
A Bi-level Evolutionary Approach for the Multi-label Detection of
Smelly Classes

Sofien Boutaib1, Maha Elarbi1, Slim Bechikh1, Fabio Palomba2, Lamjed Ben Said1
1SMART Lab, University of Tunis, ISG, Tunisia

2Software Engineering (SeSa) Lab, University of Salerno, Italy
mohamedsofien.boutaib@isg.u-tunis.tn

ABSTRACT
This paper presents a new evolutionary method and tool called
BMLDS (Bi-level Multi-Label Detection of Smells) that optimizes a
population of classifier chains for the multi-label detection of smells.
As the chain is sensitive to the labels’ (i.e., smell types) order, the
chains induction task is framed as a bi-level optimization problem,
where the upper-level role is to search for the optimal order of each
considered chain while the lower-level one is to generate the chains.
This allows taking into consideration the interactions between
smells in the multi-label detection process. The statistical analysis
of the experimental results reveals the merits of our proposal with
respect to several existing works.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering;Maintaining software.

KEYWORDS
Multi-label detection of smells, classifier chains, labels’ order, bi-
level optimization, evolutionary algorithm.
ACM Reference Format:
Sofien Boutaib1, Maha Elarbi1, Slim Bechikh1, Fabio Palomba2, Lamjed Ben
Said1. 2022. A Bi-level Evolutionary Approach for the Multi-label Detection
of Smelly Classes. In Genetic and Evolutionary Computation Conference
Companion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3520304.3528946

1 INTRODUCTION
A code smell corresponds to an anomaly inherent in the source
code that shows a violation of fundamental design principles such
as hierarchy, abstraction, encapsulation, modifiability, and mod-
ularity. Even if the software engineers are aware of the design
principles, these latter are frequently broken due to inexperience,
time constraint, and intense market competition. The existence of
code smells (or Anti-patterns) impedeS the maintenance process
of the software and may make bugs more likely over time. For
example, some fragments of source code may contain duplicated
methods, a large number of lines of code, long parameter lists, etc.
If the code smell exists in the source code of software, it means that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3528946

some fragments of the source code needs to be refactored, which is
one of the solution for removing code smells.

According to the literature [1], some approaches can only detect
one type of anti-patterns in the source code. Moreover, the code can
be classified as either smelly or non-smelly. Nonetheless, a source
code fragment could be affected by multiple code smell types. To
put it another way, a given code fragment can include more than
one anti-pattern such as feature envy and long method. Based on
this fact, the code smell detection corresponds to the multi-label
classification problem. This latter appears when the instances in a
given dataset could be associated with more than one class label
simultaneously [2, 3]. The main issues to handle the problem of
multi-label classification are the relationships between class labels
as well as the imbalance class labels. A little number of approaches
have been developed to address the problem of multi-label classi-
fication. Moreover, the widespread class imbalance among class
labels has not been thoroughly investigated and all of them failed
to consider the relationships among labels throughout the building
stage. Based on these findings, multi-label code smell detection can
be viewed as a bi-level optimization problem in which the label
ordering should be optimized and then the (near) optimal detec-
tor for multi-label imbalanced data code smell detection should be
determined.

In this paper, we propose our approach named BMLDS (Bi-level
Multi-Label Detection of Smells). The basic idea of our approach
is to evolve the label ordering at the upper level, while optimizing
the lower level population that are classifier chains composed of
ODTs to deal with the problem of imbalanced class labels problem.
We notice that for every upper-level individual that corresponds
to a label ordering, the entire lower-level population is evolved to
discover the corresponding optimal classifier chains (more precisely
code smell detectors).

2 THE PROPOSED APPROACH: BMLDS
In this study, we choose to focus on fifteen code smells/anti-patterns,
which are: Duplicate code, Long method, Large class, Dead Code,
Feature Envy, Long Parameter List, Spaghetti Code, Functional De-
composition, Bad Comments, Bad naming, Brain method, Refused
Parent Bequest, Shotgun Surgery, Speculative Generality, Intensive
coupling. These code smells are actually among the used ones in the
literature. In addition, we took into account the commonly adopted
structural metrics. The first step in constructing our BMLDS ap-
proach is to create the Multi-Label Base of Examples (ML-BEs),
which is characterized by instances (software classes) that are as-
sociated to more than one class label (smell types). To do so, a set
of smell detectors (such as DECOR, JDeodorant, etc) are used to
construct a base of examples for each considered smell type. Then,

https://doi.org/10.1145/3520304.3528946
https://doi.org/10.1145/3520304.3528946

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Sofien Boutaib1 , Maha Elarbi1 , Slim Bechikh1 , Fabio Palomba2 , Lamjed Ben Said1

Figure 1: Upper level Solution representation

these bases of examples are merged using the voting fusion to ob-
tain at the end a ML-BEs (Multi-Label Base of Examples). Once the
ML-BE is constructed, the objective is to tackle the problem of label
ordering which in turn will improve the classification performance.
Such a task could be performed based on a hierarchical structure in
which the upper level includes the evolution of the label ordering
while the lower level contains the optimization of the detectors
according to the obtained label ordering as input. We notice that
the optimization in both levels is performed based on the GA. After
the building process, the obtained detectors are used to identify the
existing smell types within the unknown software classes.

2.1 BMLDS building phase
As shown by Figure 2 our approach has an evolutionary schema, it
contains two levels: (1) the upper level (optimizes the label ordering)
and (2) the lower level (optimizes the chains of the ODTs based on
the label ordering obtained from the upper level). The evolution
in both levels is performed based on the GA which is composed
of four main components that are: (1) Solution representation, (2)
variation operators, (3) fitness function, and (4) mating selection.
Lets move to present these components on each level.

• Upper level optimization
At this level, the optimization process is performed as fol-
lows. First, we choose the solution with the lowest fitness
value, and then we modify the values of the fitness that be-
long to the remaining solutions till reaching the stopping
criterion. Then, the mating selection and the variation opera-
tors (i.e., crossover and mutation) are applied. We have used
ExF-cor (Example-based F-Measure-correlation) as a fitness
function to evaluate the solutions. This latter combines the
Example-based F-Measure and the correlation ratio to deal
with the multi-label problem as well as imbalanced data is-
sue. Moreover, such measure encourages both convergence
and diversity at the upper-level, which helps the algorithm
to approximate the optimal solutions.

(1) Solution encoding: At the upper level, a candidate label
ordering solution is encoded as a chromosome in which
each gene corresponds to a single label. It is worth noting
that every individual is represented by a vector containing
15 integers representing the number of considered class
labels existing in the BE and every integer indicates the
corresponding label existing in the BE. The value ‘1’ in-
dicates the first class label existing in the BE, while the
value ‘2’ the second label in the indicated order within the
BE, and so on. To have a better idea, Figure 1 depicts a
solution that represents a vector of label ordering.

(2) Solution evaluation: The solution evaluation step con-
sists in assessing the classifiers performances, therefore
guiding the evolution to individuals that have high per-
formances as they took all class labels (i.e., majority and
minority) into consideration at the same time. In the liter-
ature, several evaluation measures for the case of multi-
label classification problem have been proposed. Among
these measures, we can found 𝐸𝑥𝐹 − 𝑐𝑜𝑟 , which is pro-
posed by Moyanoa et al. [5]. Such measure is composed of
two measures: ExF (Example-based F-Measure) (cf. Equa-
tion 1) and the 𝑐𝑟 (coverage ratio measure). The former is
similar to the F-measure but has the ability to deal with
the multi-label classification problem. The 𝐸𝑥𝐹 is com-
puted for every instance and after that averaged across
all instances. 𝐸𝑥𝐹 is defined as a number between 0 and
1; the higher the value, the better the performance of the
method is. The 𝑐𝑟 has been defined in the aim to calculate
how many times every label shows up in the ensemble.
This measure is depicted in Equation 2, where v is the
votes vector, i.e. a vector containing the number of times
every label appears in the ensemble, 𝑣𝑤 represents a votes
vector in the worst scenario, and stdv(v) represents the
vector v standard deviation. The worst-case scenario is the
one in which the votes vector is as imbalanced as possible,
with some labels appearing in the whole classifiers and
the rest not appearing at all. To obtain a measure value
0 and 1, the 𝑐𝑟 is split by the worst case. In fact, in case
where the 𝑐𝑟 was not considered in fitness, the labels that
are predicted easily would appear frequently within indi-
viduals, leading others to appear less frequently. As both
measures have values between 0 and 1, the value of the
𝐸𝑥𝐹 is maximized and the value of the 𝑐𝑟 is minimized,
the fitness function is presented as linear combination of
those measures. The obtained fitness is called 𝐸𝑥𝐹 − 𝑐𝑜𝑟

(Example-based F-Measure correlation) (cf, Equation 3)

↑ 𝐸𝑥𝐹 =
1
𝑚

𝑚∑︁
𝑖=1

2 | 𝑌𝑖 ∩ 𝑌𝑖 |
| 𝑌𝑖 | ∪ | 𝑌𝑖 |

(1)

↓ 𝑐𝑟 =
𝑠𝑡𝑑𝑣 (𝑣)
𝑠𝑡𝑑𝑣 (𝑣𝑤)

(2)

↑ 𝐸𝑥𝐹 − 𝑐𝑜𝑟 =
𝐸𝑥𝐹 + (1 − 𝑐𝑟)

2 (3)

(3) Selection operator: As BMLDS has a set of label order-
ing individuals, it should motivate the selection of good
individual parents at every generation of the GA while
allowing the less effective individuals to be present in the
reproduction process in the aim to get away from the local
optima and approximate the globally optimum label order-
ing. Hence, the tournament selection operator is utilized
to choose parents for the reproduction. In fact, individuals
are chosen as parents at every generation (N/2). This per-
mits for the acceptance of the bad movements within the
search space, allowing for the escape from locally optimal
label ordering.

(4) Crossover and mutation operators: For the variation
of the population at the upper level, we adopt the uniform

A Bi-level Evolutionary Approach for the Multi-label Detection of Smelly Classes GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Figure 2: Global schema of the proposed approach

crossover operator since it permits us to vary all pieces
of whatever chromosome. We adopt the order crossover,
which generate offspring without duplicated class labels.
For the mutation, we employ a swap mutation. More pre-
cisely, we pick two positions in a random manner a vec-
tor of label ordering and swap randomly two class labels
within that child.

• Lower level optimization
At this level, we start by the calculation of the normalized
values of the objective function. Then, we generate solutions
for the passed solution from the upper level. We modify
the fitness values, then we eliminate the bad solution and
update the fitness values another time. To better, clarify
for each passed label ordering from the upper level, a set
of classifiers chains are generated and evolved using the
variation operators.

(1) Solution encoding: In the lower level, each chromosome
corresponds to a chain of ODTs (cf. Figure 2). Every ODT
is in the chain is destined to a single and specific label. This
is performed in the aim to capture the labels dependencies.
The classifier chain build 15 ODT classifiers (every one
handling one label) connected in a chain, extending the
feature space by all the preceding within the chain each
time. The choice of the ODT is due to their specificity on
the use of oblique splitting hyperplanes and the orthogonal
ones to handle the problem of imbalanced data. Figure 2
presents the building of a chain of ODTs. The original
features (quality metrics) are used as predictors by the
ODT detectors, which is supposed to predict the first class
label. The ODT detector 2 that will predict the class label 2,
uses the previous label as supplemental input information,
catching potential dependencies among the class labels
and so on. Every ODT is coded using a two-array format
with a breadth-first ordering. The first array holds the
weights of the various attributes for a decision (internal
node) and the NULL value for a terminal (leaf) node. The

second array includes the value of the threshold for every
internal node as well as a Boolean cell for every leaf node
where ’1’ represents class 1 and ’0’ represents class 0. If a
node possesses index i in the breadth-first order, then the
left child is located at the position 2i and the right child
at the position (2i+1). The classification step should then
be carried out in a chained manner where the previously
generated 𝐿 ODTs are changed into a sequence of label.

(2) Solution evaluation: The evaluation of the lower level
solutions is performed based on a fitness function (cf. Equa-
tion 4) that is composed of the 𝐸𝑥𝐹 − 𝑐𝑜𝑟 (cf. Equation
4) and the ODT Depth which is a parameter specified by
the software engineer. It is important to note that both
measures have the same weights over the proposed fitness
function.

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝐸𝑥𝐹 − 𝑐𝑜𝑟 + 𝐷𝑒𝑝𝑡ℎ

2 (4)

(3) Solution evaluation: In the lower-level, we used the
tournament selection operator to pick up parents for the
reproduction. Half of the population (i.e., N/2) is chosen
at every generation.

(4) Crossover and mutation operators: For the variation
of the population at the lower level, we utilized the order
crossover operator that leads to solutions without redun-
dancy. For the mutation, we can have two types of changes
at the level of a gene in chromosome (i.e., an ODT): Weigh
change and label change. The former modifies the met-
rics wights by permitting for the addition of a new metric
(whose weight changes from zero to non-zero) and the
removal of an existing metric (its weight turns into zero),
while the latter exchanges two leaf-nodes by switching
their pair of labels.

2.2 Application module for optimized detectors
The output of the BMLDS is an optimized detector (i.e., classifier
chain). Such detector is ready to be applied in the aim to identify

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Sofien Boutaib1 , Maha Elarbi1 , Slim Bechikh1 , Fabio Palomba2 , Lamjed Ben Said1

Table 1: Parameters settings

Parameters BMLDS GP BLOP
Crossover rate 0.9 0.9 0.8
Mutation rate 0.1 0.5 0.5
Population size 200 100 30

the existing smell types . Each software class could be assigned to
multiple smell types.

3 EXPERIMENTAL STUDY
Our BMLDS tool is assessed on the basis of a series of commonly
adopted open-source Java projects, consisting of Xerces-J, GranttPro-
ject, ArgoUML, Ant-Apache, JFreechart, and Azureus. In this pa-
per, we used a five-fold cross-validation strategy to evaluate our
approach, which has been compared to the relevant state-of-the-
art approaches (DECOR [4], GP [6], BLOP[7]). The results of the
generated metrics on the test data are then averaged across the
five chunks. In fact, we adopted two performance metrics for clas-
sification appropriate for dependent and imbalanced class labels
environments to quantify the various methods performances under
consideration. The first measure is the fitness function, which was
previously discussed in Section 2.1. The second one is the Macro-
G-mean (Equation 7) measure that corresponds to the geometric
mean of Macro-Average-Specificty (Equation 5) and Macro-Average-
Sensitivity (Equation 6). More precisely, it is a metric that assesses
the balance of classification performance on the majority classes as
well as the minority ones.

𝑀𝑎𝑐𝑟𝑜 −𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
1
𝑞
∗

𝑞∑︁
𝑖=1

𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑃𝑖
(5)

𝑀𝑎𝑐𝑟𝑜 −𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
1
𝑞
∗

𝑞∑︁
𝑖=1

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(6)

𝑀𝑎𝑐𝑟𝑜 −𝐺 −𝑚𝑒𝑎𝑛 =
1
𝑞
∗

𝑞∑︁
𝑖=1

√︁
𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑡𝑦𝑖 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖 (7)

where q is the whole number of instances in the base of examples.
The tuning of search algorithms’ parameters is an important con-
sideration before running them. Indeed, parameter selection has a
significant impact on metaheuristic performance. To address this
problem, we utilized the trial-and-error method to fine-tune the
BMLDS parameters. The parameters for the other search algorithms
were determined using the original works (cf. Table 1). To ensure
fairness in comparisons, all search methods used the same stop-
ping criterion. Every run is indeed terminated after 256500 fitness
assessments.

Based on Figure 3, BMLDS outperforms all the other considered
approaches while the second-best method is BLOP. The three other
methods DECOR, GP, and BLOP have shown poor results. These
outcomes could be explained by the the fact that the existing ap-
proaches do not consider the dependencies between class labels in
addition to the co-occurrences of the class labels. Moreover, the
data imbalance ratio is high through the identification process and
all the existing approaches (including the Baseline Classifier Chain)
are inappropriate for this problem. ‘

Figure 3: ExF-cor and M-G-mean median scores of BMLDS,
DECOR, GP, BLOP, and Baseline Classifier Chain over 31
runs on Large Class smell type identification

4 CONCLUSION
The code smell detection problem is usually considered as a single
label classification problem, which is not the real world scenario
in which a software class could have more than one smell type.
To do so, we have developed BMLDS as as a new evolutionary
method and tool that evolves a set of classifier chains for the multi-
label detection of smells. Our approach adopts the bilevel schema
where the upper-level role being to find the optimal order for every
considered chain and the lower-level role being. to produce chains.
As future work, we plan to test BMLDS for the identification of smell
types that exist on web services as well as the desktop applications.

ACKNOWLEDGEMENT
Dr. Fabio Palomba gratefully acknowledges the support of the
Swiss National Science Foundation through the SNF Projects No.
PZ00P2_186090

REFERENCES
[1] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang. 2019. Machine

learning techniques for code smell detection: A systematic literature review and
meta-analysis. Information and Software Technology 108 (2019), 115–138.

[2] Radhia Azzouz, Slim Bechikh, and Lamjed Ben Said. 2014. A Multiple Reference
Point-based evolutionary algorithm for dynamic multi-objective optimization
with undetectable changes. In 2014 IEEE Congress on Evolutionary Computation
(CEC). 3168–3175.

[3] Slim Bechikh, Lamjed Ben Said, and Khaled Ghédira. 2011. Negotiating decision
makers’ reference points for group preference-based Evolutionary Multi-objective
Optimization. In 2011 11th International Conference on Hybrid Intelligent Systems
(HIS). 377–382.

[4] N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. Le Meur. 2009. Decor: A method
for the specification and detection of code and design smells. IEEE Transactions
on Software Engineering 36, 1 (2009), 20–36.

[5] Jose M Moyano, Eva L Gibaja, Krzysztof J Cios, and Sebastián Ventura. 2019. An
evolutionary approach to build ensembles of multi-label classifiers. Information
Fusion 50 (2019), 168–180.

[6] Ali Ouni, Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. 2013.
Maintainability defects detection and correction: a multi-objective approach. Au-
tomated Software Engineering 20, 1 (2013), 47–79.

[7] Dilan Sahin, Marouane Kessentini, Slim Bechikh, and Kalyanmoy Deb. 2014. Code-
smell detection as a bilevel problem. ACM Transactions on Software Engineering
and Methodology 24, 1 (2014), 1–44.

	Abstract
	1 Introduction
	2 The proposed approach: BMLDS
	2.1 BMLDS building phase
	2.2 Application module for optimized detectors

	3 Experimental study
	4 Conclusion
	References

