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ABSTRACT
Fine-grained just-in-time defect prediction aims at identifying likely

defective files within new commits pushed by developers onto a

shared repository. Most of the techniques proposed in literature

are based on supervised learning, where machine learning algo-

rithms are fed with historical data. One of the limitations of these

techniques is concerned with the use of imbalanced data that only

contain a few defective samples to enable a proper learning phase.

To overcome this problem, recent work has shown that anomaly de-

tectionmethods can be used as an alternative to supervised learning,

given that these do not necessarily need labelled samples. We aim at

assessing how anomaly detection methods can be employed for the

problem of fine-grained just-in-time defect prediction. We conduct

an empirical investigation on 32 open-source projects, designing

and evaluating three anomaly detection methods for fine-grained

just-in-time defect prediction. However, our results are negative

because anomaly detection methods, taken alone, do not overcome

the prediction performance of existing machine learning solutions.

CCS CONCEPTS
• Software and its engineering→Maintaining software.

KEYWORDS
Defect Prediction, Anomaly Detection, Empirical Software Engi-

neering, Software Evolution

ACM Reference Format:
Francesco Lomio,

1
Luca Pascarella,

2
Fabio Palomba,

3
Valentina Lenarduzzi

4
.

2022. Regularity or Anomaly? On The Use of Anomaly Detection for Fine-

Grained Just-in-Time Defect Prediction. In Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehension (ICPC’22), May 16-17,
2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 10 pages. https://doi.

org/10.1145/xxx.xxx.xxx

1 INTRODUCTION
Throughout the software lifecycle, developers eventually introduce

defects as a consequence of development and evolutionary activi-

ties [12]. With these circumstances being inevitable, the research

community has proposed plenty of methods to support developers

in identifying both defects and source code showing characteristics
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indicating its proneness to be defective, such as static analysis tech-

niques, code smell detection methods, and more [17, 31, 33, 46]. One

of the most timely practices to deal with software defects is called

fine-grained just-in-time defect prediction [60]: this is a variation of

the most well-known just-in-time defect prediction [38] that con-

cerns with the adoption of (un)supervised learning mechanisms to

locate defect-prone source code files at commit-level, namely while

developers are pushing their changes onto a shared repository [66].

In this context, most of the existing work has studied just-in-time

defect prediction under different perspectives: researchers have in-

deed heavily worked on (i) the definition of suitable predictors

to use when feeding machine learning algorithms [18, 24, 36, 53],

(ii) the optimization of the training strategies [64, 71, 90], (iii) the

correct estimation of the nature of defects [41, 56, 76], and (iv) the

configuration of machine learning algorithms [19, 81, 82]. More

recently, Pascarella et al. [60] proposed to lower the granularity of

just-in-time defect prediction so that the recommendations given

can indicate the exact files within commits that are likely to be

defective. In so doing, the authors have devised a supervised learn-

ing mechanism fed with a set of process metrics and whose perfor-

mance was assessed in an empirical study that showed the potential

usefulness of fine-grained just-in-time defect prediction.

While the extensive body of knowledge on both just-in-time de-

fect prediction and its fine-grained variant has led to the definition

of techniques able to achieve promising performance, the adop-

tion of such techniques in practice is still threatened by usability

concerns, e.g., lack of empirical investigations into the developer’s

ability to deal with defect prediction warnings [43]. Perhaps more

importantly, only a few researchers have explicitly considered the

distribution of defects in software projects: as a matter of fact, one

of the causes of wrong predictions given by (fine-grained) just-in-

time defect prediction models concerns with the fact that machine

learning algorithms are often called to learn features from imbal-

anced environments [39], i.e., from data sets presenting only a few

examples of defective source code entities. More specifically, recent

studies [42, 50, 65, 88] showed that machine learning algorithms

fed with imbalanced data might drastically lose their prediction

capabilities and lead to a biased interpretation of the results.

Anomaly detection, a.k.a., outlier detection [13], is the field of

machine learning that concerns with the identification of rare items

that raise suspicions by differing significantly from the majority of

the data. As recently shown [1, 74], anomaly detection can represent

a promising alternative to standard supervised machine learning

models when it comes to defect prediction, especially because they

do not necessarily require to be trained and, for this reason, do

not risk to learn from imbalanced data sets. Indeed, in such a for-

mulation defects are seen as rare events that appear during the

development, while the task of defect predictors is to mine time
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series representing the evolution of source code properties over

time and learn which of these properties deviate from the normal

behavior, indicating the presence of defective source code.

In this paper, we build on this line of research and propose the

first experimental investigation into the performance of anomaly

detection methods for fine-grained just-in-time defect prediction.

In particular, we conduct an empirical investigation involving 32

open-source projects with a total amount of 61,081 commits where

the percentage of defective files is around 34%, overall. We exper-

iment with three anomaly detection techniques for fine-grained

just-in-time defect prediction, i.e., One Class SVM, Isolation For-

est, and Local Outlier Factor. We assess these methods and

compare them with three baseline fine-grained just-in-time super-

vised learning models. We report a negative result. While the Local

Outlier Factor provides slightly better F-Measure scores than

supervised learning mechanisms, all the anomaly detection meth-

ods perform worse in terms of AUC-ROC. However, we discover a

complementarity between anomaly detection and machine learning

methods, with the former having higher capabilities on unbalanced

datasets and the latter on more defective projects.

Structure of the paper. Section 2 reports the methodology em-

ployed to address the goal of our empirical study, while Section 3

presents the achieved results. In Section 4 we further discuss the

main findings and provide the implications of our work for the

research community. The threats to the validity of our results and

our mitigation strategies are discussed in Section 5. The related

literature is surveyed in Section 6, while Section 7 concludes the

paper and overviews our future research agenda on the matter.

2 RESEARCH METHODOLOGY
The goal of the empirical study was to assess the performance of

anomaly detection methods when employed for the task of fine-

grained just-in-time defect prediction, with the purpose of under-
standing how they compare with traditional approaches based on

machine learning. The perspective is that of researchers, who might

be willing to assess the feasibility of using anomaly detection meth-

ods for defect prediction, as well as of practitioners, who might

want to evaluate the feasibility of using those methods within their

contexts. More specifically, we applied anomaly detection methods

for the identification of defective files within commits of software

projects and evaluated the resulting accuracy. Moreover, we com-

pared the performance of anomaly detection methods against the

state of the art, which in our case is represented by the adoption of

machine learning models. Hence, we formulate our RQ:

RQ. How do anomaly detection methods compare to existing su-
pervised learning techniques?

2.1 Context of the Study
The context of the study was composed of open-source software

projects, and in particular by their change history information. In

this respect, we exploited the Technical Debt Dataset [44], which is

a curated collection of data coming from 32 Java projects mostly

pertaining to the Apache Software Foundation ecosystem. De-

spite belonging to a single ecosystem, the projects of this dataset

were originally selected by following the diversity guidelines intro-

duced by Nagappan et al. [54], i.e., they were selected by addressing

the representativeness of projects in terms of age, size, and do-

main, other than considering the Patton’s “criterion sampling” [63],

namely they are more than four years old, have more than 500

commits and 100 classes, and have more than 100 issues reported

in their issue tracking system. As such, this dataset minimizes by

design possible threats to external validity. To further verify the

properties of this dataset, we have manually investigated the cor-

responding Github repositories and discovered that all of them

adhere to a strict code of conduct citetourani2017code and regularly

review source code to improve their quality processes [62]. This

additional analysis further confirmed the suitability of the dataset.

In terms of commits, the projects summed up to 64,320 commits.

Nevertheless, we observed that some of them were unreasonably

large, e.g., up to 4,715 files modified within a single commit. As re-

ported by Hattori and Lanza [30], this is a typical situation in open

source, where some commits pervasively modify the status of the

repository as a consequence of changes connected to licenses [15] or

code style (e.g., space versus tabular indentation of the code) [6, 91].

As pointed out by previous work [4, 32], those commits might neg-

atively bias the interpretability of automated methods. For the sake

of having a curated dataset, we decided to only retain the commits

that appeared in the 95-percentile of the distribution of files in all

commits—the threshold was selected based on the recommenda-

tions given by Alabi et al. [4]. This filtering procedure removed

3,239 commits and, therefore, our analyses were based on a total

amount of 61,081 code changes.

2.2 Collecting Fine-Grained Information on
Software Defects

To address our research question, we first needed to collect informa-

tion about the defectiveness of the files within each of the commits

of the dataset—in other words, we needed to collect reliable infor-

mation on the dependent variable that we aim at classifying using

anomaly detection and traditional machine learning models. To

this aim, we employed a similar methodology as done by Pascarella

et al. [60]. We first identified the so-called defect-fixing commits,
namely, the set of code changes where developers touch one or

more files to address the previously introduced defects: these were

identified by looking at the information available on the Jira issue

tracker of the projects
1
and by mining commits whose messages

explicitly report a fix operation. The union of the commits identified

using the two procedures represented our final set of defect-fixing

commits and contained the full list of files that we needed to trace

back to the point in time in which they were made defective. To

this purpose, we run the well-known SZZ algorithm [34], which

exploits the git blame capabilities to estimate the lines of code of

a file that induced a defect fixed in a defect-fixing commit. Specifi-

cally, for each commit that fixes an issue, SZZ returns a list of one

or more commits in which diverse files are blamed as the source

of the issue. However, the blamed commits might touch several

other files that are not involved in the successive fix. As done in the

reference work [60], we considered defect-inducing only those files

1
It is worth recalling that Jira allows developers to annotate the commit ID that

fixed a given defect explicitly.
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Figure 1: Overview of the methodology employed in our empirical study.

which modified lines are the actual source of defects and discarded

the remaining files whose changes are not involved in fixes.

We are aware of the criticisms made with respect to the accuracy

of SZZ [75, 76]. To limit the amount of false positives given by the

algorithm, we have applied some adjustments. In the first place, we

ignored non-source code files belonging to defect-fixing commits

(e.g., documentation or blob resources): in this way, we prevented

SZZ from identifying inducing commits that are clearly not related

to the defect. In second place, we filtered out the defect-inducing

commits that appeared as merge commits—these do not report

actual modifications. Last but not least, we carefully considered

the literature on the adoption of SZZ and decided not to opt for

variants of the algorithms that take into account specific conditions

(e.g., appearance of refactoring operations [56, 57]), as these were

shown to underperformwith respect to the original implementation

proposed by Śliwerski et al. [34].

2.3 Collecting Fine-Grained Software Metrics
The second step of our data collection methodology was connected

to the computation of software metrics that we could then use

as independent variables of both anomaly detection and machine

learning approaches. In particular, we required to gather a set of

metrics for each file belonging to the commits of the considered

projects. To this purpose, we considered exactly the same metrics

as the baseline fine-grained model proposed by Pascarella et al. [60].

On the one hand, this choice allowed us to rely on an established

set of independent variables previously validated in the context of

fine-grained just-in-time defect prediction. On the other hand, it

allowed a fair comparison between the results achieved by anomaly

detection methods and those of machine learning models: indeed,

we could replicate the previous study by Pascarella et al. [60], hence

contrasting their results with the ones of anomaly detection and

providing researchers with concrete indications on when and why

one approach should be preferred to the other (and viceversa).

For the sake of space limitations, we report names and descrip-

tion of those metrics in our online appendix.
3
These metrics rep-

resent an adaptation of those originally proposed by Rahman et

al. [70] and Kamei et al. [38]. With respect to the original works,

the granularity of the metrics was lowered so that they could be

computed on the files modified over the change history of software

projects. Interestingly, the metrics cover various aspects of the de-

velopment process such as: (1) the developers’ expertise (e.g., the

contribution frequency of a developer [38]), (2) the structure of

changes (e.g., the number of changed lines in a commit [70]), (3)

the evolution of the changes (e.g., the frequency of changes [70]),

and (4) the dimensional footprint of a committed change (e.g., the

relation between uncorrelated changes in a commit [79]). Hence,

we could characterize commit’ files under different perspectives—

according to previous findings, a high metric diversity improves

the capabilities of learning methods like the ones investigated in

the context of our study [11, 18].

Pascarella et al. [60] provided a publicly accessible appendix

containing the scripts used to compute the metrics. While we were

able to correctly download the scripts, we needed to slightly adjust

them in order to fix a runtime issue caused by an API that was

no longer available. The revised tool systematically collected the

metrics for each file of each commit belonging to the considered

projects. In so doing, the tool (1) started collecting new metrics

as soon as a new file 𝐹𝑖 was added to a repository, (2) updated

the metrics of 𝐹𝑖 whenever a commit modified it, (3) kept track

of possible file renaming by relying on the Git internal rename

heuristic and subsequently updating the name of 𝐹𝑖 , and (4) removed

𝐹𝑖 in the case it was permanently deleted. We made the updated

tool publicly available in our online appendix
3
.

2.4 Setting the Anomaly Detection Models
Once we had collected the dataset, we proceeded with the definition

of the anomaly detection methods. In the context of our study,

we focused on three models such as OneClassSVM, IsolationForest,
and LocalOutlierFactor. The reason behind the selection of these

methods was twofold. On the one hand, each of them is based on a

different class of algorithms, hence allowing us to provide a wider

overview of how anomaly detection can be applied to the problem

of fine-grained just-in-time defect prediction. On the other hand,

these methods are among the most stable and reliable ones [13],

other than being commonly used in multiple environments [3],

including software maintenance and evolution [2, 58].

Particularly, the three methods are defined as follows:

OneClassSVM (OCSVM) [78]. This method is based on Support

Vector Machine. Similarly, it learns a frontier which delimits the
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initial observations. Any future observation will either lay in the

frontier, therefore belonging to the same class as the original data

(normal) or it will fall outside the frontier, being therefore classified

as new, anomalous data. Unfortunately, OneClassSVM is prone

to overfitting and, perhaps more importantly, the tuning of its

hyperparameters can be challenging [13].

IsolationForest (IF) [48]. This is an ensemble technique based
on the Extremely Randomized Tree model. In particular, it randomly

selects a feature and randomly selects a split value between the

maximum and minimum of the selected feature. The number of

splitting required to isolate a sample equals the path length from the

root to the final node of a tree. Since random partitioning produces

noticeably shorter paths for anomalies, when a forest of random

trees produces shorter path for particular samples, these are highly

likely to be anomalies. By design, this method can handle high-

dimensional data [13].

LocalOutlierFactor (LOF) [10].This computes the local density

of a given sample compared to its neighbors. The LOF density of

an observation is given by the ratio of the average local density

of its k-nearest neighbors, and its own local density. If the density

is different than that their neighbors, it means that the sample

analysed is an anomaly, else it is considered to be normal.

The anomaly detection methods were individually fed with the

information collected on the subject systems. Hence, each method

took as input a NxM dataset containing 193,800 rows (N ) and 24

columns(M)—the rows reported all the files involved in all the 61,081

commits taken into account, while the columns the values of the

24 metrics considered in the study.

The target variable was set according to the outcome of the

SZZ algorithm previously run. Hence, this was a binary variable in

the set {“0”, “1”}, where “0” indicates that a file was non-defective,

“1” otherwise. It is worth remarking that the anomaly detection

methods are unsupervised learning mechanisms and, as such, use

the target variable only in the evaluation phase, i.e., only to assess

how good they are in terms of classification performance.

The models were implemented using the scikit-learn library.2

When setting their hyperparameters, we followed recent guide-

lines [83]: for IsolationForest, we used 100 trees as weak classifiers;

for OCSVM we used the default parameters from the library; for

LOF we used 20 as the number of neighbors parameter. The mod-

els were run on a server with an AMD Ryzen Threadripper PRO

3975WX with 32 cores and 252GB of RAM.

2.5 Setting the Machine Learning Models
To perform a fair comparison, we selected three machine learning

techniques based on the same underlying algorithms used by the

employed anomaly detection methods: we relied on Support Vector
Machine, Extremely Randomized Trees, and KNearestNeighbour. By
considering the supervised learning versions of the anomaly detec-

tion methods selected we were able to more precisely quantify the

improvement (if any) given by anomaly detection to the problem

of fine-grained just-in-time defect prediction. In a nutshell, these

supervised learning algorithms can be described as follows:

Support Vector Machine (SVM) [16]. This statistical learner
constructs the best hyper-plane out of the infinite possibilities, in a

2
The scikit-learn library: https://scikit-learn.org/0.17/index.html.

N-dimensional space (with N being the number of features) which

can distinctly separate the data points. The best hyper-plane is the

one having the maximum margin, which is the largest distance to

the nearest training data points of any class).

Extremely Randomized Trees (ExtraTrees) [25]. It is based
on Random Forest [9], but it adds another level of randomization.

In particular, beside generating each weak classifier by randomly

choosing a subsets of the features in the dataset, an ExtraTreesmodel

randomizes also the way each node is split. In fact, instead of using

the Gini impurity or the Information Gain to find the optimal cut-

off for each node, this process is randomized. Hence, the ExtraTrees
model is less computationally expensive than Random Forest, while
retaining a higher generalization capability compared to the single

decision trees.

KNearestNeighbour (KNN) [89]. This non-parametric model

does not learn a generalized representation of the data, but rather

computes the classification for each sample in the dataset. The

classification is made as a majority vote: each sample is classified

based on the class of the majority of its k nearest neighbours.

The machine learning classifiers used the same data as the one

used for the anomaly detectors. In this case the binary variable

representing the defectiveness of files within commits was used

also during the training phase. The models were implemented using

the scikit-learn library and run on the same server infrastructure.

Their hyperparameters were tuned as the anomaly detection ones

to ensure a fair comparison: for the ExtraTrees model we used 100

trees as weak classifiers; for SVM we used the default parameters

from the library; for KNN we used 20 as the number of neighbors.

2.6 Data Analysis
After devising the objects of our empirical study, we defined the

data analysis procedures to address our research question.

While assessing the performance of anomaly detection meth-

ods for fine-grained just-in-time defect prediction as well as their

comparison with baseline machine learning models, we required to

define a proper validation strategy. In this respect, we opted for a

Leave One Group Out (LOGO) validation. As the name suggests,

this validation method trains𝑛models, with𝑛 the number of groups

(projects in our case) in the data. For each fold, 𝑛−1 groups are used
for training, and 1 for testing. For this work, we used 31 projects at

the time as training set and 1 project as test set. This process was

repeated 32 times, so that all the projects in the dataset were in the

test set exactly once. It is important to highlight that doing this, the

commit of a project cannot be split between train and test set. This

constraint avoided possible bias due to the time-sensitive nature of

code commits: in other words, we enforced the validation strategy

to simulate a realistic use case scenario where we cannot predict

the existence of defective files in a project by using information

that might be connected to events that happened earlier in time.

We further discuss this choice in Section 5.

More in general, the selection of the LOGO validation strategy

was based on two observations. With respect to other strategies

(e.g., Out-of-sample bootstrap validation), it is among the easiest to

interpret [45], hence perfectly fitting the goal of our exploratory

analysis: indeed, we aimed at establishing the feasibility of using

anomaly detection for the problem of just-in-time defect prediction

https://scikit-learn.org/0.17/index.html
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and the adoption of this validation strategy allowed us to better

understand its strengths and weaknesses. In the second place, the

LOGO validation represents a good compromise between the bias

and variance of estimates of defect prediction models [80], thus

further strengthening its suitability for our case.

For each fold experimented during the validation, we assessed

the capabilities of both anomaly detection and machine learning

methods using a number of accuracy metrics. First, we computed

precision and recall. However, as suggested by Powers [67], these

two measures present some biases as they are mainly focused on

positive examples and predictions and do not capture any infor-

mation about the rates and kind of errors made. The contingency

matrix (a.k.a. confusion matrix), and the related F-Measure over-

come this issue. Moreover, we computed the Matthews Correlation

Coefficient (MCC) to understand possible disagreement between

actual values and predictions—the coefficient involves all the four

quadrants of the contingency matrix. In addition, from the contin-

gency matrix we retrieved the measure of true negative rate (TNR),
which measures the percentage of negative sample correctly cat-

egorized as negative, false positive rate (FPR) which measures the

percentage of negative sample misclassified as positive, and false
negative rate (FNR), measuring the percentage of positive samples

misclassified as negative. The measure of true positive rate is left
out as equivalent to the recall.

Finally, we computed the Receiver Operating Characteristics

(ROC), and the related Area Under the Receiver Operating Charac-

teristic Curve (AUC). This gave us the probability that a classifier

will rank a randomly chosen positive instance higher than a ran-

domly chosen negative one. In Section 3, we present and discuss

the results using boxplots reporting the distribution of the accuracy

metrics computed over the validated folds.

2.7 Verifiability and Replicability
To enable full verifiability and replicability, we made available in

our online appendix
3
the complete raw data.

3 EMPIRICAL STUDY RESULTS
Table 1 shows descriptive statistics of the considered systems. As

inferred, each commit contained an average of 2.95 files, and 1.01

turned out to be defective—this translates to 34%, overall.

In the context of our research question, we aimed at assessing

the performance of anomaly detection methods for fine-grained

just-in-time defect prediction when compared to the one of tra-

ditional machine learning approaches. Figures 2 and 3 depict box

plots reporting the distribution of AUC-ROC and F-Measure val-

ues obtained by the experimented techniques over the considered

dataset, respectively. In both figures, the first three box plots refer

to the machine learning approaches, while the last three to the

anomaly detection ones. Note that for the sake of space limitation,

we only report these two performance metrics, while the full results

are included in our replication package.

Looking at the results, we could first observe that the anomaly de-

tection methods, i.e., IF, OSCVM, and LOF have a similar AUC-ROC,

with values around 0.5. This indicates an overall low ability of these

methods to distinguish between defective and non-defective files.

3
https://figshare.com/s/1459e02ef92c01d1a6b1
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Figure 3: F-measure comparison comparison among anomaly
detection and supervised learning models for the filtered
dataset

The machine learning models, i.e., ExtraTrees, SVM, and KNN,

were instead generally more performing. This is particularly true

when considering ExtraTrees: this is the classifier that reached

the best AUC-ROC values (median=0.71). The only exception con-

cerned the performance of SVM, which were notably lower with

respect to all other experimented methods.

On the one hand, our findings confirm that the choice of classi-

fiers can significantly influence the performance of defect prediction

models [19, 82]: with respect to previous work, we show that this

is true also in the case of fine-grained just-in-time defect predic-

tion. On the other hand, the relatively low values achieved by the

experimented anomaly detection methods seem to highlight a neg-

ative result: these are not only unable to provide benefits in terms

of AUC-ROC, but also have significantly lower performance with

respect to traditional machine learning models. This was confirmed

by the statistical tests we performed. In particular, we run theMann-

Whitney and Cliff’s 𝑑 tests to compare the mean of the distributions

of AUC-ROC values and discovered that all the anomaly detection

methods perform statistically worse than ExtraTrees and KNN,

with large effect sizes.

https://figshare.com/s/1459e02ef92c01d1a6b1
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Table 1: Defect-inducing files distribution

Files Files Files DefectedProject #Commits (tot) (max) (average) # average %

accumulo 5,236 16,240 21 3.10 7,748 1.48 48%

ambari 5,887 25,750 21 4.37 9,427 1.60 37%

atlas 1,623 6,761 21 4.17 3,175 1.96 47%

aurora 1,831 8,786 21 4.80 4,293 2.35 49%

batik 2,144 7,885 21 3.68 2,920 1.36 37%

cocoon 6,063 17,391 21 2.87 5,386 0.89 31%

commons-bcel 1,059 2,853 21 2.69 521 0.49 18%

commons-beanutils 787 2,043 20 2.60 694 0.88 34%

commons-cli 479 1,205 21 2.52 454 0.95 38%

commons-codec 1,276 2,749 20 2.15 639 0.50 23%

commons-collections 2,410 7,308 21 3.03 1,974 0.82 27%

commons-configuration 2,171 5,145 21 2.37 1,727 0.80 34%

commons-daemon 114 280 16 2.46 45 0.39 16%

commons-dbcp 1,381 3,341 21 2.42 1,436 1.04 43%

commons-dbutils 314 753 19 2.40 114 0.36 15%

commons-digester 1,307 2,631 21 2.01 571 0.44 22%

commons-exec 295 712 20 2.41 290 0.98 41%

commons-fileupload 481 1,018 18 2.12 282 0.59 28%

commons-io 1,836 4,024 21 2.19 1,220 0.66 30%

commons-jelly 916 3,052 21 3.33 837 0.91 27%

commons-jexl 1,051 2,837 21 2.70 1,201 1.14 42%

commons-jxpath 363 1,142 21 3.15 403 1.11 35%

commons-net 1,494 3267 20 2.19 687 0.46 21%

commons-ognl 418 755 21 1.81 247 0.59 33%

commons-validator 806 1,729 19 2.15 540 0.67 31%

commons-vfs 1,634 4,310 21 2.64 1,740 1.06 40%

felix 8,462 24,220 21 2.86 9,658 1.14 40%

httpcomponents-client 2,419 8,559 21 3.54 2,560 1.06 30%

httpcomponents-core 2,658 10,648 21 4.01 3,365 1.27 32%

mina-sshd 1,399 6,400 21 4.57 1,914 1.37 30%

santuario-java 1,485 5,171 21 3.48 2,177 1.47 42%

zookeeper 1,282 4,835 21 3.77 2,140 1.67 44%

Overall 61,081 193,800 - 2.95 70,385 1.01 -

A different discussion can be delineated when considering the

F-Measure. Indeed, here we observed a much balanced situation

where the anomaly detection methods have comparable results

with respect to the baselines. In addition, the LOF method has a

slightly higher median F-Measure than all the other experimented

models. This metric measures the harmonic mean of precision and

recall and provides a clearer indication of the true positive defective

files that the techniques can detect. Based on the results achieved,

it seems that LOF improves on the baselines and might find more

defects. TheMann-Whitney test, however, did not reveal a statistical

significance in the differences observed.

More in general, we observed that the F-Measure values are

pretty low for all the approaches, as all of them do not go beyond a

median 0.5. This indicates that the problem of identifying defective

files within commits is still far from being solved. The other met-

rics considered—included in our online appendix—revealed similar

results, with the anomaly detection methods better in some of them

and worst in others.

By summing all up, we could conclude that anomaly detection

methods behave similarly, if not worse, than traditional machine

learning approaches. As such, we could not confirm the promising

preliminary results achieved by researchers that applied anom-

aly detection to higher-level defect prediction problems [1, 74].

Nonetheless, this might be explained by the peculiarities of the

dataset considered. As already noticed, there exist some variability

in terms of defects: it is reasonable to believe that this variability

may lead anomaly detection to work better on certain projects,

i.e., those characterized by a significantly lower amount of defects,

and worse in others, those having a high number of defective files.

These observations are investigated in Section 4, in an effort of

making further sense of the results achieved as well as a potential

orthogonality between anomaly detection and machine learning

models that might pave the way for novel, context-dependent tech-

niques that may recommend which technique should be used based

on the project to analyze.

Main results

When evaluating anomaly detection methods over the entire

dataset, we observed that these perform similarly, if not worse

than the baseline machine learners.

4 DISCUSSION AND FURTHER ANALYSES
While the results achieved on the full dataset revealed that anomaly

detection methods rarely outperform the traditional approaches

based on machine learning algorithms, it is worth combining these

findings with the data on the distribution of defective files within

commits. By definition, anomaly detectors are supposed to give

their best in cases where a few amount of data follows anomalous

patterns that strongly differ from a general, regular trend observable

in a dataset. Given these characteristics, our results do not really

come as a surprise: in a real-case scenario, there exist projects

having different levels of defectiveness and, thus, it is reasonable
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Figure 4: AUC-ROC comparison among anomaly detection
and supervised learning models on the filtered datasets.

to believe that anomaly detection methods might work well when

considering projects with a low defectiveness, suffering instead in

the opposite case. Our empirical study depicts a typical scenario

observable in the wild: some projects reach up to 49% of defective

files during their change history, others have instead a notably

lower defectiveness, i.e., 15% in the extreme case.

To investigate the above mentioned conjecture and further un-

derstand the capabilities of anomaly detection for fine-grained

just-in-time defect prediction, we conducted an additional analy-

sis aiming at assessing its performance when considering datasets

of various levels of defectiveness. Specifically, we re-executed the

methodology, but this time on two smaller datasets: (1) the first

composed of the three projects having the lowest percentage of

defective files, i.e., commonds-dbutils, commons-daemon, and

commons-bcel; (2) the second composed of the three projects with

the highest amount of defective files, i.e., aurora, accumulo, and

atlas. In this way, we could actually consider two extreme cases

and verify if the performance of anomaly detection are higher than

the baselines in the first case and lower in the second.

In both cases, the LOGO validation was performed so that two

projects formed the training set and the remaining one the test

set—as previously done, the validation was repeated three times to

have each project in the test set exactly once.

The performance were assessed using the same indicators as our

research question. Figures 4 and 5 depict the results: to ease their

interpretability, the figures report the box plots of the AUC-ROC

and F-Measure values, respectively, related to the performance of

anomaly detection methods and machine learning models on (1)

the dataset only composed of projects with low defectiveness; (2)

the dataset only composed of projects with high defectiveness; and

(3) the full dataset, i.e., the results presented in Section 3.

The additional analysis confirmed our intuition. The anomaly

detection methods experimented, and in particular LOF, overcome

the baseline machine learning models when considering the low-

defectiveness dataset. In terms of F-Measure, the differences are

pretty evident (up to 23%) as also confirmed by the statistical tests

that reported them to be statistically significant with a large effect
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Figure 5: F-Measure comparison among anomaly detection
and supervised learning models on the filtered datasets.

size. Interestingly, also the performance of the ExtraTrees learner—

which was the best on the full dataset—decreased significantly,

showing its limitations when dealing with unbalanced data.

To make a more practical sense to the discussion, we also com-

puted the cumulative number of absolute defects identified by the

various techniques over the two smaller datasets—the full results

are available in our online appendix. We could observe that the

number of actual defects identified by the anomaly detection tech-

niques increases with the hardness of finding those defects, i.e.,

with the decrease of the total number of defects. For instance, LOF

was able to identify 521 defects more than ExtraTrees on the

low-defectiveness dataset.

On the contrary, the machine learning models are confirmed

to be generally better on the high-defectiveness dataset. This is

particularly relevant when it turns to the assessment of the AUC-

ROC, where the ExtraTrees model is significantly better than all

other baselines. Also in this case we observed a balanced situa-

tion in terms of F-Measure, with LOF producing the best results,

even though the differences with the baselines were not statis-

tically significant. All in all, these findings allow us to report a

complementarity between anomaly detection and machine learn-

ing approaches that would be worth investigating further in the

future. We believe that improvements in the field of fine-grained

just-in-time defect prediction might be reached by means of combi-

nations of multiple approaches: while some previous work focused

on ensemble machine learning [19, 85], our findings suggest that ad-

ditional, potential enhancements may revolve around the definition

of context-dependent ensembles of supervised and unsupervised

learning mechanisms like machine learning and anomaly detection.

Take-away message: There is a complementarity between

anomaly detection and machine learning techniques. Such a

complementarity might be potentially exploited to devise novel,

context-dependent fine-grained just-in-time defect predictors.
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5 THREATS TO VALIDITY
Construct Validity. Threats in this category might have been

connected to the dataset exploited as well as the measurements per-

formed to compute the additional data required. We first based our

investigation on the Technical Debt Dataset [44]: while most of the

systems come from the Apache Software Foundation ecosystem,

these were selected using well-established guidelines that ensured

representativeness [54]. In our work, we also additionally verified

the suitability of the dataset by conducting manual analysis.

As for the set of factors employed to characterize files committed

during the history of the considered projects, wewere not interested

in establishing new indicators: as such, we relied on a set of metrics

that were previously used in the context of fine-grained just-in-time

defect prediction [60]. To label defective files, instead, we adopted

the SZZ algorithm [34]. We are aware that our results might have

been affected by the erroneous identification, since the algorithm

performance has been criticized in the last years [75]. Nonetheless,

we adopted some precautions to mitigate the risk of false positives,

e.g., we ignored non-source files belonging to defect-fixing commits.

Furthermore, we employed the original version of the algorithms

based on the recommendations recently provided [76].

Internal Validity. In our empirical study, we selected and exper-

imented with a number of anomaly detection and machine learning

models in an effort of better understanding their strengths and

weaknesses. Of course, the setting up of those approaches might

have biased our results. In so doing, we followed a well-established

process through which we addressed possible issues due to multi-

collinearity and missing hyper-parameter configuration. We recog-

nize, however, that other statistical or machine learning techniques

might have yielded similar or even better performance. A larger

analysis is part of our future research agenda.

Conclusion Validity. When interpreting the results of the dif-

ferent techniques experimented, we computed a number of evalua-

tion metrics that could provide us with a broad overview of their

performance. Perhaps more importantly, we considered the time-

sensitivity of code commits and, for this reason, adopted the Leave

One Group Out (LOGO) validation strategy. Its usage allowed us

not to split commits coming from the same system over training

and test sets. We are aware that different results might have been

obtained if different validation strategies would have been imple-

mented: in this sense, replications of our study would be desirable

to increase the scientific understanding of anomaly detection for

fine-grained just-in-time defect prediction.

External Validity. Our study analyzed a large number of open-

source projects. While the large-scale nature of the study mitigated

potential threats to the generalizability of the results, we still rec-

ognize that different results could be obtained on systems written

in different programming languages and following different quality

assurance mechanisms. To stimulate researchers to replicate our

study in different contexts, we made publicly available all scripts

and datasets used in our empirical investigation on the matter.

6 RELATEDWORK
Software defect prediction is one of the most active research areas

in software engineering. Researchers focused on several aspects,

from the detection at change- or component-level until a lower

granularity such as method or file [7, 40, 51, 68]. Many studies pro-

posed different approaches for defect prediction. The most adopted

approaches are based on supervised [26, 28, 35] and unsupervised

models [23, 47]. These models consider features such as product

(e.g., CK metrics [14]) or process features (e.g., entropy of the de-

velopment process [29]). For a full overview of defect prediction

research, the reader may refer to recent literature reviews [28, 46].

Only two papers approached defects as anomalies, applying

anomaly detection techniques to predict them: these were based on

univariate andmultivariate Gaussian distribution [55] or supervised

anomaly detection model [2].

Just-in-time defect prediction refers to a class of techniques that

can anticipate the identification of defects at commit-time [22, 38,

86], rather than predicting defects using a long-term approach

that, instead, shows prediction results at release-time [28, 84]. In

the recent past, researchers pushed for a shorter-term analysis

of defects since this better fits the developers’ needs [62]: indeed,

these models allow developers to promptly react when changes

are still fresh in their minds [87]. For example, Mockus and Weiss

[52] experimented with a preliminary model able to predict failure

probabilities at commit-level: taking the properties of the change

done by a developer as input, the model reported prompt feedback

that made developers more able to operate on the code [52]. Later

on, Madeyski and Kawalerowicz [49] elaborated on continuous de-
fect prediction, developing a public dataset containing tools for

experimenting with defect prediction techniques.

To better characterize the prediction problem, researchers such

as Sliwerski et al. [34], Eyolfson et al. [21], and Rahman and De-

vanbu [69] investigated the common causes that conceal behind a

defective change. They all concluded by reporting correlations be-

tween the developer’s experience and the defectiveness of changes.

However, also other factors may come into play: Sliwerski et al. [34]

and Rosen et al. [77] confirmed that commit size affects the defec-

tiveness of changes, i.e., large commits that involve several files

are more prone to be defective. Moreover, defective changes are

characterized by higher entropy than non-defective ones [73].

To enlarge the body of knowledge on the properties charac-

terizing defective changes, researchers searched for several other

software properties, like structural [5, 14], historical [20, 27], and

alternative [8, 59, 61] metrics. Despite the variety of the investi-

gated software properties, the two top promising categories are still

product and process metrics, as confirmed by Pascarella et al. [61].

Significant milestones for just-in-time defect prediction are rep-

resented by the works made by Kamei et al. [37, 38]. They proposed

a just-in-time prediction model to predict whether or not a change

will lead to a defect with the aim of reducing developers and review-

ers’ effort. In particular, they applied logistic regression considering

different change measures such as diffusion, size, and purpose, ob-

taining an average accuracy of 68% and an average recall of 64%.

More recently, Pascarella et al. [60] complemented their results

considering the attributes necessary to filter only those files that

are defect-prone. The reduced granularity is justified by the fact

that 42% of defective commits are partially defective, i.e., composed

of both files that are changed without introducing defects and files

that are changed introducing defects. Furthermore, in almost 43%

of the changed files a defect is introduced, while the remaining files

are defect-free. Our work can be complementary with respect to
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the papers on just-in-time defect prediction and its fine-grained

version, as it aims at assessing how well can anomaly detection

methods be used to identify defective files within commits.

As a final note, it is worth remarking that, despite other studies

showed promising results in applying alternative techniques, such

as cached history [72], deep learning [86], and textual analysis [61],

they are not in our main focus. With this study we aim to evaluate

the effectiveness of using anomaly detection as a defect prediction

tool rather than improve current defect prediction techniques.

7 CONCLUSION
In this paper, we proposed an investigation into the capabilities of

anomaly detection methods for fine-grained just-in-time defect pre-

diction. We analyzed 32 open-source projects with a total amount

of 61,081 commits that contain 70,385 defective files resulting in

36% of defectiveness, overall.

While the results achieved showed that anomaly detection per-

formed similarly to machine learning models, we observed that

the level of defectiveness of projects might influence the capabil-

ities of anomaly detection methods. After a deeper investigation,

we found a complementarity between anomaly detection and ma-

chine learning techniques that might be further exploited to create

context-dependent predictors.

Our future research agenda includes a larger-scale replication

of the study but, more importantly, the investigation on intelligent

approaches that can exploit contextual information to select the

technique to use for predicting defects in a project. Finally, we

aim at conducting an in-vivo replication to assess our preliminary

results based on developer’s feedback.
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