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Abstract—Source code reuse is considered one of the holy grails
of modern software development. Indeed, it has been widely
demonstrated that this activity decreases software development
and maintenance costs while increasing its overall trustwor-
thiness. The Object-Oriented (OO) paradigm provides differ-
ent internal mechanisms to favor code reuse, i.e., specification
inheritance, implementation inheritance, and delegation. While
previous studies investigated how inheritance relations impact
source code quality, there is still a lack of understanding of
their evolutionary aspects and, more particular, of how these
mechanisms may impact source code quality over time. To
bridge this gap of knowledge, this paper proposes an empirical
investigation into the evolution of specification inheritance, im-
plementation inheritance, and delegation and their impact on the
variability of source code quality attributes. First, we assess how
the implementation of those mechanisms varies over 15 releases
of three software systems. Second, we devise a statistical approach
with the aim of understanding how inheritance and delegation let
source code quality—as indicated by the severity of code smells—
vary in either positive or negative manner. The key results of the
study indicate that inheritance and delegation evolve over time,
but not in a statistically significant manner. At the same time,
their evolution often leads code smell severity to be reduced,
hence possibly contributing to improve code maintainability.

Index Terms—Software Reuse; Quality Metrics; Software
Maintenance and Evolution; Empirical Software Engineering.

I. INTRODUCTION

Software reusability refers to the development practice
through which developers make use of existing code when
implementing new functionalities [1], [2]. This is widely
considered as a best practice, as it leads developers to save
time, energy, and maintenance costs, other than relying on
source code that has been previously tested [3], [4].

Contemporary Object-Oriented (OO) programming lan-
guages, e.g., JAVA, provide developers with various mecha-
nisms supporting code reusability: examples are design pat-
terns [5], [6], the use of third-party libraries [7], [8], and
programming abstractions [9]. These latter, in particular, have
caught the attention of researchers since the rise of object-
orientation and were found to be a valuable element to increase
software quality and reusability [10], [11], [12], [13], [14].

When focusing on JAVA, there are two well-known abstrac-
tion mechanisms such as inheritance and delegation [15].

Inheritance is the process by which one class takes the
property of another class: the new classes, known as derived

or children classes, inherit the attributes and/or the behavior of
the pre-existing classes, which are referred to as base, super, or
parent classes. Delegation is, instead, the mechanism through
which a class uses an object instance of another class by
forwarding it messages and letting it performing actions [15].

The importance of inheritance and delegation has been
remarked multiple times by the research community. In 1994,
Chidamber and Kemerer [16] included in their Object-Oriented
metric suite the Depth of the Inheritance Tree (DIT) metric,
a measure of the number of classes that inherit from one
another. Later on, various metric catalogs proposed variations
of DIT as well as other inheritance metrics [17], [18], [19].
In addition, the sub-optimal adoption of inheritance and dele-
gation mechanisms had led to the definition and investigation
of reusability-specific code smells [20], [21], [22], [23]: as an
example, Fowler [24] defined the Refused Bequest and Middle
Man code smells, which refer to the poor use of inheritance
and delegation in Object-Oriented programs that might lead
to deteriorate their code quality [22], [25], [26], [27]. These
studies have also led to the definition of automated code smell
detection and refactoring approaches [28], [29], [30].

Still from an empirical standpoint, a number of studies
targeted the role of inheritance and delegation mechanisms for
monitoring software quality. In particular, researchers devoted
extensive effort on the understanding of the potential impact
of those mechanisms on software metrics [31], [32], [33],
maintainability effort and costs [34], [35], [36], [37], design
patterns [38], [39], change-proneness [40], [41], [42], [43],
and source code defectiveness [44], [45], [46], [47].

While the current body of knowledge provides compelling
evidence of the value of reusability mechanisms for the
analysis of source code quality properties, we can still identify
a noticeable research gap: as Mens and Demeyer [48] already
reported in the early 2000s, the long-term evolution of source
code quality metrics might provide a different perspective
of the nature of a software project, possibly revealing com-
plementary or even contrasting findings with respect to the
studies that investigated code metrics in a fixed point of
software evolution. To the best of our knowledge, Nasseri et
al. [49] were the only researchers studying the evolution of
reusability metrics. They specifically focused on the size of
the inheritance hierarchies and aimed at assessing whether

1



developers had the tendency of adding classes at different
levels of the hierarchy while evolving their projects: the results
reported that the growth of inheritance hierarchies is limited
and typically involves up to two levels.

Stemming from the previous investigations on the matter,
this paper builds on this line of research by proposing an
empirical analysis of how inheritance and delegation mech-
anisms evolve over time as well as their effects of software
quality evolution. Our interest in inheritance and delegation is
due to our willingness to (1) investigate built-in abstraction
mechanisms that developers are supposed to frequently use to
increase the reusability of source code; and (2) bridge the gap
left by previous studies, i.e., an empirical understanding of the
evolutionary aspects of inheritance and delegation might pro-
vide a more comprehensive understanding on the role of those
mechanisms for source code quality. Our study is conducted on
JAVA: while recognizing that other languages (e.g., PYTHON)
are becoming more popular, JAVA is still ranked in the top-
three of the programming languages, according to the TIOBE
index.1 In addition, the structure of the programming language
enables a more natural use of inheritance and delegation with
respect to other languages [50], [51], which allows us to
better understand how these mechanisms evolve and influence
code quality. Finally, previous studies investigated JAVA and,
therefore, our focus enables a comparison with them.

More particularly, we first mine evolutionary data pertain-
ing to 15 releases of three open-source projects. Then, we
statistically compare the number of inheritance and delegation
mechanisms implemented over subsequent releases in order
to assess the trend followed by the adoption of those metrics.
Finally, we build a statistical model relating inheritance and
delegation metrics, as well as other confounding factors, to the
variation of code smell severity, in an effort of understanding
the impact of reusability metrics on the likelihood of code
smells to become more/less severe over time. The key results
of our study report that the adoption of reusability mechanisms
increases over time. Yet, when controlled for size, the increase
does not appear as statistically significant. In any case, the evo-
lution of inheritance and delegation is statistically connected to
the decrease of code smell severity in most cases and, indeed,
we discovered negative effects only in a few cases. To sum
up, our paper offers the following three main contributions:

1) Evidence-based insights into the evolution of inheritance
and delegation adoption in open-source systems, which
researchers might exploit to further understand the devel-
oper’s code quality practices;

2) An empirical, evolutionary exploration of the impact of
inheritance and delegation mechanisms on code smell
severity, which can be of the interest of researchers work-
ing in the field of code smell detection and prioritization
[52], [53], [54], other than for tool vendors interested
in providing developers with better monitoring tools for
software quality evolution [55], [56].

1Programming language ranking - Year 2021: https://www.tiobe.com/
tiobe-index/.

3) A publicly available replication package [57] that con-
tains both data and scripts used to conduct our experi-
mentation and that can be used by researchers to replicate
and extend the results discussed in the paper.

II. BACKGROUND AND RELATED WORK

This section summarizes the usage of object-oriented
reusability through the mechanisms of inheritance and dele-
gation. In addition, we overview the related literature.

A. Reuse through inheritance and delegation

In JAVA, a hierarchical dependency between two classes is
established by means of two main constructs:
‘extends’. Through the use of the keyword ‘extends’,

a class A inherits state and behavior from a class B, estab-
lishing a subclass-superclass relation. The attributes defined
and the methods implemented in B become available when
calling objects of the class A.

‘implements’. The adoption of this keyword allows a
class A to inherit the methods defined within an interface B:
in particular, a JAVA interface only specifies the blueprint of
a class, i.e., the methods that all the classes inheriting from it
must provide, without providing a concrete implementation.
In turn, the inheriting classes must override the acquired
methods in order to specify their behavior.
These constructs enable the definition of reusability in

terms of specification inheritance, implementation inheritance,
and delegation [58]. The former represents the possibility to
replace one object with another, combining two principles:

• The Liskov substitution principle, according to which if
an object of type A can be replaced anywhere one expects
a type B object, then A is a subtype of B [59];

• Strict inheritance, where a subclass A exhibits, without
any modifications, all the behaviors and properties de-
fined in its parents [58].

Implementation inheritance refers to the existence of a
subclass that re-uses code of a parent class [58]. By default the
subclass retains all the operations provided by the superclass,
yet it has the possibility to override some or all of them,
replacing the superclass implementation with its own.

The implementation inheritance, however, violates the en-
capsulation principle [58]: indeed, it does not prevent other
client classes to have a direct access to the methods of the
superclass, possibly causing clients to invoke those meth-
ods improperly. An encapsulation-preserving alternative to
implementation inheritance is called delegation. This is the
mechanism through which a class can delegate an operation
to another class without establishing any inheritance relation.

To summarize, the use of specification inheritance, imple-
mentation inheritance, and delegation enables the reuse of
portions of code in different manners. On the one hand, the
reuse expressed in terms of implementation inheritance and
delegation exploits the concept of superclasses. On the other
hand, specification inheritance is about interfaces.
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B. Related work

Software reusability is a key software engineering principle,
as it allows developers to reuse pieces of code that have been
previously developed and tested [1]. The research community
identified benefits given using general feature provided by
object oriented programming languages [60], [61], [61], [62],
[63]. In the context of our work we resume previous literature
that showed the benefits given by the various reusability
mechanisms, but also the potential drawbacks.

Prechelt et al. [36] defined two controlled experiments to
verify the relation between inheritance and maintenance effort,
showing that keeping the inheritance depth small reduces the
overall effort spent by developers while maintaining source
code. These results are in line with those reported by Daly
et al. [35], who conducted a series of controlled studies to
investigate the impact of inheritance on source code maintain-
ability. Their results indicated that the higher the depth of the
inheritance tree of classes, the lower the ability of developers
to maintain those classes. Albalooshi [64] corroborated these
findings by showing that multiple inheritance in JAVA may
result in undesirable effects on the produced software such as
increased coupling, lack of cohesion, and increased software
complexity; the author concluded that an improper use of
inheritance might lead to major negative effects on source code
reusability. Later on, Albalooshi and Mahmood [34] evaluated
the implementation of the multiple inheritance mechanism on
the reusability of three programming languages like JAVA,
PYTHON, and C++, showing that the JAVA programming
features lead developers to deteriorate source code quality—
as measured by means of the Chidamber & Kemerer (CK)
metrics. Along the same line of research, Goel and Bathia [37]
analyzed whether multilevel inheritance impact on reusability,
conducting an empirical experiment on three C++ systems and
finding a negative effect of inheritance on maintainability.

While the papers discussed so far assessed inheritance
properties by means of controlled studies, other researchers
operationalized source code maintainability in terms of quan-
titative measurements. For instance, Chawla and Nath [31]
assessed that the use of inheritance can have beneficial effects
on coupling metrics. Similar conclusions were drawn by
Chhikara et al. [32], who conducted a larger experimentation
on the effects of inheritance on multiple CK metrics. Also
Vinobha et al. [42] found inheritance to be associated to a
higher reusability and maintainability. The three papers just
discussed somehow contrasted the findings achieved by the
researchers adopting controlled experiments to assess the role
of inheritance on software quality, indicating the lack of a
clear result on its usefulness. However, when considering the
studies proposing quantitative assessments, not all of them
found inheritance positive. This is the case of researchers that
investigated the relation between inheritance metrics and fault-
proneness. A number of papers [33], [44], [45], [46], [47]
revealed that the high-values of inheritance metrics, which
correspond to larger use of the inheritance mechanism, lead
source code to be more fault-prone and might therefore be used

as defect predictors. Similar conclusions were drawn when
considering change-proneness [40], [41], [42], [43].

Last but not least, a relevant research area is the one of
code smell detection and refactoring. In this respect, Fowler
[24] identified sub-optimal uses of reusability mechanisms and
defined code smells like (1) Refused Bequest, i.e., subclasses
that override most of the methods inherited by the superclass,
(2) Parallel Inheritance, i.e., inheritance hierarchies that grow
too much over time, and (3) Middle Man, i.e., classes that ex-
cessively use delegation. Ligu et al. [21] proposed a dynamic
Refused Bequest detection approach, while Palomba et al. [29]
exploited mining software repository techniques for detecting
Parallel Inheritance instances. Still in terms of code smell
research, a number of empirical studies focused on inheritance
and delegation. They investigated the diffusion of reusability-
specific code smells [26], [22] as well as their impact on defect
prediction performance [25], [65], [66].
Limitations of the state of the art. On the basis of the
discussion above, we can draw some conclusions. In the first
place, inheritance has been the subject of an extensive amount
of empirical investigations: most of the results indicate that a
widespread usage of inheritance negatively affects software
quality, yet there are some studies claiming the opposite.
Hence, there is still some ambiguity on the actual role played
by inheritance. Perhaps more importantly, most of the previous
studies did not distinguish and/or individually analyze the
various inheritance mechanisms: as a matter of fact, our knowl-
edge on the effects of specification rather than implementation
inheritance for software quality is still limited.

Finally, only a few code smell-related studies have consid-
ered delegation: as a consequence, no conclusive insights can
be drawn when it turns to this specific reuse mechanism.

Stemming from these observations, our study can be seen as
complementary. On the one hand, we aim at investigating how
inheritance mechanisms evolve over time, possibly providing
new, additional insights into how developers employ inheri-
tance and delegation in practice. On the other hand, our goal
is to assess the impact of different reuse mechanisms on source
code quality—as measured by the severity of code smells—
in an effort of complementing previous findings and possibly
better understanding the relation between software reuse and
code quality. The closest work to ours is the one by Nasseri et
al. [49], who partly covered the first of our goals by proposing
an evolutionary analysis of the depth of inheritance tree (DIT)
metric, showing that it tends to become stable over time. With
respect to this work, ours has a largest scope and investigates
the impact of reuse mechanisms on code quality.

III. RESEARCH METHODOLOGY

The goal of the empirical study was to assess how in-
heritance and delegation mechanisms evolve over time and
how they impact the severity of code smells during software
evolution, with the purpose of understanding the extent to
which reusability mechanisms applied by developers may
provide indications on the future quality of source code. The
quality focus was on the reusability in terms of specification
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inheritance, implementation inheritance, and delegation and
their variability within software projects. The perspective was
of both researchers and practitioners: the former are interested
in gathering a deeper understanding of the role of inheritance
and delegation for source code quality, while the latter in
better monitoring the code quality looking at inheritance and
delegation metrics. Our analysis was structured around two
main research objectives.

We started by analyzing the evolution of inheritance and
delegation. An improved understanding of the evolutionary
aspects of those mechanisms would provide us with a clearer
overview of how developers adopt them in practice.

RQ1. How do developers adopt source code reusability
mechanisms during software evolution?

We targeted this research question under different angles,
each of them investigating a different code reusability mech-
anism considered in the scope of this paper. This led to the
definition of three sub-research questions:

RQ11. How does source code reuse in terms of implementa-
tion inheritance vary in software evolution?

RQ12. How does reuse in terms of specification inheritance
vary in software evolution?

RQ13. How does reuse in terms of delegation vary in software
evolution?

Once we had assessed the evolution of those mechanisms,
we then proceeded with the analysis of how such evolution
might impact on source code quality, as measured by the
severity of code smells. Hence, we asked:

RQ2. How do source code reusability mechanisms impact
the severity of code smells over time?

The empirical study had a statistical connotation: as further
elaborated later in this section, we approached the research

questions by means of statistical tests and models. In terms
of reporting, we employed the guidelines by Wohlin et al.
[67], other than following the ACM/SIGSOFT Empirical Stan-
dards.2 The dataset and each script used in order to conduct
the analysis of our study are available on the appendix [57].
Figure 1 shows an overview of the methodology followed in
order to address our resaerch questions.

A. Context Selection

The context of the empirical study consisted of 15 releases
of three JAVA systems such as JHOTDRAW, APACHE ANT,
and JEDIT. Table I reports information about each of the
considered releases, i.e., we provide the name of the system,
the release ID, its KLOC, number of classes, and link to the
repository. In addition, we also report the number of uses of
implementation inheritance (Inh impl), the number of uses
of specification inheritance (Inh spec), and the number of
delegations applied on each of the releases considered—these
values were identified as detailed in Section III-B.

The context selection was driven by one main requirement,
namely our willingness to consider a set of projects that was
already selected by similar studies investigating the role of
reusability mechanisms [32], [34], [42], [47], in an effort of
providing results that might complement the observations done
in those previous studies and enlarge our knowledge around
the impact of inheritance and delegation on software quality.
As such, we identified the three projects more often considered
by previous research in the field.

B. Extracting Reusability Metrics

The first step of our empirical study was concerned with the
computation of reusability metrics and, specifically, the adop-
tion of specification inheritance, implementation inheritance,
and delegation. To extract and quantify the presence of these
mechanisms, we developed an ad-hoc approach—available in

2Available at: https://github.com/acmsigsoft/EmpiricalStandards. Given the
nature of our study and the currently available empirical standards, we fol-
lowed the “General Standard” and “Data Science” definitions and guidelines.
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TABLE I: Descriptive statistics of the considered software systems.

System (ver. ID) Inh impl Inh spec Delegation classes KLOC Link

JHotDraw 5.2 (v1) 299 142 57 171 2,275 https://sourceforge.net/projects/jhotdraw/files/JHotDraw/5.2/
JHotDraw 5.3 (v2) 398 210 35 241 5,054 https://sourceforge.net/projects/jhotdraw/files/JHotDraw/5.3/
JHotDraw 6.0 (v3) 444 183 22 328 10,285 https://sourceforge.net/projects/jhotdraw/files/JHotDraw/JHotDraw60b1/
ANT 1.1 (v1) 146 13 30 100 5,069 https://github.com/apache/ant/releases/tag/rel%2F1.1
ANT 1.2 (v2) 188 14 45 166 16,332 https://github.com/apache/ant/releases/tag/rel%2F1.2
ANT 1.3 (v3) 184 16 46 168 16,841 https://github.com/apache/ant/releases/tag/rel%2F1.3
ANT 1.4 (v4) 235 53 59 241 39,270 https://github.com/apache/ant/releases/tag/rel%2F1.4
ANT 1.5 (v5) 327 70 77 397 140,452 https://github.com/apache/ant/releases/tag/rel%2F1.5
ANT 1.6 (v6) 592 75 81 513 291,882 https://github.com/apache/ant/releases/tag/rel%2F1.6.0
ANT 1.7 (v7) 702 110 101 734 581,329 https://github.com/apache/ant/releases/tag/rel%2F1.7.0
JEdit 3.2.1 (v1) 428 136 132 465 83,442 https://sourceforge.net/projects/jedit/files/jedit/3.2.1/
JEdit 4.0 (v2) 458 134 153 538 116,567 https://sourceforge.net/projects/jedit/files/jedit/4.0/
JEdit 4.1 (v3) 484 139 183 567 133,491 https://sourceforge.net/projects/jedit/files/jedit/4.1/
JEdit 4.2 (v4) 506 149 204 701 200,019 https://sourceforge.net/projects/jedit/files/jedit/4.2/
JEdit 4.3 (v5) 662 159 209 947 494,462 https://sourceforge.net/projects/jedit/files/jedit/4.3/

the online appendix [57]. In the following, we report on the
logic and rationale of how we extracted each metric.

Implementation Inheritance (Inh impl). For a given type
(class), the metric measures the reuse expressed in terms
of implementation inheritance. To better explain how to
quantify such a reuse, let consider the following example.
Let A be a class having N methods; let B be the superclass of
A and let’s assume that B have just one method, named foo.
To increase the value of implementation inheritance, one
of the methods of A must invoke foo. Our tool mines the
source code of two subsequent releases of a class and checks
for cases where the example above appears. It is important
to note that, if the class B is a subclass of another class C,
all methods of C are also considered in the computation.

Specification Inheritance (Inh spec). For a given type
(class), the metric measures the reuse expressed in terms
of specification inheritance. To quantify such a reuse, our
devised tool applies the following two steps:
• First, it considers all the interfaces. Suppose that the class
A inherits from two interfaces B and C, with C extending
another interface class E. In this case, the sum of the
interfaces of A is 3.

• Second, the concept of strict inheritance must be con-
sidered. In the example discussed in the previous point,
the tool considers all the extension points of class A and
verifies that A does not override any methods inherited.

Delegation (Del). For a given type (class), the metric mea-
sures the reuse expressed in terms of delegation. Given a
class A, the tool extracts all the instance variables it declares.
These represent the input of a “filtering procedure” that
filters out the variables that have a basic type (e.g., int,
double, String, boolean) or have a non-binding type
to the considered project, i.e., the variable is of a type com-
ing from an external library, like the class BottomGroup
of the javax.swing framework. This step allows the
tool to consider only the instance variables that class A
uses to call methods of other classes belonging to the
same project. Afterwards, the tool verifies whether these
remaining instance variables are actually involved in external
calls, i.e., they are actually used to delegate operations.
It is important to remark that we did not rely on existing

metrics, like the Depth of Inheritance Tree (DIT) or the
Number of Children (NoC) [16], since we aimed at computing
metrics that could have directly expressed the adoption of
reusability mechanisms. Indeed, our metrics have a finer-
granularity and can indicate the exact constructs added by
developers during software evolution, e.g., the inclusion of
a new method that delegates its operations rather than a
change in the inheritance structure—this would not be possible
using existing metrics, as they just provide the result of the
actions done by developers, e.g., the increase of the depth of
inheritance tree, without indications of how that was obtained.

C. RQ1. Analyzing the variation of Delegation and Inheri-
tance Metrics over time

When addressing the first research question, we analyzed
the distributions of the three metrics denoting the reuse—
Inh impl, Inh spec, and Del—with the aim of understanding
how these evolve over time. For each subsequent releases Ri

and Rj , we applied non-parametric statistical tests to verify
whether the distribution of each reusability metric differed
between Ri and Rj . First, we applied the Mann-Whitney test
[68], which is the non-parametric version of the Wilcoxon
rank-sum test: the choice was due to the sample size and the
non-normality of the distributions considered [69]. Second,
we complemented the analysis with the application of the
Cliff’s Delta (δ) [70], which quantifies the effect size of the
observed differences, hence providing a measure of the extent
to which the reusability metrics vary over subsequent releases
of the considered applications. It is important to note that,
when performing the statistical analyses, we normalized the
values of the reusability metrics by LOC: this was done to
account for the natural evolution that software systems have
in terms of size and obtain a unbiased picture of how the
various reusability mechanisms are employed by developers.

The results were intended to be statistically significant at
α = 0.05. Thus, the null hypotheses tested were:

• Hn1i,j : There is no statistically significant difference
between the Inh impl values of version i and Inh impl
values of subsequent version j.

• Hn2i,j : There is no statistically significant difference
between the Inh spec values of version i and Inh spec
values of subsequent version j.
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• Hn3i,j : There is no statistically significant difference be-
tween the Delegation values of version i and Delegation
values of subsequent version j.

where i, j ∈{v1, v2,...vt}, when the system has t versions.
We analyzed this aspect using R TOOL.

D. RQ2. Analyzing the correlation between reusability mech-
anisms and severity of code smells

To address RQ2, we defined a statistical model relating
reusability metrics and other control factors to the increase/de-
crease of code smell severity. This implied the definition of a
number of steps, that we report in the following.

Response Variable. This was represented by the severity of
code smells. To compute it, we first selected the actual code
smell types subject of our investigation. These were:

• God Class: A large class with different responsibilities
that monopolizes most of the system’s processing [24];

• Spaghetti Code: A class without structure that declares
long methods without parameters [24].

• Complex Class: A class poorly understandable and char-
acterized by a high cyclomatic complexity [24];

• Class Data Should be Private: A class exposing its
attributes, violating the information hiding principle [24];

The selection of these code smells was driven by two
main observations. As discussed in Section II, previous studies
have established a relation between the reusability mechanisms
and source code complexity (e.g., [34], [64]): as such, we
selected code smells that are connected to code complexity in
different manners, for instance by detecting badly designed,
i.e., God Class and Spaghetti Code, or too complex classes,
i.e., Complex Class. We also included the Class Data Should
be Private code smell: its definition suggests a poor use of
code reuse principles and, for this reason, we found interesting
to assess the evolution of inheritance and delegation with
respect to the erosion of the code connected to this smell.

To detect instances of these code smells in our dataset we
relied on a well-known code smell detector named DECOR
[71], still widely used by recent literature [72], [73], [74]. It
relies on the computation of code metrics that can capture
the properties expressed in the definition of the smells. For
instance, the Class Data Should Be Private smell is identified
by DECOR as classes that have a number of variables with
visibility ‘public’ higher than 10. The detailed detection
rules employed as well as the source code of the detector are
available in our online appendix [57]. The use of DECOR was
motivated by the fact that it represents a good compromise
between execution time and detection accuracy—this compro-
mise has been demonstrated multiple times in the past [71],
[75], [76]. It is worth noting that the use of DECOR did not
allow us to focus our study on other relevant code smell
types, namely Parallel Inheritance, Middle Man, and Refused
Bequest. On the one hand, the former code smell can be
detected only using historical analysis [29] and, for this reason,
we could not identify it using code metrics. On the other
hand, Middle Man and Refused Bequest have been detected

in the past using dynamic analysis [21] but, unfortunately,
these approaches are neither publicly available nor easily re-
implementable: to avoid the introduction of any bias due to
re-implementation, we decided to exclude these smells from
our empirical study. Nonetheless, the investigation of how
reusability metrics impact other code smell types, identified
through detectors that use historical and dynamic analysis [21],
[29], [77], is part of our future work.

Once we had identified code smell instances, we proceeded
with the analysis of how their severity evolved over time.
To estimate the severity of code smells in the release vi,
we followed the guidelines by Marinescu [78]. In particular,
DECOR classifies the presence of a code smell using a heuristic
approach that combines multiple metrics: as such, a class
is considered smelly if and only if a set of conditions are
satisfied, where each condition has the form of metrici ≥
thresholdi. Hence, the higher the distance between the ac-
tual code metric value (metrici) and the fixed threshold
(thresholdi), the higher the severity of the code smell with
respect to that specific metric. Following this reasoning, we
measured the severity of code smells as follows: (1) We
computed the differences between the actual metric values and
the corresponding thresholds used by DECOR [71]; (2) We
normalized the obtained differences in the range [0;1] using
the min-max strategy [79]; and (3) We computed the final
severity score as the mean of the normalized values.

As a final step, for each release pair (vi, vi+1) of a project
P and for each code smell instance csj , we computed the
difference between the severity of csj in vi+1 and the one in
vi. If the resulting difference was higher than 0, the severity of
csj increased: hence, we labeled the event as an “increase” ;
if the difference was negative, then we labeled the case as
a “decrease” ; otherwise, the event was labeled as “stable”.
These three labels represented the response variable of the
four models constructed, i.e., we built one model for each of
the code smell considered in the study.

Independent Variables. The factors that we aimed at
assessing were the reusability metrics, namely the Inh impl,
Inh spec, and Del metrics whose definition and computation
are reported in Section III-B.

Control Variables. The variability of code smell severity
may clearly depend on different aspects different from the
reusability metrics we considered as independent variables.
We accounted for these aspects when modeling our statistical
exercise, defining a number of control variables. We first con-
sidered a set of code quality metrics, namely LOC (Lines of
Code), WMC (Weighted Methods per Class), RFC (Response
for a Class), LCOM (Lack of Cohesion of Methods), CBO
(Coupling Between Objects), DIT (Depth of Inheritance Tree),
and NoC (Number of Children). We computed these metrics
with the METRICS tool.3 As done for the response variable, we
modeled these metrics by considering the difference between
their values in the version vi+1 and the ones in vi, i.e., for
the sake of consistency, we modeled their evolution and the

3https://github.com/qxo/eclipse-metrics-plugin
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effect it has on the evolution of code smell severity. It is
worth remarking that these control variables are not used by
DECOR for the detection of code smells: in other words,
there is no dependency between independent and dependent
variables—otherwise, this would have caused possible biases
when interpreting the statistical results [80].

On the one hand, these metrics have been considered
effective to assess source code quality [81], [82]. On the other
hand, they estimate a variety of code quality aspects, such as
size, code complexity, coupling, cohesion, and propensity to
reuse—hence, perfectly fitting our goal of controlling for code
quality when evaluating the evolution of code smell severity.
It is worth remarking the use of DIT and NoC. These are
metrics that are clearly connected to the reusability metrics
we considered as independent variables. Nonetheless, we
considered them with the intent of comparing their statistical
power with respect to the adoption mechanisms estimated by
our metrics: in other words, their employment allowed us to
assess the importance of the size of the inheritance tree and the
number of children in the inheritance hierarchy with respect
to the general usage of inheritance and delegation—note that
we assessed the presence of possible multi-collinearity due to
these related metrics when performing the statistical modeling,
as further described in the remainder of this section.

Running the Statistical Model. Given the nature of our
categorical response variable, i.e., the categories “decrease”,
“stable”, and “increase”, we used a Multinomial Log-Linear
model [83] to study the severity of the four code smells
considered. This is a classification method that is applied
when the dependent variable is nominal and composed of more
than two levels. We built our models using R, exploiting the
function multinom available in the package nnet,4 i.e., the
models were fit via neural networks. When constructing the
statistical models, we took into account the problem of multi-
collinearity, which appears when two or more independent
variables are highly correlated and can be predicted one from
the other, possibly biasing the interpretation of the results. In
the context of our work, we applied the guidelines proposed
by Allison [84], who described how to control a model for
multi-collinearity and when to ignore it. As a result, we did
not remove any of the variables. This was because the standard
errors of the independent variables were narrow enough not
to negatively influence the interpretability of the model: in
our case, for all models they were lower than 0.9–—note that
standard errors must be ≤ 2.5 to produce a sufficiently narrow
95% prediction interval [85].

When interpreting the results of the model, the multinom
coefficients are relative to a reference category and indicate
how the independent variables change the chances of the
dependent variable being affected with respect to the reference
category. We set such a category to “stable” : in this way, we
could understand how the different independent variables vary,
in either positive or negative manner, the likelihood of the code
smell severity being stable over two releases. As an example,

4https://cran.r-project.org/web/packages/nnet/nnet.pdf

a negative coefficient for an independent variable of the model
built when analyzing the decrease of code smell severity would
suggest that for one unit increase of that variable, the chances
of variation of the response variable would be increased of the
amount indicated by the coefficient.

E. Threats to Validity

In this subsection, we discuss possible threats that could
have affected our results and how we mitigated them.

Construct Validity. Threats to construct validity concern
with the relationship between theory and observation. The
main discussion point in this respect is related to the dataset
exploited. We are aware that the projects selected could have
influenced the extent of the analysis, yet we relied on projects
that have been previously used in similar experimentations
with the goal of extracting results that might have been as
comparable as possible. Future investigations will extend our
understanding on the evolutionary aspects of reusability mech-
anisms. An additional threat concerns with the data collection
procedures: these were either based on well-established tools,
e.g., METRICS, or classical definitions of metrics, e.g., the
computation of reusability metrics. In any case, we made all
scripts and data publicly available for the sake of verifiability.

As for the identification of code smells, we relied on DECOR
[71], which is a state-of-the-art detector [76]. Its accuracy
might have influenced the quality of the information reported
in the dataset: while we recognize this limitation, we also
point out that the choice of this detector was based on the
compromise between quality and performance it ensures [71],
[75], [76]. In our future research agenda, we plan to assess
the impact of false positives/negatives on the achieved results.

Internal Validity. Threats to internal validity concern fac-
tors that might have influenced our results. In the context
of RQ2, we defined a number of control variables that
could estimate, in a more appropriately manner, the effect of
reusability metrics on the variation of code smell severity. The
selection of those metrics was based on the analysis of the state
of the art, namely on the identification of the metrics that have
been previously connected to the evolution of code smells.

Conclusion Validity. A major threat to the conclusions
drawn is related to the statistical methods employed. In RQ1,
we used well-known tests widely exploited by research com-
munity, i.e., Mann-Whitney and Cliff’s Delta. Before using
them we verified the normality of the data, which is the main
requirement leading to their use. As for RQ2, the selection of
the Multinomial Logistic Linear statistical approach [83] was
driven by the fact that our response variable was categorical
and composed of three levels. By definition, this statistical
approach is able to handle multiclass problems with cate-
gorical and continuous independent variables, therefore fitting
the problem of interest. While designing the model, we also
controlled for possible multi-collinearity, hence avoiding bias
in the interpretation of the results [86].

External validity. Threats in this category mainly concern
with the generalization of results. We analyzed 15 releases
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of three open-source software systems coming from different
application domains and having different characteristics (size,
programming languages, number of classes, etc.). Of course,
we cannot claim the generalizability of the findings to other
systems; our future research agenda includes the extension of
the study with more different set of systems.

IV. ANALYSIS OF THE RESULTS

The results of the study are presented in the following.
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Fig. 2: How Inh impl (a), Inh spec (b), and Delegation (c)
change across the considered versions of JHOTDRAW.
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Fig. 3: How Inh impl (a), Inh spec (b), and Delegation (c)
change across the considered versions of ANT.
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Fig. 4: How Inh impl (a), Inh spec (b), and Delegation (c)
change across the considered versions of JEDIT.

A. RQ1 - How do developers adopt source code reusability
mechanisms during software evolution?

When addressing the evolution of reusability mechanisms,
we first analyzed how implementation inheritance, specifica-
tion inheritance, and delegation evolved over the considered
projects in absolute terms and whether the difference between
different releases is statistically significant. Due to space
limitation, the detailed table reporting the results of Mann-
Whitney and Cliff’s Delta is in the online appendix [57].
Figures 2 to 4 depict the evolution of these mechanisms over
the releases of the three considered projects. Looking at those
figures, we found similar trends.

The adoption of implementation inheritance follows an
increasing trend in three projects. While this seems to suggest
that developers use more and more frequently this type of
reusability mechanism, we also pointed out the case of JEDIT.
In this case, we observed a notable growth between versions
4.2 and 4.3. To better understand the reason behind this
finding, we manually dived into the mailing list of the project,
in an effort of understanding whether the developers them-
selves commented on this aspect in a certain moment in time.
This eventually happened on April 10th, 2007. As announced
in the “jEdit-announce” mailing list,5 the version 4.3 was
substantially revised, not only to include new features and
bug fixing operations, but also to provide new APIs: these
latter modifications have let developers apply consistent edit-
ing/refactoring operations of the source code, which implied
the improvement of source code design and a higher adoption
of inheritance mechanisms. While additional qualitative analy-
ses would be useful to understand the specific reasons why de-
velopers increased the use of implementation inheritance while
preparing the version 4.3 of the project, our findings suggest
that the higher adoption was indeed due to the developer’s
willingness to provide other reuse mechanisms such as APIs.
Nonetheless, when considering the results from a statistical
standpoint, we could not identify significant variations—both
the Mann-Whitney and Cliff’s Delta tests did not reveal a
relevant change in implementation inheritance adoption when
passing from version 4.2 to version 4.3. This is likely due to
the effect of size, i.e., the ratio of implementation inheritance
and size was similar in both releases, even though the reuse
was increased in absolute terms. A similar conclusion can be
drawn when looking at the statistical tests of the other systems:
there were no cases of statistically significant changes between
two subsequent releases, meaning that, overall, the use of
implementation inheritance does not vary too much over the
evolution history when controlled for size.

¤ Key findings for RQ11. The use of implementation
inheritance increases over time, even if not in a statistically
significant manner. In JEDIT, the increased adoption was
likely due to the developer’s willingness of improving APIs.

Turning to the specification inheritance, from Figures 2-
4 we could observe a similar trend with respect to the one
discussed above. The adoption tends to increase over time in
absolute terms, but without any statistically significant change.
Hence, we can claim that the evolution is basically stable
over time. A slight exception was represented by JHOTDRAW,
where we observed a decrease adoption when passing from
release 5.3 to 6. Analyzing this case further, we could find
that the JHOTDRAW team decided to apply substantial changes
to the system, likely affecting the reusability mechanisms
previously used and preferring other strategies (e.g., imple-
mentation inheritance) over specification inheritance.

5Thread in the “jEdit-announce” mailing list: https://sourceforge.net/p/jedit/
mailman/jedit-announce/?viewmonth=200710.
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¤ Key findings for RQ12. The adoption of specification
inheritance is stable over time. The only exception was
JHOTDRAW, that preferred to use different reusability mech-
anisms while defining a new milestone.

Finally, the reuse in terms of delegation follows a simi-
lar increasing trend in ANT and JEDIT, with the exception
of JHOTDRAW. When analyzing the evolution of the latter
system more closely, we could not really derive a clear
motivation behind the decreasing trend. This might potentially
be connected to a progressive reluctance of designing source
code for delegation, however it is important to note that, also
in this case, the statistical results did not reveal significant
changes. This implies that the differences observed in absolute
terms are balanced by the increasing number of lines of code.

¤ Key findings for RQ13. The adoption of delegations
increases over time, but not in a statistically significant
way. The exception is the one of JHOTDRAW, where the
trend observed suggests a progressive reluctance to this
mechanism which might be worth of studying in the future.

B. RQ2 - How do source code reusability mechanisms impact
the severity of code smells over time?

Table II shows the results of the statistical models built
for each of the smells considered in Section III-D. In the
first place, it is important to recognize that the decrease of
the CK metric values—considered as control variables in our
models—correlate well with the decreasing of code smell
intensity. This phenomenon was somehow expected since code
quality metrics have always been used as variables to predict
and monitor code smells [71], [87]: as such, we can confirm
the impact of these metrics on the variability of code smells.

Starting from Spaghetti Code, we could observe that dele-
gation and the specification inheritance correlate well with the
variability of code smell intensity. When they decrease, we
found a positive correlation with the increase of the intensity
of code smells. This result seems to perfectly fit the nature
of this smell. One of the causes leading to the emergence of
this smell and its degradation is indeed the inexperience with
object-oriented design technologies: our results suggest that a
decrease in the use of inheritance and implementation, which
are widely considered as relevant for a successful application
of object-orientation [24], leads to increase the chances of this
smell being harmful. As for the implementation inheritance,
we found that its decrease causes instability, i.e., we found
negative estimates when considering both the model build to
study the increase and decrease of code smell intensity. From
a practical perspective, this means that the specific uses of this
mechanism may lead to different results.

Moving to God Class, we noticed that the increase of dele-
gations may contribute to the decrease of intensity, while both
the inheritance metrics create instability. If a class affected
by this smell increases the usage of the delegation mecha-
nism, this means that the overall number of responsibilities
it manages is reduced: this may explain the reason behind

the severity reduction. At the same time, an increasing use
of inheritance implies exactly the opposite, with the God
Class including more and more methods coming from its
superclasses. As such, our findings suggest that an appropriate
use of delegation might result in an improvement of code
quality with respect to the emergence of God Class instances:
this is also demonstrated by the way some state-of-the-art
refactoring tools actually deal with this code smell: as an
example, JDEODORANT [88] realizes Extract Class refactor-
ing operations by means of delegations, namely by moving
methods from the God Class to other classes, letting the
original class rely on those methods by means of delegation.

As for Class Data Should Be Private, we noticed expect for
delegation, the lower the presence of inheritance, the higher
the chances of the code smell severity being decreased. This
result may be concerned with the encapsulation principle that
characterizes this code smell. As stated by Gamma et al. [6]
“inheritance mechanism often breaks encapsulation, given that
inheritance exposes a subclass to the details of its parent’s
implementation”. A lower use of these reusability mechanisms
naturally makes classes less exposed, hence reducing the risks
connected to the presence of a Class Data Should Be Private.

Considering Complex Class, we noticed that these metrics
can help decreasing the variability of the smell. This is, likely,
the most interesting outcome of our analysis. As discussed in
Section II, previous studies [34], [64], [89] have established a
relation between the use of reusability mechanisms and source
code complexity: with respect to those papers, our findings
suggest that keeping inheritance and delegation under control
may lead developers to reduce the risks of increasing complex-
ity. In this respect, our empirical study provides an additional
take on the role of reusability for software maintainability.

Finally, looking at the control factors related to inheritance,
i.e., DIT and NOC, we noticed that they lead to higher
instability compared to our independent variables, possibly
indicating that the pure adoption of inheritance and delegation
might be used to better monitoring the variability of code smell
severity, correlating better the phenomenon.

¤ Key findings for RQ2. In most cases, delegation and
inheritance metrics positively correlate to the decrease of
the code smell severity. Nonetheless, in some cases, their
presence causes instability.

V. DISCUSSION AND IMPLICATIONS

The results to our research questions targeted in this study
allow us to provide a number of implications for researchers
and practitioners, which we discuss in the following.

On the use of reusability mechanisms. In the first part of
the study, we could analyze the evolution of reusability
metrics. From that, we could delineate similar trends. Devel-
opers tend to increase the use of inheritance and delegation
over time: this may suggest that code reuse is indeed a
relevant matter for developers, which may be worth of
further investigations. Nonetheless, such an increase does
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TABLE II: Results of the statistical models for each smell considered in the analysis. The table shows the value of the estimates
and the significance through the asterisk.

Spaghetti Code God Class Class Data Should Be Private Complex Class

Variables Decrease Increase Decrease Increase Decrease Increase Decrease Increase
Delegation 0.011*** -0.358*** 1.054*** -1.363*** 0.016*** 0.330*** 0.011*** -0.358***
Implementation Inheritance -0.094*** -0.061*** 0.048*** 0.003*** -0.016*** -0.008*** -0.094*** -0.061***
Specification Inheritance 0.002*** -0.023*** 0.028*** 0.036*** 0.022*** -0.010*** 0.002*** -0.023***
DIT 0.060*** 0.180*** -0.274*** 0.108*** -0.133*** 0.004*** 0.060*** 0.180***
NOC -0.009*** 0.007*** -0.053*** 0.002*** 0.032*** 0.004*** -0.009*** 0.007***
LOC -0.000 -0.000 -0.000 -0.000 0.000** -0.000 -0.000 -0.000
LCOM 0.910*** -0.101*** -0.177*** -3.218*** 0.408*** 0.230*** 0.910*** -0.101***
WMC 0.0005 -0.0004 -0.002 -0.001 0.001 -0.001 0.0005 -0.0004
CBO -0.327*** 0.201*** -0.679*** 0.870*** 0.023*** -0.453*** -0.327*** 0.201***
RFC 0.001 0.003** 0.008*** 0.003 0.002 0.005*** 0.001 0.003**
∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01

not turn to be statistically significant: in other terms, the
increase grows along with the size of the project, hence
suggesting a linear evolution. This recalls again the need
for additional analyses into the specific motivations that
developers have when adopting reusability mechanisms. We
believe that more developer-oriented studies would increase
the scientific knowledge on how programming language
features and paradigms are used in practice as well as the
advantages perceived by developers.
� Implication 1. The research community should invest
some effort in understanding the developer’s perspective on
the use of abstraction mechanisms.

On the relation with previous studies. Our findings par-
tially contradict most of the investigations previously done
on the matter. As already mentioned, a number of empirical
investigations established a negative relation between the
adoption of reusability metrics and code complexity [34],
[37], [64]. However, the evolutionary nature of our study
revealed something different: in most cases, the correct
adoption of inheritance and delegation positively related to
the decrease of code smell severity. While we are aware that
further analyses would be needed to confirm our conclusions
on a larger scale, the results obtained so far allow practi-
tioners to (re-)consider reusability as a core mechanism for
evolving software systems. Similarly, our findings suggest
that broader and perhaps more conclusive indications into
the usefulness of code metrics might be obtained by looking
at how these metrics evolve over time and how they impact
source code quality.
� Implication 2. Inheritance and delegation mechanisms
can be used by practitioners as instruments to decrease
the severity of code smells. Researchers might be interested
in devising novel semi-automated tools that might support
practitioners in employing these abstraction mechanisms.
� Implication 3. An improved understanding of the role
of code metrics for source code quality can be obtained by
looking at their evolution and how these impact code quality
attributes. As such, the research community might consider
novel empirical investigations aiming at characterizing the
long-term, evolutionary impact of code metrics.

Reusability: The bright and the dark side. As a final dis-
cussion point, it is worth remarking that in some cases

we observed that inheritance and delegation may lead to
instability, i.e., they simultaneously increase and decrease
the code smell severity. This sheds light on an additional
view of the problem, which the research community would
be interested to face. In particular, our findings somehow
suggest that there exist a few cases where the specific adop-
tions of reusability mechanisms can have different effects.
As a matter of fact, a little knowledge is available on when
inheritance and delegation are used in a way that it can be
fully considered a pattern and when, instead, this becomes
an “abuse” that may lead to undesired effects.6 It is very
likely that the difference between a proper use and an abuse
is not concerned with the quantitative usage of delegation
and inheritance but on their logic. Part of our future research
agenda will be focused on understanding this matter, by
performing qualitative analyses that may better describe the
bright and the dark side of reusability.

� Implication 4. Researchers should consider the defini-
tion of qualitative or mixed-method studies through which
understand what are the boundaries between a correct and
incorrect use of inheritance and delegation mechanisms.

VI. CONCLUSIONS

In this paper, we investigated the evolution of reusability
mechanisms and their impact on the variation of code smell
severity. Our results revealed that the adoption of inheritance
and delegation increases over time, even though not in a
statistically significant manner. At the same time, such an
evolution does have an impact on code smells: our statistical
approach found inheritance and delegation metrics to signifi-
cantly impact the likelihood of the severity of the code smells
considered to vary. Often, such a variation can be considered
positive, meaning that a proper adoption of inheritance and
delegation reduces the severity of code smells.

Our future research agenda includes a larger scale exper-
imentation that could corroborate our initial findings. At the
same time, we aim at assessing the role of the considered
aspects from the developer’s perspective, in an effort of
understanding their opinions and adoption on inheritance and
delegation practices in their daily development activities.

6https://softwareengineering.stackexchange.com/questions/12439/
code-smell-inheritance-abuse
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