
A Preliminary Study on the Assignment of GitHub Issues to Issue
Commenters and the Relationship with Social Smells
Haris Mumtaz

University of Auckland, New Zealand
hmum126@aucklanduni.ac.nz

Carlos Paradis
University of Hawaii, USA

cvas@hawaii.edu

Fabio Palomba
University of Salerno, Italy

fpalomba@unisa.it

Damian A. Tamburri
JADS, Netherlands
d.a.tamburri@tue.nl

Rick Kazman
University of Hawaii, USA

kazman@hawaii.edu

Kelly Blincoe
University of Auckland, New Zealand

k.blincoe@auckland.ac.nz

ABSTRACT
Background: GitHub is the world’s largest software hosting plat-
form. Its features affect millions of developers. Investigating the
impact of GitHub features on software teams is essential to gain
insights into features’ usefulness.

Objective: As a preliminary step in this direction, this paper
explores the relationship between the use of one GitHub feature
and the social structure of the projects that adopt the feature. We
explore whether the feature is used and whether the feature is
associated with positive or negative changes in the team’s social
structure.

Method: In this paper, we report on a preliminary study of 13
projects that used the GitHub “assign issues to issue commenters”
feature. We examine the social smells in the software teams before
and after the introduction of this new feature using statistical and
temporal analysis.

Results:Our results indicate that the usage of this feature varied
across the analyzed projects. We also find that social smells that
reflect low or missing communications (Organizational Silo and
Missing Links) decrease in most of the projects that used the feature
consistently.

Conclusion: The results suggest that the social structure of the
teams has a positive relationship with the feature adoption. Still,
future research should study the feature’s impact (and its use cases)
on other aspects and over longer time periods to learn its diverse
and long-term benefits on the social structure of software projects.

CCS CONCEPTS
• Software and its engineering→ Programming teams.

KEYWORDS
Socio-Technical Analysis; Social Smells; Community Smells; Open-
Source Development; GitHub Features.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHASE’22 , May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9342-3/22/05. . . $15.00
https://doi.org/10.1145/3528579.3529181

ACM Reference Format:
Haris Mumtaz, Carlos Paradis, Fabio Palomba, Damian A. Tamburri, Rick
Kazman, and Kelly Blincoe. 2022. A Preliminary Study on the Assignment
of GitHub Issues to Issue Commenters and the Relationship with Social
Smells. In 15th International Conference on Cooperative and Human Aspects
of Software Engineering (CHASE’22), May 21–29, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3528579.3529181

1 INTRODUCTION
Code hosting platforms are an instinctive choice for a software
community to enable communicative and collaborative develop-
ment environment. GitHub is the world’s largest and most popular
software hosting platform. Its features affect millions of developers.
However, how does GitHub go about choosing which features to
offer? And how can a project assess whether they should adopt any
given feature? This paper explores the relationship of one GitHub
feature, “assign issues to issue commenters1", with the social struc-
ture of the teams that use the feature. The rationale for choosing
this GitHub feature is that it aims to bring new contributors to the
project to assist the existing project team to develop a successful
product. To understand the relationship between the feature and
the teams social structure, we analyze the social smells in such
teams. Social smells are sub-optimal patterns in the social and or-
ganizational structure of software teams [12]. Such sub-optimal
patterns, if not removed, can lead to social debt resulting in soft-
ware teams working inefficiently [11]. We measured social smells
for one year before and after the introduction of the GitHub feature
under analysis. This analytic lens allows us to take a socio-technical
perspective, answering questions such as: is the feature used and is
the use of the feature associated with positive or negative changes
in the dynamics of a software team.

We structured our investigation around two research questions:
RQ1. Did the software community adopt the GitHub feature after its
initial usage?

RQ2. What is the relationship between the use of the GitHub feature
and the socio-technical aspects of the software projects?
Our results indicate that the level of adoption of this particu-

lar feature varied across the projects in our dataset, with some
projects using it only rarely and others using it on many of their
issue assignments. For those that used it consistently, we see that
two of the three social smells that we analyzed (Organizational
Silo and Missing Links) are lower after the adoption of the GitHub
feature. Both of these smells indicate missing communication in
1https://github.blog/changelog/2019-06-25-assign-issues-to-issue-commenters/

https://doi.org/10.1145/3528579.3529181
https://doi.org/10.1145/3528579.3529181

CHASE’22 , May 21–29, 2022, Pittsburgh, PA, USA Author et al.

the teams. This suggests that the feature might bring social benefits
to the projects. However, we have examined only a small number
of projects over a relatively short time period because the feature
was only recently introduced.

We also notice that different projects adopt the feature in dif-
ferent ways, and thus, will experience different types of benefits.
We encourage future research to more systematically study a wide
range of GitHub features, and over longer time periods. For the
software community to make the best use of the features (and to
know which features to avoid), a better understanding is needed
on the benefits that are derived from the ways each feature can
be adopted. Both technical and social benefits should be examined,
and investigated over the long term.

2 DATA DESCRIPTION AND ANALYSIS
This section describes our dataset, data collection process, and the
methods employed to address our RQs.

2.1 Data Description
Dataset:We randomly select 13Apache projects inspired by Palomba
et al. [6], which emphasized selecting projects with sufficient con-
tributors and development activity. In this study, all the projects
use the feature under study at least once, and they have consider-
able developer involvement, commit activity, and longevity, making
them suitable for studying their social structures. The project de-
mographic data is presented in Table 1.

Social smells: To examine the relationships between the feature
adoption and the socio-technical aspects of the software projects,
we need measures that explain the socio-technical behavior in
software teams. Since social smells measure sub-optimal socio-
technical patterns [12], we investigate the three social smells in
relation to the GitHub feature under analysis. The descriptions of
social smells employed in this study are as follows:

(1) Organizational Silo: This smell occurs when there are highly
decoupled development tasks involving isolated sub-groups
of developers, causing a lack of communication in the com-
munity [11].

(2) Missing Links: This smell occurs when contributors make
changes in the source code in isolation without any commu-
nication between their peers [11].

(3) Radio Silence: This smell occurs when all the interactions
between the sub-communities happen through one or two
team members [11].

The rationale for choosing these social smells is because they
capture the sub-optimal patterns in the communication of the devel-
opers and the GitHub feature under investigation aims to introduce
new contributors to the projects who might aid in lessening these
sub-optimal communication patterns.

Data collection: The data collection process was divided into
two phases. First, we collected the issue events that were assigned to
the commenters of the issues for the analyzed projects. The second
phase collected communication data to compute the projects’ social
smells. The data collection steps for identifying the issues assigned
to issue commenters (GitHub feature) are:

• Collect project’s issues using GitHub’s issue events API2;
• Fetch project’s commits using GitHub’s list commits API3;
• Identify the contributors with no merge access by filtering
issue assignees who are non-committers, indicating that the
issues are assigned using the feature;

• Validate the obtained list of contributors (non-committers)
using the committer information provided on the project’s
official webpage and the Apache Committers Directory4.

The steps for computing the social smells are:
• Manually select the branches of the analyzed projects that
overlap with the period of feature usage (i.e., pre-feature and
post-feature);

• Collect communication data from Apache mailing lists, Jira,
and GitHub using Kaiaulu5 [8];

• Compute social smells for the selected branches of the projects
using Kaiaulu.

The computed social smells and configuration files (for replica-
tion purpose) are provided in the supplementary material6.

2.2 Analysis Methods
Method for RQ1 (feature adoption): We calculate the ratio of
issue assignments using the feature to total issue assignments as
a metric to show the extent to which projects have adopted the
feature. The issue assignments made through the feature are com-
puted for each quarter of the post-feature time period (i.e., one
year) to reveal the changes over time in the frequency of feature
usage. If issue assignments made using the feature occur in each
quarter of the post-feature period, it is an indication that the project
community finds the feature useful and has adopted it.
Methods for RQ2 (socio-technical relationships):We perform
t-tests and temporal analysis to examine the relationship between
the use of the GitHub feature and social smells. The t-test shows
whether a statistically significant difference is observed in the so-
cial smells, pre-feature versus post-feature. The temporal analysis
shows the behavior of social smells over time and explains whether
the project team’s dynamics change (improve or worsen) after fea-
ture adoption. The temporal analysis is performed by creating line
plots for the pre- and post-feature time periods. A decline in the
trend lines of the plots indicate that the social smells are decreasing
(i.e., the social structure of the software teams has improved).

In our analysis, we only include those projects that used the
feature consistently (at least three of the four quarters in the post-
feature time period, based on the results of RQ1). Table 2 annotates
the projects used for answering RQ2.

3 RESULTS ANALYSIS
3.1 Adoption of feature (RQ1)
We found that level of feature adoption variedwidely across projects.
6 out of the 13 analyzed projects used it very sparsely, while the

2https://docs.github.com/en/rest/reference/issues#events
3https://docs.github.com/en/rest/reference/repos#commits
4https://home.apache.org/phonebook.html
5https://github.com/sailuh/kaiaulu/; For reproducibility, we used commit hash version:
44cebf8409d1403158a6f7e11f76c16d7662b1c3.
6https://figshare.com/s/a2e2aeec9f83e83dbaab

A Preliminary Study on the Assignment of GitHub Issues to Issue Commenters and the Relationship with Social Smells CHASE’22 , May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Characteristics of the Apache projects analyzed in our paper.

Communication channels

Project #Commits #Devs #Branches #Included branches Mailing list Jira GitHub Feature start

Fineract 6,275 158 5 3 ✓ ✓ ✓ 16–07–2020
Camel-quarkus 3,189 57 31 14 ✓ ✓ ✓ 26–02–2020
Geode 10,583 133 14 10 ✓ ✓ — 06–12–2018
HBase 18,767 360 78 16 ✓ ✓ ✓ 27–04–2020
Ratis 1,191 51 11 3 ✓ ✓ ✓ 20–10–2020
ShardingSphere 30,248 287 5 4 ✓ — ✓ 15–05–2020
SkyWalking 6,762 380 15 2 ✓ — ✓ 18–06–2019
Ambari 24,588 134 63 8 ✓ ✓ ✓ 31–01–2018
Bookkeeper 2,517 120 19 11 ✓ ✓ ✓ 28–06–2017
CloudStack 34,572 342 195 3 ✓ ✓ ✓ 21–10–2020
Drill 4,047 170 30 3 ✓ ✓ ✓ 05–01–2019
Helix 4,110 38 41 7 ✓ ✓ ✓ 17–01–2020
Hive 15,742 288 42 2 ✓ ✓ ✓ 24–08–2020

Table 2: Issue assignments after feature adoption

Issue assignments using feature Total assignments Percentage

Project Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Fineract 1 — — — 23 12 1 — 4.34 — — —
Camel-quarkus† 7 4 13 6 337 94 113 60 2.07 4.25 11.5 10
Geode 1 — — — 11 8 4 2 9.09 — — —
HBase† 11 4 — 14 136 71 37 67 8.08 5.63 — 20.89
Ratis 1 — — — 16 — — — 6.25 — — —
ShardingSphere† 24 60 36 57 250 229 176 134 9.6 26.2 20.45 42.53
SkyWalking† 10 22 28 24 103 127 109 76 9.7 17.32 25.68 31.57
Ambari† 44 47 53 2 790 646 524 190 5.56 7.27 10.11 1.05
Bookkeeper† 9 37 44 14 191 303 298 200 4.7 12.21 14.76 7
CloudStack† 21 42 22 1 89 181 120 1 23.59 23.2 18.33 100
Drill 1 1 — — 22 6 3 3 4.54 16.66 — —
Helix 5 — 3 — 49 6 29 2 10.2 — 10.34 —
Hive 3 — 1 — 42 17 24 13 7.14 — 4.16 —
† Project used for addressing RQ2

remaining 7 projects used it more regularly. Table 2 shows the num-
ber and percentage of issue assignments made using the feature
(i.e., where someone is assigned who does not have merge access)
for each of the four quarters after feature adoption. The Sharding-
Sphere project had the highest ratio of issues being assigned to
someone without merge access (over 40% of issues in the fourth
quarter). Similarly, the SkyWalking project showed an escalating
trend. Conversely, projects like Fineract and Geode did not use the
feature after its initial usage.

3.2 Social-Technical Relationships (RQ2)
The t-tests, listed in Table 3, show a significant difference in the
social smells between the pre-feature and post-feature time peri-
ods. In many projects, the temporal analysis (line plots) shows a
decline in the instances of Organizational Silo and Missing Links in
the post-feature period. However, the changes in radio silence are
arbitrary. One potential cause for this could be due to the absence

Table 3: Statistical t-test

Social smell t-test

Organizational Silo 4.08***
Missing Links 3.28**
Radio Silence 2.31*

* p <0.05, ** p <0.01, *** p <0.001

of author names and e-mails for commenters who never made code
changes. However, this limitation does not affect Organizational
Silo andMissing Links as the metrics require, as a pre-condition, the
existence of code changes without corresponding communications.

In the rest of the section, our results are described in terms of
their characteristic patterns. Due to space limitations, we are only

CHASE’22 , May 21–29, 2022, Pittsburgh, PA, USA Author et al.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
0

25

50

75

100

125

150

175
Apache Hbase - Missing Links

Figure 1: Immediate decline pattern of Missing Links. Each
line represents a branch in the project.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Apache Skywalking - Organizational Silo

Figure 2: Dilatory decline pattern of Organizational Silo.

describing the frequently occurring patterns. Though, given the
small sample size, these patterns need further validation.

Immediate decline pattern: The social smell immediately de-
creases after the feature is adopted. For instance, the line plot of
Missing Links in Figure 1 shows the decline in the smell instantly
after the feature usage7. We find that the immediate decline pattern
occurs frequently in Organizational Silo and Missing Links.

Dilatory decline pattern: The social smell decreases after fea-
ture adoption, but not immediately, e.g., a smell declines after 90
days. Figure 2 is an example of this pattern8, where Organizational
Silo instances did not go down immediately but after the first quar-
ter (90 days), a downward slope is evident. This pattern is observed
in Organizational Silo and Missing Links.

Continuous decline pattern: The social smell is already de-
clining before feature adoption and continues to decline in the
post-feature time period. An instance of this pattern is shown in
Figure 3, where it can be seen that Radio Silence smells are decreas-
ing before the feature introduction and continue to decline after
feature adoption. The continuous decline before the feature intro-
duction could be because of the short release cadence of the project,
pushing the contributors to stay active in their collaboration.

7In this and subsequent figures, the vertical red line splits pre-feature and post-feature
time periods. Q1, Q2, Q3, and Q4 represent the four quarters exactly before and after
the feature adoption date
8In this and subsequent figures, the difference in the branches is negligible, resulting
in the lines overlapping each other.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

60

80

100

120

140

160

180
Apache Ambari - Radio Silence

Figure 3: Continuous decline pattern of Radio Silence.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
80

90

100

110

120

130

Apache Camel-quarkus - Radio Silence

Figure 4: Arbitrary pattern of Radio Silence.

Arbitrary pattern: The social smell increases and decreases
arbitrarily, not following a consistent trend. Figure 4 shows an
instance of this pattern. The arbitrary pattern is mostly observed
in Radio Silence.

4 RELATEDWORK
Several studies have examined the effects of social decay [12] and
architectural decay on project success, such as [10], which looked
at the decline of SourceForge. At the same time, a number of stud-
ies of open-source forges—sometimes even specific case-studies
thereof [2, 5]—and community portals such as GitHub have revealed
the role of technical features over specific project characteristics
(e.g., release readiness [1] or issue lifetimes [4]) but never really nar-
rowing down the potential effects around the adoption of specific
technical features on the long-lived organizational characteristics
of software communities.

Conversely, organizational research has already investigated
complex communities of practice from several perspectives, includ-
ing software—e.g., escalation of commitment [3]—and put forth
models and theories to mediate the nasty effects taking place across
them [7] - this collective knowledge requires further research and
empirical validation from a software engineering perspective.

5 DISCUSSION
This section describes the implications and limitations of this study
and discusses the possible new directions for future work.

A Preliminary Study on the Assignment of GitHub Issues to Issue Commenters and the Relationship with Social Smells CHASE’22 , May 21–29, 2022, Pittsburgh, PA, USA

Implication 1: Long-term analysis of feature adoption is needed.
This study investigated a short time period after feature adoption
because most of the analyzed projects started using the feature
only recently. Despite this short time-frame, we already observed
trends that indicate that a different level of usage of the feature
might be associated with different socio-technical aspects in the
software communities. For instance, in some projects, we found
that the decrease in smells is associated with the frequency of
the feature usage. For example, in Apache SkyWalking, Organiza-
tional Silo instances started declining as feature usage increased
(see Figure 2 and Table 2). This suggests that the social structure
of the project is getting better as more contributors are attached
with the project. While our results need to be further corrobo-
rated, this seems promising. Indeed, our findings suggest possible
long-term effects of feature usage on the social aspects of soft-
ware projects and on project outcome and success measures, e.g.,
bug rates, bug resolution times, feature velocity, community size).
Such long-term analysis can reveal whether and to what extent
any feature is truly useful in the long run.

Implication 2: Features are adopted in different ways and adoption
patterns need further study. Through some initial manual analysis
of issues that employed the feature, we noted that the way the
feature is being used appears to vary across projects. In some
projects, we saw project contributors eliciting volunteers and
assigning the issue to the person who volunteered. In this case,
the feature could add accountability and also increase awareness
of who is working on the issue. In other cases, we saw the issue
assignment was made after the work had already been completed
by someone without merge access. On these projects, this usage
could provide incentive for contributors to receive credit for
their work through this post-hoc assignment. The project may
also utilize the feature to better track who has contributed to
the project. Future research can more deeply study the different
ways the feature is being used and evaluate and quantify the
benefits and impacts that GitHub features bring across different
usage scenarios. Such analysis can help projects decide not only
which feature to adopt, but also how to adopt those features.

Implication 3: Towards a broader study of human aspects of feature
adoption. This preliminary study of one GitHub feature can lay
the foundation for future studies of a wider range of such features.
In addition to examining social smells, future studies can examine
a variety of human and social aspects related to the adoption
of new features. Future studies could examine if and how new
features attract new contributors.We could investigate howmany
new assigned contributors actually contributed to the project
and how many of those new contributors become long-term
members of the team. The types of issues that are assigned to
the new contributors (e.g., documentation, bug fixes, non-trivial
features, or system capabilities) could also be studied. Studying
the diversity of the new contributors could also shed light onto
which features contribute to inclusion on software teams.

Limitations: In addition to the relatively short time-frames that
we considered, a limitation of this study is that we have only ex-
amined a small set of Apache projects. Thus, we see broadening
our scope to additional projects and from other organizations
(with different cultural norms) an important dimension of future
work. Furthermore, there could be other confounding factors

(e.g., COVID-19 pandemic, milestone releases, team membership,
or other project-specific variables) that may explain the causality
in the change of social smells during the studied time-frames.
Future work could apply methods, such as Causal Impact Analy-
sis or statistical methods (e.g., average smell value change over
releases) to assess whether the change in the social health of
the projects is truly due to the Github feature introduction. To
further corroborate our findings, we plan to conduct a survey
with the developers of the analyzed projects to confirm if they
think the improvement in the social dynamics resulted from the
Github feature adoption. The survey can also help obtain insights
on the usefulness and quality aspects of the studied feature (and
other features) from developers’ point of view.

6 CONCLUSION
This is our first study investigating the relationship between the
usage of a GitHub feature and a team’s social structure and health.
We see this research as a prototype for a much broader research
program that could examine the consequences of any feature (or
policy) that affects the social dynamics of a complex team.

Software projects are developed by teams of people and people
are, de-facto, social animals. Most software engineering research
has focused on the technical aspects of a project [9]. The work
presented herein is complementary and, we believe, crucial for
project success. That is, for a large-scale project to be successful
over the long term attention needs to be paid to both technical and
non-technical dimensions.

REFERENCES
[1] S. M. Didar Al Alam, S. M. Shahnewaz, Dietmar Pfahl, and Guenther Ruhe. 2014.

Monitoring Bottlenecks in Achieving Release Readiness: A Retrospective Case
Study Across Ten OSS Projects. In 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. ACM, 60:1–60:4.

[2] D. Germán. 2003. The GNOME Project: A Case Study of Open Source, Global
Software Development. Softw. Process. Improv. Pract. 8, 4 (2003), 201–215.

[3] Mark Keil, Bernard C. Y. Tan, Kwok Kee Wei, Timo Saarinen, Virpi Kristiina
Tuunainen, and Arjen Wassenaar. 2000. A Cross-Cultural Study on Escalation of
Commitment Behavior in Software Projects. MIS Quarterly 24, 2 (2000), 299–325.

[4] R. Kikas, M. Dumas, and D. Pfahl. 2016. Using Dynamic and Contextual Features
to Predict Issue Lifetime in GitHub Projects.. In 13th Working Conference on
Mining Software Repositories. ACM, 291–302.

[5] S. Koch and G. Schneider. 2002. Effort, Co-operation and Co-ordination in an
Open Source Software Project: GNOME. Information Systems Journal 12, 1 (2002),
27–42.

[6] F. Palomba, D. Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaidman, and A. Sere-
brenik. 2021. Beyond Technical Aspects: How Do Community Smells Influence
the Intensity of Code Smells? IEEE Transactions on Software Engineering 47, 1
(2021), 108–129.

[7] G. Pan, S. Pan, M. Newman, and D. Flynn. 2004. Unfreezing-changing-refreezing
of Actors’ Commitment: The Transition from Escalation to De-escalation of
Commitment to Information Technology Projects.. In European Conference on
Information Systems. 1476–1487.

[8] C. Paradis and R. Kazman. 2021. Design Choices in Building an MSR Tool: The
Case of Kaiaulu. In 1st International Workshop on Mining Software Repositories for
Software Architecture.

[9] M-A Storey, N. Ernst, C. Williams, and E. Kalliamvakou. 2020. The Who, What,
How of Software Engineering Research: A Socio-technical Framework. Empirical
Software Engineering 25, 5 (2020), 4097–4129.

[10] D. Tamburri, K. Blincoe, F. Palomba, and R. Kazman. 2020. “The Canary in the
Coal Mine...": A Cautionary Tale from the Decline of SourceForge. Software:
Practice and Experience (2020).

[11] D. Tamburri, P. Kruchten, P. Lago, and H. Van Vliet. 2015. Social Debt in Software
Engineering: Insights from Industry. Journal of Internet Services and Applications
6, 1 (2015), 1–17.

[12] D. Tamburri, F. Palomba, and R. Kazman. 2019. Exploring Community Smells in
Open-Source: An Automated Approach. IEEE Transactions on Software Engineer-
ing (02 2019), 1–1.

	Abstract
	1 Introduction
	2 Data Description and Analysis
	2.1 Data Description
	2.2 Analysis Methods

	3 Results Analysis
	3.1 Adoption of feature (RQ1)
	3.2 Social-Technical Relationships (RQ2)

	4 Related Work
	5 Discussion
	6 Conclusion
	References

