPOK-UMT and
PK-NN. As we mentioned previously, the uncertainty lies in
the attribute values of the BE. Indeed, the ADIPOK-UMT
distance measure is the Affinity (see section II), which is
well-suited distance measure for computation of the similarity

between software classes having uncertain metrics’ thresholds
values. Moreover, the ADIPOK-UMT fitness function is the F-
measure, which is insensitive to the problem of different sizes
between two classes. However, PK-NN is evaluated based
on the PCC (Percentage of correct classification), which is
not a good choice for the case of imbalanced data class. On
the other hand, ADIPOK-UMT carries out feature (metric)
selection in addition to the optimization of the K parameter.
In contrast, PK-NN method optimizes only the K parameter.
Moreover, our proposed approach performs in an implicitly the
weighting of software metrics (features) with respect to their
computed discretization threshold. Such fact is not performed
by the remaining approaches (including the baseline PK-NN).
DECOR results are the poorest ones 08.60 and 27.40; due
to the fact that the rules are manually conceived without
considering the uncertainty aspect lying in the BE. Similar
results are accomplished for the MCC metric since all methods
except ours are sensitive to the problem of imbalanced data.
Table VI presents the achieved A statistic results of ADIPPK-
UA, DECOR, GP, BLOP, and PK-NN based on the F-measure
and the MCC measures. One can see that ADIPOK-UMT
achieves an A value higher than 0.89 (large) on the set of
chosen software projects in the experimental study.

Table VII displays the metrics’ results for the five-peer
detection methods for the case of certain environment (P=0%).
In such case, the BE is certain as the metrics’ thresholds
values are certain. Based on this table, ADIPOK-UMT method
performs better than the remaining methods with an F-measure
rate spans between 92.03 and 94.86. The second-best method
is BLOP with an F-measure rate laying between 32.10 and
55.80. The three remaining methods DECOR, GP, and PK-NN,
generate poor results with maximum F-measure rate values
35.86, 40.56, and 52.36, respectively. The outperformance of
ADIPOK-UMT method over the four considered peer methods
could be justified by the fact that the ADIPOK-UMT fitness
function is a well-suited metric to the data imbalance problem.
For the MCC metric, the presented results are similar to
those of the F-measure. Indeed, the good results reported
by DECOR, GP, BLOP, and PK-NN are biased and usually
generated by haphazardly since they are not able to treat
the data imbalance issue over the learning phase. The worst
results belong to DECOR method due to the fact that its
detection rules are manually predefined by a software engineer.
Therefore, they are not effective for the case of imbalance
class sizes. Contrariwise, ADIPOK-UMT has proven its out-
performance mainly thanks to the insensitivity of its fitness
function to the problem of imbalanced data. Table VII shows
the achieved A statistic results of the five approaches under
comparison. One can see that ADIPOK-UMT succeeds to
obtain an A value greater than 0.82 (large) based on the F-
measure and the MCC measures on the set of chosen software
projects in the experimental study.

In nutshell, ADIPOK-UMT has shown great performance
comparing to the remaining peer methods for both environ-
ments: (1) uncertain environment (with uncertain metrics’
thresholds values), and (2) certain one (charecterized only by

certain metrics’ thresholds values).

B. Results for RQ2

Table VIII reports the results of the considered metrics for
the five peer identification methods on the eight smell types.
The identification process is an arduous task comparing to the
detection one since the imbalance data ratio is greater than the
detection one. In this part, we need to evaluate the performance
of our ADIPOK-UMT against the remaining approaches for
the identification of code smell types under uncertain (P>50%)
and certain (P=0%) environments. From Table VIII, we can
observe that AIPOK-UA outperforms the remaining methods
with an F-measure laying between 83 and 89.15. The second
best method is PK-NN with an F-measure varying between
30.71 and 42.03. The three remaining methods, DECOR,
GP and BLOP, show bad results with maximum F-measure
values of 21.30, 30.61, and 41.18, respectively. The significant
outperformance of ADIPOK-UMT over DECOR, GP and
BLOP methods could be explained by the fact that: (1) these
methods do not consider the uncertain metrics’ thresholds
values during the learning process and (2) they are not well-
suited to manage the data imbalance problem. They only
discard and/or replace the uncertain parts which causes a loss
of information and consequently generate ineffective detectors
(classifiers). In contrast, the performance of ADIPOK-UMT
methods could be explained by the fact that it manages
uncertain metrics’ thresholds values by using an adequate
distance measure (affinity (cf. Equation 4)) to measure the
similarity between the software classes. Moreover, ADIPOK-
UMT is able to deal with the problem of data imbalance as
it uses the F-measure, which is known by its insensitivity to
such problem. Additionally, our proposed approach performs
the weighting of chosen metrics’ thresholds in an implicit
manner using the possibility degrees, which aid to well predict
the class labels of the software systems. The ADIPOK-UMT
superiority could be justified by three reasons. The first reason
is that ADIPOK-UMT method carries out feature (quality
metrics) selection and optimizes the K parameter while the
PK-NN optimizes only the K value. The second reason is that
the chosen metrics are weighted after discretization through
the possibility distribution-based encoding. The third reason
is that the PK-NN does not take into account the uncertainty
and the data imbalance issue over the learning process. This
could be justified by the employment of unsuitable evaluation
metric. The DECOR has shown poorest results comparing to
the other methods with an F-measure varying between 04.65
and 21.30; such poorer results are obtained since the detection
rules are manually fixed by a software engineer without
giving any importance to the problems mentioned previously.
The same results are obtained for the MCC metric as it
is insensitive to the data imbalance problem. The similarity
distance measure (affinity measure) and the used metrics (F-
measure and MCC) make the ADIPOK-UMT well-suited to
handle both environments considered in this work. Table VIII
presents the achieved A statistic results of ADIPE, DECOR,
GP, MOGP, and BLOP using the F-measure and the MCC

metrics for code smell types identification case in an uncertain
environment. The achieved results reveal that ADIPK-UA
succeeds in reaching a value greater than 0.88 (large) over
the all considered smell types. Therefore, we can deduce that
our approach significantly surpasses its competitors.

Table IX presents the metrics’ results of the five peer
methods over the smell type identification process for the
case when there is only certain metrics’ values (P = 0%). We
recall that in the certain environment, the metrics’ thresholds
values of the BE are certain. As there is no uncertainty, the
only important problem that remains the high imbalance data
ratio. According to Table IX, our ADIPOK-UMT performs
well than the other methods with an F-measure value spanning
between 83.98 and 90.62. The second best-method is BLOP
with an F-measure laying between 20.74 and 43.22. The two
remaining methods, GP, and PK-NN, provide bad results with
maximum F-measure values of 33.16 and 40.26, respectively.
The outperformance of ADIPOK-UMT over these methods
could be justified by the fact that the ADIPOK-UMT approach
is able to deal with the problem of imbalanced data thanks to
the adopted fitness function. We recall that the data imbalance
in the identification problem is higher than the detection
problem. The poorest results remain to the DECOR method,
as its detection rules are manually conceived which is not
effective for the case of data imbalance problem. For the
MCC metric, the reported results are similar to those of F-
measure. Table IX illustrates the achieved A statistic results
of the five algorithms under comparison based on the F-
measure and the MCC metrics for the identification of the
eight smell types under a certain environment. The illustrated
results show that ADIPOK-UMT succeeds in reaching a value
greater than 0.88 (large) over all the chosen smell types. Thus,
we can deduce that ADIPOK-UMT significantly surpasses
DECOR, GP, BLOP, and PK-NN. Indeed, the good results
shown by some considered methods are incorrect and in most
times are generated haphazardly, as these methods are not
adequate for dealing with uncertain and data imbalance issues.
Contrariwise, ADIPOK-UMT has shown great performance
when handling the imbalance data and the uncertain attributes’
values issues thanks to the strength and the insensitivity of
its fitness function F-measure as well as the used similarity
distance used to determine the similarity between the labelled
software classes and the unseen ones.

VI. RELATED WORKS

Existing code smell detection approaches could be classified
based on their employed techniques into four categories:
Rule/heuristic-based category, Search-based category, Machine
Learning-based category, and Others. Nonetheless, there is no
attempt to identify code smells under uncertain environment.
The first attempt in the detection of code smells was conducted
in the Rule/heuristic-based category, where the methods utilize
known (or/and newly) metrics to detect the violated design
practices. Erni and Lewrentez [28] proposed a composition
of m-tuple of different metrics (multi-metrics) to assess the
frameworks’ performance in the aim to enhance them. The

TABLE VI
F-measure AND MCC MEDIAN SCORES OF ADIPOK-UMT, DECOR, GP, BLOP, AND PK-NN FOR 31 RUNS OF THE DETECTION PROCESS AT AN

UNCERTAIN ATTRIBUTE LEVEL P>50%.

TABLE VII
F-measure AND MCC MEDIAN SCORES OF ADIPOK-UMT, DECOR, GP, BLOP, AND PK-NN FOR 31 RUNS OF THE DETECTION PROCESS AT AN

UNCERTAIN ATTRIBUTE LEVEL P=0%.

detection strategy proposed by Lanza and Marinescu [29] for-
mulates rules in the form of metric-threshold combinations that
capture the detours from good design practices and heuristics.
Moha et al., [21] have proposed a tool called DECOR that

detects code smells based on “Rule cards”, which include the
defect symptoms and its properties.

The machine-learning based category has obtained much
attention over the last years. The methods belonging to this

TABLE VIII
F-measure AND MCC MEDIAN SCORES OF ADIPOK-UMT, DECOR, GP, BLOP, AND PK-NN FOR 31 RUNS OF THE IDENTIFICATION PROCESS WITH AN

UNCERTAIN ATTRIBUTE LEVEL P>50%.

category utilize machine learning techniques to detect code
smells. These methods are learned using training data and then
tested to detect the deviation from the good design classes.
Different learning approaches have been used in the detection
of code smells, including decision tree (DT) [30]. The author
used DT to predict anti-patterns in software projects. The
Bayesian Networks have been implemented by Khomh et al.
[31], [32] to detect the occurrences of code smells on software
projects. The Support Vector Machine (SVM) was used by
Maiga et al., [33], [34] to propose an approach called SVMDe-
tect to detect code smells. To investigate the performance
of different machine learning techniques, Fontana et al. [35]
employed 16 supervised machine learning algorithms with
their boosting variants for the code smell detection. The code
smell detection problem was seen by Guggulothu and Abdul
Moiz [36] as a Multi-label classification problem as a software
class could include more than a single smell type. Recently,
some works [37], [38] used the Deep learning techniques
that take as input different information types (e.g. structural
information, semantic information, historical information) to
detect code smells.

In the search-based category, the existing methods have
adopted different meta-heuristic algorithms (e.g. Genetic Pro-
gramming (GP), Genetic Algorithm (GA), and so one) to

resolve the optimization issues. For instance, the GP was
adopted by Ouni et al., [22] in the aim to automatically derive
detection rules from badly designed examples. Sahin et al.,
[23] was the first to integrate the bi-level optimization problem
in their Bi-Level Optimization Problem (BLOP) approach to
generate a set of detection rules. This approach is composed
of two levels; the upper-level is charged by the generation of
detection rules in order to cover not only the maximum code
smell examples but also the artificial ones obtained from the
second level; while the lower-level is responsible for exploring
the non-detected smells by the created rules from the upper
level. In [39], the authors generate the detection rules based
on the multi-objective aspect. Their proposed approach called
Multi-Objective Genetic Programming (MOGP) that explores
the search space to find the best rules to enhance the set of
detected defect examples and decrease the number of detected
well-designed examples.

The last category includes the methods that are based on
historical information concerning the change of code smells
over different software versions [40]–[42] and also the meth-
ods that are based on visualization to detect code smells over
code fragments [43]–[45].

TABLE IX
F-measure AND MCC MEDIAN SCORES OF ADIPOK-UMT, DECOR, GP, BLOP, AND PK-NN FOR 31 RUNS OF THE IDENTIFICATION PROCESS WITH AN

UNCERTAIN ATTRIBUTE LEVEL P=0%.

VII. CONCLUSION AND FUTURE WORKS

In this work, we have proposed ADIPOK-UMT as a new
method to detect and/or identify code smells. In this paper,
we have considered an important problem that is usually
neglected (or ignored) by the SBSE community, which is the
uncertain metrics’ thresholds values of the detection rules. The
appearance of such kind of uncertainty could be explained by
the fact that the experts are not able to give precise metric
values in each rule to detect code smells. The ignoring of
the uncertainty causes a loss of information and consequently
inaccurate results. Our approach ADIPOK-UMT, consisting
of a GA that evolves a population of PK-NN based on a
PBE characterized by uncertain metrics’ thresholds values,
has proven superiority over the four-peer methods thanks to
three important merits. First, the utilization of feature selection
task in addition to the optimization of K parameter. Secondly,
the adoption of the possibility distribution-based encoding
that permits the weighting of the software metrics. Thirdly,
the use of adequate similarity measure (affinity) to measure
the similarity between instances according to their uncertain
metrics’ thresholds values. Fourthly, the adoption of the F-
measure as a fitness function, which is known by its ability
for being insensitive to another important problem called
data imbalance problem. It is worth noting that the ratio of

the data imbalance problem is higher for the identification
problem comparing to the detection one. As a result, the
statistical analysis of the generated results has proven the
competitiveness and the strength of our proposal comparing
to the four relevant state-of-the-art methods.

Following this work, we have detected a number of in-
teresting perspectives. First, detecting and identifying code
smells are fastidious task for human experts since there are no
exact rules. Therefore, the uncertainty could be located at the
class labels [46] as well as the specification of the metrics’
thresholds values. Hence, it would be interesting to handle
the uncertainty of class labels and metrics’ thresholds values.
Second, in a real world situation, the number of unlabelled
instances exceeds the number labelled ones. Thus, another
path for future investigation would be the use of a semi-
supervised technique to to mimic the real world situations.
Finally, it would be challenging to apply ADIPOK-UMT to
detect and identify code smells in an uncertain environment
on web services and mobile-based applications [47], [48].

REFERENCES

[1] E. V. de Paulo Sobrinho, A. De Lucia, and M. de Almeida Maia, “A
systematic literature review on bad smells—5 w’s: which, when, what,
who, where,” IEEE Transactions on Software Engineering, 2018.

[2] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,” Information and Software Technology, vol. 108, pp. 115–
138, 2019.

[3] F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, and N. Moha, “A
systematic literature review on the detection of smells and their evolution
in object-oriented and service-oriented systems,” Software: Practice and
Experience, vol. 49, no. 1, pp. 3–39, 2019.

[4] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Addison-Wesely, 1999.

[5] A. S. Cairo, G. d. F. Carneiro, and M. P. Monteiro, “The impact of code
smells on software bugs: A systematic literature review,” Information,
vol. 9, no. 11, p. 273, 2018.

[6] H. Liu, Q. Liu, Z. Niu, and Y. Liu, “Dynamic and automatic feedback-
based threshold adaptation for code smell detection,” IEEE Transactions
on Software Engineering, vol. 42, no. 6, pp. 544–558, 2015.

[7] M. S. Boutaib and Z. Elouedi, “Incremental possibilistic decision trees in
non-specificity approach,” in Data Science and Knowledge Engineering
for Sensing Decision Support: Proceedings of the 13th International
FLINS Conference (FLINS 2018), vol. 11. World Scientific, 2018, p.
339.

[8] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[9] Z. Pawlak, “Rough sets,” International journal of computer & informa-
tion sciences, vol. 11, no. 5, pp. 341–356, 1982.

[10] P. Smets and R. Kennes, “The transferable belief model,” Artificial
intelligence, vol. 66, no. 2, pp. 191–234, 1994.

[11] R. Hentech, I. Jenhani, and Z. Elouedi, “Possibilistic airs induction from
uncertain data,” Soft Computing, vol. 20, no. 1, pp. 3–17, 2016.

[12] I. Jenhani, N. B. Amor, Z. Elouedi, S. Benferhat, and K. Mellouli, “In-
formation affinity: A new similarity measure for possibilistic uncertain
information,” in European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty, vol. 4724. Springer, 2007,
pp. 840–852.

[13] R. Krishnapuram and J. M. Keller, “The possibilistic c-means algorithm:
insights and recommendations,” IEEE transactions on Fuzzy Systems,
vol. 4, no. 3, pp. 385–393, 1996.

[14] M. Krętowski and M. Grześ, “Global learning of decision trees by
an evolutionary algorithm,” in Information Processing and Security
Systems. Springer, 2005, pp. 401–410.

[15] A. Samet, E. Lefèvre, and S. B. Yahia, “Evidential data mining: precise
support and confidence,” Journal of Intelligent Information Systems,
vol. 47, no. 1, pp. 135–163, 2016.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[17] A. Barbez, F. Khomh, and Y.-G. Guéhéneuc, “A machine-learning based
ensemble method for anti-patterns detection,” Journal of Systems and
Software, vol. 161, p. 110486, 2020.

[18] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. USA: Butterworth-
Heinemann, 1979.

[19] B. B, “Genetic algorithms for function optimization,” Dissertation,
University of Alberta, 1980.

[20] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” com-
puter, vol. 27, no. 6, pp. 17–26, 1994.

[21] N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. L. Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[22] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintain-
ability defects detection and correction: a multi-objective approach,”
Automated Software Engineering, vol. 20, no. 1, pp. 47–79, 2013.

[23] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell detection
as a bilevel problem,” ACM Transactions on Software Engineering and
Methodology, vol. 24, no. 1, pp. 1–44, 2014.

[24] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-
Protein Structure, vol. 405, no. 2, pp. 442–451, 1975.

[25] W. J. Conover and W. J. Conover, “Practical nonparametric statistics,”
1980.

[26] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[27] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and ana-
lyzing evolutionary algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 19–31, 2011.

[28] K. Erni and C. Lewerentz, “Applying design-metrics to object-oriented
frameworks,” in Proceedings of the 3rd international software metrics
symposium. IEEE, 1996, pp. 64–74.

[29] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer Science & Business Media, 2007.

[30] J. Kreimer, “Adaptive detection of design flaws,” Electronic Notes in
Theoretical Computer Science, vol. 141, no. 4, pp. 117–136, 2005.

[31] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian
approach for the detection of code and design smells,” in Proceedings
of the 9th International Conference on Quality Software,. IEEE, 2009,
pp. 305–314.

[32] ——, “BDTEX: A GQM-based Bayesian approach for the detection
of antipatterns,” Journal of Systems and Software, vol. 84, no. 4, pp.
559–572, 2011.

[33] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Gueheneuc, and
E. Aimeur, “SMURF: A SVM-based incremental anti-pattern detection
approach,” in Proceedings of the 19th Working conference on Reverse
engineering,. IEEE, 2012, pp. 466–475.

[34] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc,
G. Antoniol, and E. Aïmeur, “Support vector machines for anti-pattern
detection,” in Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering,. IEEE, 2012, pp. 278–281.

[35] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing
and experimenting machine learning techniques for code smell detec-
tion,” Empirical Software Engineering, vol. 21, no. 3, pp. 1143–1191,
2016.

[36] T. Guggulothu, “Code smell detection using multilabel classification
approach,” arXiv preprint arXiv:1902.03222, 2019.

[37] M. Hadj-Kacem and N. Bouassida, “Deep representation learning for
code smells detection using variational auto-encoder,” in International
Joint Conference on Neural Networks,. IEEE, 2019, pp. 1–8.

[38] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based
code smell detection,” IEEE Transactions on Software Engineering, pp.
1–28, 2019.

[39] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-objective
code-smells detection using good and bad design examples,” Software
Quality Journal, vol. 25, no. 2, pp. 529–552, 2017.

[40] D. Rapu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proceedings of the
8th European Conference on Software Maintenance and Reengineering,.
IEEE, 2004, pp. 223–232.

[41] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change his-
tory information,” in Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering,, IEEE. IEEE, 2013,
pp. 268–278.

[42] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462–489, 2014.

[43] E. V. Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Proceedings of the 9th Working Conference on Reverse
Engineering,, IEEE. IEEE, 2002, pp. 97–106.

[44] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis
of quality for large-scale software systems,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing,. ACM, 2005, pp. 214–223.

[45] K. Dhambri, H. Sahraoui, and P. Poulin, “Visual detection of design
anomalies,” in Proceedings of the 12th European Conference on Soft-
ware Maintenance and Reengineering,. IEEE, 2008, pp. 279–283.

[46] S. Boutaib, M. Elarbi, S. Bechikh, C.-C. Hung, and L. Ben Said,
“Software anti-patterns detection under uncertainty using a possibilistic
evolutionary approach,” in Proceedings of the 24th European Conference
on Genetic Programming. Springer Nature, 2021, pp. 181–197.

[47] N. Bessghaier, A. Ouni, and M. W. Mkaouer, “On the diffusion and
impact of code smells in web applications,” in International Conference
on Services Computing. Springer, 2020, pp. 67–84.

[48] I. Saidani, A. Ouni, and M. W. Mkaouer, “Web service api anti-patterns
detection as a multi-label learning problem,” in International Conference
on Web Services. Springer, 2020, pp. 114–132.

