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matterAbstract—The availability of dependable mobile apps
is a crucial need for over three billion people who use apps
daily for any social and emergency connectivity. A key challenge
for mobile developers concerns the detection of security-related
issues. While a number of tools have been proposed over the
years—especially for the ANDROID operating system—we point
out a lack of empirical investigations on the actual support
provided by these tools; these might guide developers in selecting
the most appropriate instruments to improve their apps. In
this paper, we propose a preliminary conceptualization of the
vulnerabilities detected by three automated static analysis tools
such as ANDROBUGS2, TRUESEEING, and INSIDER. We first
derive a taxonomy of the issues detectable by the tools. Then, we
run the tools against a dataset composed of 6,500 ANDROID apps
to investigate their detection capabilities in terms of frequency
of detection of vulnerabilities and complementarity among tools.
Key findings of the study show that current tools identify similar
concerns, but they use different naming conventions. Perhaps
more importantly, the tools only partially cover the most common
vulnerabilities classified by the Open Web Application Security
Project (OWASP) Foundation.

Index Terms—Software Vulnerabilities; Android Apps; Auto-
mated Static Analysis Tools; Empirical Software Engineering.

I. INTRODUCTION

The last decades and, most notably, the recent years have
seen a drastic change in the way people communicate and
interact among them. Around 80% of the global population
owns a smartphone [2] and about 70% of these smartphones
rely on the ANDROID operating system [6]. The diffusion of
this operating system (OS) is favored by multiple factors, in-
cluding the availability and marketing of mobile apps through
the online app store [26]. In this context, previous research
has pointed out that ANDROID apps can be affected by severe
vulnerabilities that can impact both user privacy and security
[16], [28], [34]. For this reason, several automated static
analysis tools have been proposed to detect security concerns
and assist mobile developers in improving their applications
[21]. Nevertheless, in our research, we observed a lack of
knowledge about the real support provided by these tools. In
particular, it is unclear the set of problems that these tools can
detect and how they behave when detecting vulnerabilities,
e.g., whether their analysis fails in certain cases, the most
common vulnerabilities identified, and to what extent different
tools cover different vulnerabilities. An improved understand-
ing of these aspects is crucial to let developers be aware of

what kind of problems can be currently detected, other than
letting them (1) more wisely select the tools to employ, (2)
evaluate on complementing more tools, or (3) even understand
whether current tools can actually identify vulnerabilities that
are becoming more and more popular and harmful nowadays.

This paper performs the first step toward enlarging the body
of empirical knowledge on the matter. We focus on three
automated static analysis tools, i.e., ANDROBUGS2,1 TRUE-
SEEING,2 and INSIDER,3 to elicit a taxonomy of security-
related concerns detectable with these tools. Afterward, we
execute the tools on 6,500 free apps to assess the number of
vulnerabilities the tools can detect and the complementarity
among them.

The main results of the study indicate that in most cases the
tools can detect the same vulnerabilities but using a different
vocabulary, causing possible misunderstandings. The tools are
also complementary, which implies that developers should
select tools based on the specific categories of vulnerabilities
they would detect. Lastly, the considered tools only partially
cover the most widespread vulnerabilities classified by the
Open Web Application Security Project (OWASP) Foundation.

To sum up, our paper provides the following contributions:

1) A large-scale empirical investigation into the support pro-
vided by three state-of-the-practice tools for the detection
of security-related concerns;

2) An empirical analysis of the complementarity among the
three considered tools, which might open new research
directions connected to their combination;

3) A publicly available replication package [7], which con-
tains all data and scripts employed to address and extend
our research questions.

II. RELATED WORK

Researchers have been focusing on the ANDROID platform,
as its open-source nature eased the definition of empirical
investigations on the matter [14], [15]. For similar reasons,
our study revolves around ANDROID; in the remainder of the
section, we discuss the literature connected to that.

1https://github.com/androbugs2/androbugs2
2https://github.com/alterakey/trueseeing
3https://github.com/insidersec/insider
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First, a significant amount of previous works designed
automated techniques to identify vulnerabilities: they establish
the level of security of mobile apps with respect to various
vulnerability types based on the analysis of various static
constructs [32], textual analysis [13], or data flow (e.g., use-
def relations [11]). A systematic overview of these approaches
has been recently proposed by Li et al. [22].

From an empirical standpoint, existing studies focused on
understanding ANDROID vulnerabilities. Linares-Vásquez et
al. [25] classified the vulnerabilities affecting the ANDROID
OS. In contrast, Gao et al. [18] focused on the evolution of
software vulnerabilities from the perspective of mobile apps.
Additional studies pertained to third-party libraries [31], [37]
and how they might potentially threaten software security
aspects of source code. When comparing our work with those
just discussed, we can observe that none of them targeted the
capabilities of static analysis tools but instead focused on the
analysis of aspects connected to the maintenance and evolution
of software vulnerabilities.

Finally, a few taxonomies of software vulnerabilities in
mobile apps have been previously proposed. Sadeghi et al. [30]
conducted a systematic literature review on the research on
mobile app security, defining a taxonomy of the vulnerabilities
treated by researchers over the years. Qamar et al. [29] and
Mirza et al. [27] defined context-specific taxonomies that cover
the vulnerabilities affecting the mobile banking domain. These
papers relate to the first objective of our study. Nonetheless,
our goal is to derive a taxonomy of vulnerabilities from the
perspective of the automated static analysis tools to understand
what the vulnerabilities that these tools can detect are. Hence,
in this case, our study can be seen as complementary.

III. RESEARCH METHODOLOGY

The goal of the empirical study was to assess the current
support provided by existing automated static analysis tools
in terms of vulnerability detection in ANDROID applications,
with the aim of providing initial insights on the capabilities of
these tools in terms of security issue types detected and their
detection capabilities. The perspective is of both researchers
and practitioners: the former is interested in the capabilities of
existing tools to evaluate whether and which aspects should
be further improved; the latter are interested in understanding
how existing tools can support them in their daily tasks. We
set out two main research questions.

First, we analyzed the types of vulnerabilities that current
tools can detect through static analysis. Our goal was to elicit
a taxonomy of the security issue types whose identification
is supported by the existing instruments. An improved under-
standing and investigation of this research angle are required
to let researchers be aware of where to invest future research
efforts, other than to let practitioners know which tools can
be used to detect specific vulnerabilities, hence easing the
selection of the proper tools to use in their contexts. This
reasoning led to the definition of our first research question
(RQ1):

ü RQ1. What are the vulnerability types identified by
existing automated static analysis tools for mobile apps?

Once we had identified the types of security-related issues
whose detection is supported by existing tools, we sought to
provide insights into their detection capabilities. The aim is to
elaborate on the extent to which existing tools can detect vul-
nerabilities in the first place and, if so, with which frequency
they can detect the vulnerabilities types identified in RQ1 and
which complementarity exists among them. This perspective
is key to understanding the extent to which different tools
can collect and provide information on different security-
related concerns. From the practitioner’s perspective, this
analysis would ease further the tool selection process, which
might be done by considering the capabilities of the tools.
Also, researchers may exploit our findings to assess where
additional improvements are needed, e.g., by understanding the
characteristics of the tools that should be improved. Therefore
we asked our second research question (RQ2):

ü RQ2. What are the capabilities of existing automated
static analysis tools in terms of mobile app analyzability,
frequency of detection, and complementarity among them?

The expected outcome of our analysis is an initial con-
ceptualization and analysis of the current state of the art
in vulnerability detection in ANDROID applications. When
conducting the empirical study, we followed the empirical
software engineering principles and guidelines described by
Wohlin et al. [35]. Additionally, in terms of reporting, we
employed the ACM/SIGSOFT Empirical Standards.4 For the
sake of replicability and reproducibility, we made available in
the online appendix [7] datasets, scripts, and the additional
analysis that address our research questions.

A. Context Selection
The context of the empirical study was composed of au-

tomated static analysis tools (RQ1) and mobile applications
(RQ2). To select the tools, we adopted four criteria: They
were tools (1) open-source and available on GITHUB; (2) that
take an apk file as input; (3) that perform a static analysis of
the source code; and (4) that can be run using the command
line. These filters led us to consider:
AndroBugs2. This tool can detect 52 categories of security-

related concerns, permission issues, exposure of sensitive
information, etc.: these are identified by comparing the
analyzed source code against a predefined set of textual and
syntax rules, whose violation leads to raising a warning.

Trueseeing. This analyzer can detect 7 types of security
issues: Improper Platform Usage, Insecure Data, Insecure
Communications, Insufficient Cryptography, Client Code
Quality Issues, Code Tampering and Reverse Engineering.

Insider. According to the official documentation,5 the tool

4Available at: https://github.com/acmsigsoft/EmpiricalStandards. Given
the nature of our study and the currently available empirical standards, we
followed the “General Standard” and “Repository Mining” guidelines.

5INSIDER repository: https://github.com/insidersec/insider.
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covers the OWASP mobile Top 10 vulnerabilities and sup-
ports multiple programming languages like JAVA, KOTLIN,
SWIFT, .NET and others.

When it comes to mobile apps, we aimed at analyzing a
large and representative sample of mobile applications, which
might let us provide sound and reliable conclusions. While
researchers have released various mobile app datasets over
the last decade [12], [20], [23], most of them are outdated,
contain toy apps, or apps that no longer exist [19]. Therefore,
we relied on a public dataset available on KAGGLE,6 namely
GooglePlayStore dataset. We selected this dataset for two
reasons: (1) The dataset is currently supported by an active
community and is continuously updated; (2) The dataset
contains over 10,000 real ANDROID apps having different
scope and characteristics and is more recent than others (it
was released in November 2018). We first considered free
and open-source apps from the initial set of applications. This
was needed because of the requirements of the static analysis
tools selected, which need to decompile the source code of the
apps before detecting security threats. We considered the apps
that could be freely analyzed to avoid incurring legal issues.
Also, we only considered apps available on the Google Play
Store. These two filters led to a dataset composed of 6,500
applications whose size ranges from 1MB to 99 MB, while
the number of installs from a few dozens to 500,000 million.
In addition, the apps were fairly equally distributed among all
the categories of the GOOGLE PLAY store, meaning that we
could analyze apps designed to deal with different objectives
and targets.

B. RQ1. A Taxonomy of Vulnerabilities Detected by Existing
Static Analysis Tools for Mobile apps

While the description of the tools already indicates the
security issues they can detect, the effort in this phase was
needed to homogenize names and types of issues identified.
Indeed, different tools could detect similar vulnerabilities but
name them differently. The goal of RQ1 was to define a unique
schema able to represent the issues identifiable with current
static analysis tools. Hence, we conducted iterative content
analysis sessions [24] involving two software engineering
researchers, both authors of this paper (1 Ph.D. student, 1
faculty member), having more than ten years of programming
experience (the inspectors).

Taxonomy Building Phase. Starting from the list of vul-
nerabilities detectable by the considered tools, each inspector
independently analyzed each item and assigned it to a cate-
gory based on both the OWASP official documentation and
consulting online resources (e.g., papers, websites). Afterward,
the inspectors opened a discussion and solved disagreements—
this happened in 15 cases (out of 60 vulnerability types). The
process led to the definition of a hierarchical taxonomy com-
posed of two layers. The top layer consisted of 11 categories,

6The KAGGLE dataset of ANDROID apps: https://www.kaggle.com/
lava18/google-play-store-apps.

while the inner layer contained 41 subcategories described in
Section IV-A.

Taxonomy Validation Phase. To reduce possible threats to
conclusion validity, we decided to validate the defined taxon-
omy by involving two ANDROID security experts with 5 and 4
years of experience, respectively. These were contacted via e-
mail by the first author of the paper, who selected them through
his contacts. We provided the developers with a spreadsheet
containing a list of 25 randomly chosen vulnerabilities from
the total amount of 41 security issues detected by the selected
tools. The developers’ task was to categorize the security
issues according to the taxonomy previously built (which we
provided in a PDF format). The developers were either allowed
to consult the taxonomy or assign new labels if needed. Once
the external developers conclude the task, they send back the
spreadsheet annotated with their categorization. As a result,
both developers found the taxonomy clear and complete: they
always assigned labels contained in the taxonomy without
adding other categories.

C. RQ2. On the Detection Capabilities of Existing Static
Analysis Tools

The goal of RQ2 was to investigate the behavior of the
existing tools more closely. We first executed them against the
apk files of the considered apps and collected their output—
to homogenize the output, we developed an automated parsing
tool that converted the output of the tools into csv files.

The collected csv files were then used to address RQ2.
In this respect, we noticed that the tools failed to produce
results in some cases. To maximize the number of applications
analyzed, the first author attempted to fix the encountered
issues manually (e.g., fixing links to external dependencies or
changing some versions of some libraries). Nonetheless, we
could not address the issues in 20%, 25 %, and 20% cases for
ANDROBUGS2, TRUESEEING, and INSIDER, respectively.

For the remaining apps, we computed the number of
vulnerabilities—classified according to the taxonomy coming
from RQ1—detected by the considered tools. This inves-
tigation provides a quantitative measure of the number of
vulnerabilities detected by the tools. It provides insights into
their detection capabilities concerning the various vulnerability
types, hence potentially indicating the strengths and weak-
nesses of the tools. Finally, we exploited the taxonomy built
to evaluate the complementarity of the considered tools. We
measured (1) the number of vulnerability types detected by
more tools and (2) the number of vulnerability types solely
detected by only one of them. In so doing, we considered
both the levels of the taxonomy so that we could provide finer-
grained insights.

IV. ANALYSIS OF THE RESULTS

This section reports the results of our study. For the sake
of clarity, we discuss each research question independently.
Afterward, we discuss the overall findings of the study.
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Fig. 1: A Taxonomy of the Security-Related Issues Detected by the Considered Static Analysis Tools

A. RQ1. A Taxonomy of Security-Related Issues Detected by
Static Analysis Tools

Figure 1 overviews the taxonomy of security-related con-
cerns identified by the considered automated static analysis
tools. For the sake of space limitation, in the following we
only present the high-level categories of the taxonomy, while
a complete description of the taxonomy, along with examples,
is in our online appendix [7].

A. Insecure Communication [IC]. This warning is generated
when a client/server application exchanges information by
means of inappropriate protocols [4], for instance, by relying
on the http protocol. Developers could accidentally select
insecure protocols to communicate with other applications
or the environment; this might represent a security issue if
sensitive data are exchanged.

B. Insecure Manifest [IM]. This category refers to
possible issues connected to the insecure use of the
AndroidManifest. In the manifest, developers declare
the application’s behavior, including the permissions required.
The concern arises when developers accidentally miss the
definition of app restrictions, allowing the app to be potentially
called by external malicious apps.

C. External Resources [ER]. This issue might arise in cases
where mobile applications rely on external resources without
putting in place any control over them. For example, the
unchecked user or environment inputs represent a threat to
security, as malicious users might format the input to create
concerns for security.

D. Improper Access Control [IAC]. The application does
not apply (or only partially applies) mechanisms to restrict
access to resources from an unauthorized user. When those
mechanisms are not correctly applied, other users can read
sensitive information and execute commands [1]. An example
of a successful attack is represented by the case of Keystore,

which is a private repository that developers use to store
sensitive or reserved data. A vulnerability affecting the API
allowed malicious users to bypass permissions, leading to
privilege escalation without user interaction [8].

E. Code Tampering [CT]. Code tampering is the process
conducted by a malicious user to change the app’s behavior
or the APIs it relies on [10]. An automated static analysis tool
could detect this issue when developers implement a poten-
tially untrusted third-party library or other external application
whose credibility cannot be verified. An example of this issue
concerns the presence of hard-coded certificates, as a mobile
app might run without verifying the external component it
relies on.

F. Code Obfuscation [CO]. The category refers to the lack
of code obfuscation. Developers apply this operation to make
it harder for a hacker to access the source code. If code obfus-
cation is not applied, an attacker could read the source code
by decompiling the apk, obtaining the respective Java code in
case of native applications, and identifying vulnerabilities to
exploit.

G. Insecure Data [ID]. This threat predominantly refers to
the data storage and occurs when developers assume that
malicious users or malware applications will not have access
to the file system. For this reason, they adopt insecure mech-
anisms to archive private data. Nonetheless, static analysis
tools may detect an issue since an user still can perform a
root procedure, through which s/he can have access to the
entire system and break these mechanisms, hence allowing
malware or external attackers to exploit the vulnerability and
have access to sensible data [3].

H. Insufficient Cryptography [ICr]. This threat relates to the
insufficient mechanisms adopted to preserve personal informa-
tion [5]. In these cases, developers apply protocols to preserve
personal information or sensitive data; however, these might be
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Fig. 2: Top 10 vulnerabilities detected by ANDROBUGS2.

Fig. 3: Top 10 vulnerabilities detected by TRUESEEING.

insufficient (e.g., if they select an insecure protocol to encrypt
data).

B. RQ2. On the Detection Capabilities of Existing Static
Analysis Tools

Our second research question was concerned with under-
standing the detection capabilities of the tools in terms of
frequency of security issue detection, and complementarity
among the considered tools.

Frequency of detection. When determining the frequency
of security-related concerns, we analyzed the output of the
tools, mapping the vulnerabilities identified onto the taxonomy
built in the context of RQ1. The results were as follows.
AndroBugs2. Figure 2 shows the top-10 vulnerabilities de-

tected by ANDROBUGS2. In almost 50% of the cases, the

tool identified ’Web View’ and ’SSL Security’ vulnerabili-
ties: these pertain to the ’External Resources’ and ’Insecure
Communication’ categories of the taxonomy. Looking at
the figure, we could then observe that ANDROBUGS2 could
identify various types of vulnerabilities related to different
security concerns. While these were detected in fewer cases,
the tool seems to support developers in detecting many
vulnerabilities. In addition, ANDROBUGS2 could identify
at least one instance of each vulnerability of the taxonomy.
On the one hand, further experiments aiming at assessing
the accuracy of the insights provided by the tool would
be needed. On the other hand, the fact that the tool could
detect such a wide range of vulnerabilities might provide
indications on the health status of mobile apps, which may
be particularly exposed to security issues that threaten their
users.

Trueseeing Figure 3 reports the ten most frequent vulnerabili-
ties detected by TRUESEEING. As shown, almost 39% of the
vulnerabilities found by the tool are connected to the use of
logging files, which fall under the ’Insecure Data’ category.
While logging is typically considered a best practice [36],
in some cases, developers log sensitive information, e.g.,
sensitive keys or URLs. As a consequence, an attacker could
potentially exploit logs to damage the app. In fewer cases,
TRUESEEING identified security-related concerns related to
the ’External Resource’ category, such as ’Detected URL’
(16%) and ’Detected Possible FQDN’ (14%). Both vulner-
abilities make data available to externals, namely URLs in
the former case and Fully Qualified Domain Name (FQDN)
in the latter. Other vulnerabilities were detected to a lower
extent. Looking at the categories of those vulnerabilities,
we can say that TRUESEEING identifies a variety of prob-
lems, ranging from cryptography to permission issues. Code
tampering problems represent the only exception: this is
the vulnerability that the tool was unable to detect in our
dataset. At the same time, the set of security-related concerns
the tool identifies is quite different from those observed
with ANDROBUGS2, suggesting a possible complementarity
between the two.

Insider. The behavior of INSIDER was drastically different
from the one of the other tools. In this case, we could detect
only two categories of vulnerabilities, namely ’Exposed to
sensitive information to an unauthorized actor’ (61% of the
warnings pertained to this vulnerability) and ’Clear text
storage of sensitive information’ (39%). Both of them fall
under the Privacy category of our taxonomy and have to
do with sensitive information inappropriately stored within
the context of a mobile app. The observed behavior of the
tool suggests that it has a close focus on privacy issues,
while other vulnerability categories cannot be frequently
identified. This is likely the characteristic that makes the
tool different from the others considered. In addition, it is
important to remark that, differently from the claims made in
the official documentation, we could not find any reference
to the detection of vulnerabilities listed by OWASP. This
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likely suggests that the documentation available is outdated.
Summing up, different tools seem to focus on different cat-
egories of vulnerabilities. It is also worth remarking that we
could identify a number of security-related categories that are
only rarely detected by the tools. Comparing the categories
composing our taxonomy (see Figure 1) with those detected by
the tools, we can indeed report that major security categories,
like Code Tampering, Improper Platform Usage, and others,
which have been the subject of previous studies in literature
[17], [25], are poorly identified by the considered tools. Of
course, this might be due to the fact that certain types of vul-
nerabilities are poorly diffused in ANDROID apps. However,
we still point out the need for additional experimentations to
assess the support provided by current tools.

Key findings of RQ2 - Frequency.

Different tools detect different security-related concerns
with different frequencies. Certain categories of problems
are (almost) never detected, possibly suggesting the need
for further studies on the actual support provided by the
considered tools in practice.

Complementarity among the tools. From the frequency
analysis, we discovered that different tools seem to capture
different security-related concerns. With our last analysis, we
sought to provide additional insights into the complementarity
among the tools. We could first observe that INSIDER does not
capture any category of problems that the other tools cannot
already detect. In this sense, the tool seems to provide fewer
benefits in practice, as it not only identifies a lower amount
of security concerns but also targets problems that other tools
can detect—of course, these observations should be backed
up with additional analyses on the accuracy of the recommen-
dations provided to developers. As for ANDROBUGS2 and
TRUESEEING, instead, we could observe that the two tools
cover pretty different categories of problems. Indeed, only the
category of ’Insecure Data’ is in common. These findings
suggest that the tools might be combined by developers to
enlarge the coverage of security-related concerns.

Similar conclusions could be drawn when considering the
security concerns about the second level of the taxonomy.
Analyzing those issues, we could discover that only ’Web
View’ and ’Manipulable Activity’ vulnerabilities are in com-
mon between ANDROBUGS2 and TRUESEEING.

Key findings of RQ2 - Complementarity.

The combination of ANDROBUGS2 and TRUESEEING
may provide more extensive coverage of security-related
problems. On the contrary, INSIDER does not cover vul-
nerabilities that cannot be already detected by the other
tools.

V. DISCUSSION AND IMPLICATIONS

The results of the empirical study lead to a number of
actionable implications for both researchers and practitioners.

On the current support provided by static analysis tools.
To better contextualize our findings, we conducted an
additional analysis aiming at comparing the support of the
tools against the list of the top vulnerabilities identified
by the Open Web Application Security Project (OWASP),
one of the main security foundations worldwide that
periodically produces reports about the most frequent and
harmful mobile vulnerabilities.7 From this analysis, we
could observe that the current tools only partially align with
the OWASP mobile top-10. While the detection of security-
related concerns classified as ’Improper Platform Usage’,
’Insecure Communication’, or ’Insufficient Cryptography’
is supported by some of the considered tools, e.g.,
ANDROBUGS2, a number of other critical issues are still
neglected. For example, the categories of ’Client Code
Quality’ or ’Extraneous Functionality’ are not considered
by any tool. In addition, it is also worth mentioning that
the OWASP top-10 considers the issues pertaining to
’Improper Platform Usage’ as the most popular nowadays.
Nonetheless, our frequency analysis revealed how this
category is not among the most frequently identified,
possibly indicating the inability of the tools to deal with
this category of security concerns. In other terms, there
seems to exist a mismatch between what the tools detect
and what they should provide support for. We argue that
this mismatch should be further investigated by our research
community and tool vendors, which might be interested in
providing additional support for ANDROID developers.

On the accuracy of current tools. In our study, we exe-
cuted three state-of-the-art tools on a dataset of ANDROID
apps, analyzing their output from various perspectives. As
further elaborated in Section VI, we recognize that our
observations might be threatened by the presence of false
positives, i.e., wrong indications given by the tools. Part of
our future research agenda aims at assessing the impact of
false positives on our findings. Yet, our empirical setting
allows us to highlight the lack of empirical investigations
into the accuracy of static analysis tools for ANDROID apps.
Perhaps more worrisome, we point out the lack of datasets
that might be used for this purpose. Therefore, we call for
more research on the matter and the definition of novel
datasets that can be exploited to compare and improve the
current state of static analysis in mobile applications.

On the combination of more tools. The results coming
from RQ2 allowed us to assess the complementarity among
the three tools considered, which revealed that different
security concerns might be identified by different tools.
As such, we may argue that more extensive coverage
of the issues affecting a mobile app can be achieved by
combining multiple tools. On the one hand, this finding
can be exploited by practitioners, who might be willing to
adopt and run more tools against their code. On the other
hand, such a complementarity might be an opportunity

7The OWASP Mobile Top-10: https://owasp.org/www-project-mobile-
top-10/.
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for researchers who might want to devise novel smart
techniques able to automatically combine static analysis
tools based on the context or the developer’s needs.

On the security of mobile apps. While our analysis’s main
goal was establishing the current support provided by static
analysis tools, it also revealed insights into the security of
the mobile apps analyzed. Our frequency analysis indicated
that mobile apps are frequently affected by security-related
concerns. Therefore, it would be useful to better analyze
the current state of security in ANDROID. For instance,
empirical investigations targeting the vulnerabilities detected
by the tools with the objective of elaborating on the reasons
behind their introduction might provide key insights for
practitioners interested in improving the security profile of
their apps.

VI. THREATS TO VALIDITY

Threats to Construct Validity. One of the objectives
of our paper was concerned with the categorization of the
security-related concerns detected by existing automated static
analysis tools. This objective was naturally threatened by the
selection and accuracy of the considered tools. Our choice
was driven by multiple considerations. In the first place, we
have considered only open-source static analyzers that can be
called via command line and that take an apk file as input.
The set of tools analyzed restricts our possibility of providing
a comprehensive view of the issues detected by currently
available tools. From the accuracy of the tools selected, our
work might be threatened by not considering false positives
and/or false negatives. The identification of false positives was
not possible in our case. This indeed requires knowledge of
the application domain and the source code of the considered
apps: as such, the identification should have been done by
the original developers of the application, but, unfortunately,
this was not feasible. For this reason, our results might be
partially affected by the presence of false positives. At the
same time, our analysis could not deal with false negatives,
namely the actual security-related concerns that the tools did
not identify. Of course, this limitation of our study cannot be
addressed as the tools could not detect those issues. More in
general, our analysis sets a lower bound for researchers and
practitioners: despite the inherent limitations, our findings still
quantify how the currently available vulnerability and malware
detectors support developers. Researchers interested in further
elaborating on the matter may build on top of our findings,
providing an improved view of the capabilities of the tools.

Threats to Conclusion Validity. The major threat in this
category concerns the research methodology used to address
the research questions. When considering RQ1, we applied an
iterative approach to extract the taxonomy of security-related
concerns detected by the existing tools. This task requires
a human-intensive effort, is subjective by design, and leads
to wrong interpretations. To mitigate this threat, we used (as
possible) a systematic approach and two inspectors actively
participated in building the taxonomy. In RQ2, a possible

threat refers to the different granularity of the vulnerabilities
identified by the considered tools. Part of our future work
will investigate the impact of this aspect on our findings more
closely.

Threats to External Validity. There are four important
considerations. First, we considered three tools, meaning that
the coverage of the conclusions is somehow limited. Secondly,
we decided not to consider dynamics or hybrid approaches
to detect possible vulnerabilities. This was a methodological
decision: we were focused on analyzing statics vulnerability
tools, so other kinds of methods were considered out of
scope. Third, our study considered 6,500 ANDROID apps, and
it can be regarded as one of the most extensive empirical
investigations up to date [9], [33]. Finally, the empirical
investigation considers ANDROID apps: as such, our work
might not generalize to apps written using different platforms.
Future replications of this work are desirable: to enable them,
we released a replication package that would allow further
researchers to reproduce our study in other contexts.

VII. CONCLUSION AND FUTURE WORK

In this paper, we conducted a preliminary conceptualization
and analysis of the vulnerabilities detected by three automated
static analysis tools for ANDROID: ANDROBUGS2, TRUE-
SEEING, and INSIDER. First, using iterative content analysis
sessions, we developed a taxonomy of the security-related
concerns these tools can detect. Second, we run the three tools
against a dataset composed of 6,500 ANDROID applications
to collect information about the detection capabilities of the
tools. Results indicate that these tools can be used to support
developers identified 11 high-level vulnerabilities categories
and 41 low-level ones. Although tools can detect many vul-
nerability categories, we found that they only partially cover
the top 10 vulnerabilities listed by OWASP. We demonstrate
that practitioners might benefit from combinations of multiple
tools. The findings of the paper, along with the implications
we could delineate, open several follow-up research directions
that involve the definition of empirical studies and automated
techniques to better support the detection of vulnerabilities in
ANDROID. Our future research agenda will be centered around
these novel directions. We aim at deepening our knowledge of
the accuracy of currently available static analysis tools.
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