
Security Testing in The Wild: An Interview Study
Dario Di Dario, Valeria Pontillo, Stefano Lambiase, Filomena Ferrucci, Fabio Palomba

Software Engineering (SeSa) Lab – University of Salerno, Salerno, Italy
ddidario@unisa.it, vpontillo@unisa.it, slambiase@unisa.it, fferrucci@unisa.it, fpalomba@unisa.it

Abstract—Modern software systems are increasingly complex
and the risk of falling into security concerns is high if these
systems are not developed with a proper security mindset. Despite
the empirical studies and security-oriented approaches proposed
by researchers and tool vendors, we still point out a lack of
knowledge on the security testing processes applied by companies
to reduce risks connected to software security. In this paper,
we aim to bridge this gap of knowledge by performing an
interview-based study with 19 security experts to understand
how companies arrange security testing and how the process of
security testing is actually performed in practice. Our results
highlight that some companies incorporated the figure of the
security tester in the software life cycle, yet practitioners reported
a lack of standardized guidelines for security testing. From a
management perspective, our results suggest that the introduction
of formal communication between development and security
testing teams may lead to better performance.

Index Terms—Security Testing; Software Vulnerability;
Project Management; Software Organizational Structures.

I. INTRODUCTION

The complexity of modern information technology (IT)
systems is rapidly increasing, also due to the rise of novel tech-
nologies like cloud computing, microservices, and artificial
intelligence, together with sensitive data processing and the
permanent connection to other systems [13]. Software security
still represents a key concern for practitioners, who are called
to design and verify software systems with a security mindset
to avoid incidents that may have catastrophic consequences on
both the technical infrastructure and the surrounding environ-
ment [26, 40]. Software vulnerabilities, security penetrations,
and cybersecurity issues have, for instance, frequently led
malicious attackers to steal sensitive information [27, 28, 38]
and cause financial loss, reputational damage, and legal prob-
lems for individuals and companies [23, 48], especially in the
context of safety-critical domains [1, 29].

Software testing, i.e., the set of software engineering prac-
tices through which practitioners assess the quality and reli-
ability of the software systems being developed [32], plays
therefore a major role to ensure software trustworthiness.
However, unlike traditional software testing, security testing
has different goals and makes use of different instruments,
being focused on the software system from the perspective of
a malicious user [33]. Nevertheless, practitioners should design
for security since the inception of the project and take care of
the evolution of possible security concerns over the subsequent
development and verification activities [35]: this is the core
concept that led to the so-called “security-by-design” [25].

Over the last decades, the research community has been
supporting practitioners under multiple technical perspectives,

contributing to the design of novel secure programming prac-
tices [12, 17], software vulnerability detection methods [36],
penetration testing techniques [30], other than with the defi-
nition of multiple security-oriented lifecycle models [39, 44]
and security frameworks, e.g., Microsoft Secure Development
Life-cycle [19] and SAMM from OWASP.1

Recognizing the current body of knowledge, we highlight a
notable lack of insights into the processes currently applied
by companies when approaching security testing. Indeed,
as further elaborated in Section II, previous studies mainly
focused on the frameworks and tools enabling security testing
while not focusing on the managerial and operating efforts
that practitioners currently put in place nor the practitioners’
needs with respect to how the available frameworks and tools
should be employed throughout the software lifecycle. This
paper aims to advance the current state of the art by conducting
a qualitative investigation into the managers’ and practitioners’
perceptions of security testing. First, we perform structured
interviews—involving 19 experts from three large-scale private
IT companies—to gather an overview of the security practices
and methods employed in their own working environments.
Secondly, we perform a semi-structured interview with one
of those experts, i.e., a Chief Technology Officer (CTO) of a
major Italian IT software company having more than 20 years
of experience in developing secure software, to get further
insights on the current managerial and operating practices and
methods employed to face software security concerns.

The key findings of the study show that some companies use
security frameworks, varying them according to the application
to be developed. While all the involved practitioners recog-
nized the need for demanding security testing practices from
specific, experienced teams, security testing is still far from
being a standard practice and, indeed, companies often end
up with problematic conditions, e.g., dissemination of personal
data. Perhaps more importantly, security testing represents a
managerial concern: in most cases, this is not done consistently
throughout the software lifecycle and the lack of collaborations
between development and security units further increases the
chance of security issues. We conclude our paper by distilling
lessons learned and insights for further research on the matter.

II. RELATED WORK

Security testing aims at identifying potential security weak-
nesses in the development process before attackers can exploit
them. To integrate security testing aspects into the software

1The OWASP SAMM: https://owasp.org/www-project-samm/

1

https://owasp.org/www-project-samm/


lifecycle process, the so-called Secure Software Development
Lifecyle (SSDLC) arose [31]. In particular, MICROSOFT and
OWASP developed frameworks based on SSDLC [47]. The
former, proposed in 2004 MICROSOFT’s Security Develop-
ment Lifecycle (MS-SDL) [34], is a framework that integrates
security into the software development process at every stage,
from design to deployment, while the latter, introduced in
2009 OPENSAMM [8], is a framework that helps practition-
ers determine which secure application development program
components need more attention during development.2 The
employment of these frameworks has been studied by Khan
et al. [22] in the context of a systematic mapping study of
secure development approaches. Their result showed that the
two frameworks are the most widely used by companies.

Other researchers focused on new paradigms to include
security aspects in the development processes. DEVSECOPS
(Development, Security, Operations) aims to introduce security
features in DEVOPS, i.e., a development process that includes
a set of continuous practices [41], increasing communication,
collaboration, and integration between the development/oper-
ations teams and the security team.

Recently, Rajapakse et al. [37] uncovered the main chal-
lenges in transitioning to DEVSECOPS. While security process
automation tools are necessary, the authors pointed out that
considering human aspects is equally important to properly
handle security issues: in particular, understanding when and
why security countermeasures should be put in place is essen-
tial. Our work is motivated by the study by Rajapakse et al.
[37]: we indeed aim to understand how security practices are
currently applied throughout the software lifecycle.

Thompson [43], and Potter et al. [35] highlighted that
developers must be proactive toward security testing and
integrate it into the development lifecycle. With respect to
these works, we aim to advance the state of the art through the
investigation of how developers tackle security risks and how
they employ security frameworks to address misinformation
about testing and communication failure. Furthermore, we
evaluate the effectiveness of these frameworks in simplifying
security processes during software development.

One notable aspect that Kreeger et al. [24] has highlighted
is the need for more knowledge in security testing. To be an
effective security tester, one must possess transversal com-
petencies essential for this field. These competencies include
having high-level programming skills, the ability to develop
tests effectively, and expertise in security cryptography. In this
respect, we aim to reduce the gap by analyzing the background
required by companies, doing a first step toward understanding
the expertise currently required to perform security testers,
other than rising the awareness of researchers and practitioners
with respect to the roles involved in security testing practices.

All in all, our work advances the state of the art by providing
two main contributions. First, stemming from previous litera-
ture showing the need for understanding the processes involved
in security management, we aim at investigating the current

2The OWASP SAMM: https://owasp.org/www-project-samm/

managerial and operating practices applied within companies
when dealing with software security. Second, our work builds
on the literature reporting on the need of profiling software
security experts [24] to provide insights into the professional
roles involved in a typical software security testing process,
other than the organizational structure required to effectively
deal with software security.

III. RESEARCH STUDY DESIGN

The goal of the study was to enlarge our knowledge of the
security testing activities performed in industry, with the pur-
pose of providing researchers and practitioners with insights
into the processes put in place and the possible limitations
that would be instrumental to identify further improvements.
The perspective is both of researchers and practitioners: the
former are interested in overviewing the current state of the
practice and possibly identifying limitations that may lead
to the definition of novel, improved instruments to support
practitioners; the latter are interested in understanding the
practices applied by fellow practitioners, possibly identifying
further managerial tools to put in place in their own contexts.

Specifically, our research agenda targeted two main objec-
tives. First, we aimed at eliciting initial insights into how
security testing is arranged in practice, namely whether and
how companies organize security testing teams. This research
angle is key for contextualizing the role of the security tester,
possibly identifying limitations in terms of awareness and
managerial aspects of software security. Hence, we asked the
following research question:

RQ1: How is security testing arranged in the industry?

Afterward, we focused on the current processes applied by
practitioners throughout the software development lifecycle.
With this research question, we aimed to provide an overview
of how security testing is treated over time, in an effort
to highlight the current challenges faced by practitioners —
and, therefore, the possible additional support requested by
researchers. In particular, we asked:

RQ2: How are security testing activities performed
during software development?

To answer our research questions, we designed a qualita-
tive investigation featuring a combination of structured and
semi-structured interviews involving IT practitioners. Figure
1 overviews our research method. The first interviews aimed
to provide an overview of security testing in practice, while
through the semi-structured interview, we could deepen some
aspects and provide a more critical discussion on the matter.

A. Step 1: Data Gathering

As a first step of our study, we performed structured
interviews with 19 practitioners from three companies’ experts
in security testing activities. Moreover, we conducted an addi-
tional semi-structured interview with one of these participants,

2

https://owasp.org/www-project-samm/


Steps of the study

STEP 1
Data Gathering

STEP 2
Data Processing and Synthesis

Structured Interviews 19 Participants

Semi-structured Interview Company's CTO

Content Analysis

"... a research method where one
or more inspectors go over the
data of interest and attempt to

deduct their meaning and/or the
concepts they let emerge."

Fig. 1. Overview of our research design.

i.e., the CTO of one of the companies. In the following, we
present the design of our interviews.

1) Design of the Structured Interviews: For the design of
our structured interviews, we relied on the guidelines provided
by Andrews et al. [3], Hove and Ada [18], and Stol et al. [42].
Specifically, we based our work on the following principles:
• We asked participants to respond to our question using pre-

defined multiple-choice or scales (numerical or qualitative)
answers to give a more analytical character to the data;

• We made sure to use a clear, unambiguous, and coinci-
dental vocabulary to eliminate doubt about the meaning of
questions and possible answers;

• We started our interviews with a clear statement of our
objectives, and we made clear from the outset that the
information taken would not be used for any other purpose;

• We guaranteed respect for privacy by specifying that the
data would have been treated anonymously from the point
of view of analyzing and publishing the results without
referencing who provided the responses.

Based on the previously-mentioned principles, the struc-
tured interview was formalized into four consecutive sections:
two for the study goal and two for the respondent’s information
gathering. Specifically, the survey was structured as follows:
(1) the first section aimed to provide a brief description of
the research and definitions of security testing; (2) the second
section was concerned with the use of security testing in real
business contexts; (3) the last section deals with business and
personal information. For the sake of space, we reported the
entire list of questions in our online appendix [11].

Regarding the first section, we wanted to provide a clear
definition—reported in the box below—of security testing to
avoid ambiguities or incomprehension.

Security Testing Definition

Security Testing can be defined as the set of activities
aimed at predicting and finding potential security prob-
lems in IT systems, with the goal of increasing product
resilience to malicious attacks [13, 35].

The second section represented the core part of our inter-

view. It contained various questions to elicit (1) who performs
security testing activities and the degree of awareness that they
have and (2) if such activities follow a rigid and standardized
approach. We can separate them as follows:

1) Subgroups: As a first question, we asked whether the
company has subdivisions according to the activities to be
performed. The question might seem trivial, considering
that most companies are now divided into rigid sub-
groups—e.g., developers, testers, and security specialists.
However, the question may come in handy to understand
whether the low importance of security aspects may also
depend on the wrong composition of work activities.

2) Who performs security testing: As a second question,
we asked participants if, in the context of their company,
security testing activities are performed by specific teams
or individuals with different roles and selected for their
skills. Indeed, we aimed to gather knowledge to answer our
first research question, i.e., who performs security testing.

3) Secure Development Life Cycle and Framework: Par-
ticipants are asked if they are aware of the secure develop-
ment life-cycle, but mainly if they apply frameworks such
as the one created by Microsoft (MS-SDL) or any other
available framework.

4) Security Management: Following the software life cycle,
users are asked to specify at what stage of the life cycle
testing activities are most often applied. In this manner, we
are trying to understand at which stage companies intend
to spend more energy. Furthermore, it may be helpful to
understand whether the frameworks specified earlier are
fully executed or partially.

5) Testing Methodologies: By analyzing the responses, it
could assume the possible techniques applied. Partici-
pants could list the techniques used or write a high-level
description—e.g., “requirements analysis plays a crucial
role in security” is likely that “Architecture security re-
view” techniques are used.

6) Types of Applications Developed: Such a question was
helpful to understand whether frameworks or unique tech-
niques applied to the life cycle are changed due to the type
of application to be developed.

3



7) Security Testing in Groups: Such a question aimed
at understanding whether security testing activities are
performed in groups.

As the reader may observe, the questions cover multiple
angles of security testing, hence allowing us to understand
various aspects of how it is performed. In addition, the
questions aimed at gathering insights that might be exploited
by researchers to further elaborate on the matter.

The last two parts of the interview refer to the collection
of company and participant characteristics. The company
characteristics help compare and get a complete picture of
the companies that participated in the survey. The participant
details help to obtain more information about the answers
given if needed, for getting them to participate in future
surveys such as focus groups or one-on-one interviews, and
for sharing the survey results with them if they are interested.

Regarding the participants’ selection, we adopt a conve-
nience sample approach, i.e., a non-probabilistic sampling
method where the sample is taken based on proximity, avail-
ability at a given time, or willingness to participate in the
research [16]. Specifically, we contact 19 security experts from
three companies belonging to our contact network of private
businesses. Such a strategy is known to be particularly useful
in obtaining participants rapidly but suffers in terms of the
generalizability of findings [5, 16]. Nevertheless, we decided
to adopt it to address a critical challenge: security experts
represent a minority in the software development audience of
professional roles—recent statistics reveal that there are only
32,349 experts worldwide and that medium-size company have
few security experts (around 13%).3 As such, we could not run
large-scale experimentation, as finding security experts would
have been challenging.

2) Design of the Semi-structured Interviews: In order to
obtain more general data on the topic of security testing, we
conducted a semi-structured interview with one of the Chief
Technology Officer (CTO) of the three companies—as an ex-
pert in software engineering and secure software development.
In the context of our study, a single interview enables a joint
discussion on current security testing practices based on the
software development life-cycle.

To design our semi-structured interview, we relied on the
guidelines provided by Hove and Ada [18]—more details
about the questions are in our online appendix [11]. During the
meeting, the first author briefly explained the research methods
used and gave a very brief presentation of the current definition
of security testing and the life cycle of secure development,
with several existing frameworks in the literature. The second
and third authors participated in the interview to transcribe
information and support the first author. The entire interview
was recorded—with permission of the interviewee—and at the
end, the authors combined the information with the manual
transcription of the entire interview.

3U.S.A. statistics on Security Experts: https://www.zippia.com/
security-specialist-jobs/demographics/

B. Step 2: Data Processing and Synthesis

Once we had collected the responses, we performed a
quality assessment phase. In particular, the paper’s first author
reviewed the individual responses collected to filter them. In
the end, all the interview responses have been considered
acceptable. To analyze the responses, we performed qualitative
content analysis [7], i.e., a research method where one or
more inspectors go over the data of interest and attempt to
induct their meaning and/or the concepts they let emerge.
Specifically, the process consisted of two steps: (1) iteratively
develop the codebook and (2) apply the codes to the raw
data. The process was conducted by the first three authors
of the paper, who jointly analyzed the individual responses to
develop the initial codebook. After developing a unique set of
codes, the first author applied them to the rest of the data and
performed an ulterior step of coding that resulted in theoretical
saturation. We did not rely on any support tool—e.g., NVivo
and Atlas.ti—for performing the coding phase.

To exemplify the data analysis procedure applied, let us
discuss the following case, which presents an excerpt of how
we passed from raw data to codes:
Raw Data: “We ask companies such as OWASP Italia, Ernst

& Young, Deloitte, and others to conduct further security
testing. Given the interaction between three different teams,
we found it necessary to manage communications through
two managerial figures who communicate...”

Codes: Contacting external stakeholders; Performing Secu-
rity Testing; Involving more managerial figures; Managing
communication between teams.

All the codes were extracted from raw data using an inductive
approach. The only exception is represented by the actions
conducted to identify the phases in which security testing is
performed: in this case, we applied a deductive approach to
map raw data onto the development phases, e.g., software
requirements, specification, design, and so on. Overall, we
used 22 codes: 1 general (i.e., “Performing Security Testing”),
6 for RQ1, 15 for RQ2. All the codes are reported in our online
appendix [11]. Three of the codes mentioned above (i.e.,
External Actor, Contacting external teams, and Involving more
managerial figures) were extracted by the semi-structured
interview alone. After creating the codes, we analyzed them
and their frequency to extract insight and build our findings.

IV. ANALYSIS OF THE RESULTS

For the sake of comprehensibility, we split the section into
three subsections, one for the participants’ general information
and two for each research question. Due to space limitations,
the raw results are available in the online appendix [11].

A. Participants Background Information

Regarding the general information on the companies in-
volved in the study, it is worth noting that all of them are
multinational IT security and development companies with
at least 200 employees and multiple corporate offices world-
wide. Furthermore, our interviewees are involved in software
projects developed in teams composed of at least six team

4

https://www.zippia.com/security-specialist-jobs/demographics/
https://www.zippia.com/security-specialist-jobs/demographics/


Maintenance

Deploy

Verification

Development

Design

Requirements

0 4 8 12 16

Fig. 2. Stages in which security testing is mainly done.

members. Among the 19 participants, 42% of them worked
as developers or security specialists, 37% as testers, 10% as
Project Managers, and the remaining had other roles—e.g.,
software architects and data scientists—currently. Moreover,
we interviewed the CTO of one of the companies involved
in the study, with many years of experience as a security
engineer and manager. Furthermore, 84% of our sample was
male, while 16% was female. Looking at these percentages,
we could consider our sample realistic.4 Additionally, this
degree of gender diversity also allowed us to draw more
diverse and generalizable conclusions. Last but not least,
most of our participants have many years of experience in
their role (59% affirm having at least ten years), and only
a minority report having at least three years (21% of them).
From these basic descriptive statistics, we can claim that the
answers collected provide reliable insights for validating the
information gathered from our interviews.

B. RQ1 – Security Testing Arrangment

According to our results, 12 participants said that security
testing is performed by individuals or specific groups of people
having the role of security testers, while seven participants
declared that security testing is performed by the same devel-
opers that developed the software component but with knowl-
edge and skills on security testing. Moreover, our interviews
revealed a two-faced reality combining the answers to the
second and third questions. First, seven participants reported
that development teams do not adopt a rigorous approach to
security testing procedures—for example, a framework like
the MS-SDL [34] or OPENSAMM [8]. Nevertheless, teams
adopting a systematic framework—e.g., the Microsoft Security
Framework [21]—are characterized by several dedicated secu-
rity officers performing the abovementioned activities. Further-
more, our semi-structured interview underlines how adopting
a framework is not enough. Specifically, the participant said
that “Frameworks must be used by people who have the
right skills; otherwise, developers may not consciously apply
them and slow down the productivity of the entire team”.
Indeed, such frameworks are complex instruments to master
and adopt, and for this reason, selecting people with the right
technical skills is crucial.

4Girls and women in STEM: https://www.industry.gov.au/news/
second-national-data-report-on-girls-and-women-in-stem.

TABLE I
MOST USED SECURITY TESTING STRATEGIES.

Rank Phases Strategy Frequency
in answers

1 Development Static Source Code Analysis. The analysis of the ap-
plication source code for finding vulnerabilities without
actually executing the application.

18

2 Verification Automated Vulnerability Scanner. An automatic tech-
nique with the aim of verifying if a specific component of
the software has known vulnerabilities.

16

3 Design Architecture Security review. A manual review of the
product architecture to ensure it fulfils the necessary
security requirements.

14

4 Requirements
and Design

Threat Modelling. A structured manual analysis of
an application-specific business case or usage sce-
nario—guided by a set of precompiled security threats.

13

5 Verification Manual or Automated Penetration Testing. A technique
that simulates an attacker sending data to the application
and observes its behaviour.

13

6 Development Static Binary Code Analysis. The analysis of the com-
piled application (binary) for finding vulnerabilities with-
out actually executing the application.

10

7 Verification Fuzz Testing. A technique in which tools send random
data, usually in larger chunks than expected by the appli-
cation, to the input channels of an application to provoke
its crashing.

10

The semi-structured interview highlighted a third approach
to security testing, which involves outsourcing the task to
a specialized external actor. Specifically, some companies
outsource all security testing activities to another company
specialized in this aspect. Such a result matches the findings
of other works focusing on security testing sub-activities, e.g.,
penetration testing and ethical hacking [2, 10].

C. RQ2 – How security testing is performed

First, we interviewed participants on the phases in which
security testing is mostly performed. To have a common soft-
ware development lifecycle for all participants, we previously
asked them to describe the most general steps they experience
during projects. Then, we generalized it into six steps, i.e.,
requirements, design, development, verification, deployment,
and maintenance. This representation matches the classical
and well-known waterfall model [6] adopted by all the three
IT companies involved in this study. From their responses—
summarized in Figure 2—we found that security testing is
mostly performed during the development (16 responses),
where the architecture and structure of the product are coded.
In addition, we found that the security testing activity is also
performed during the design and verification phases, which
are activities directly related to the development phase: in
these two phases, the developed tests are planned and exe-
cuted. Furthermore, security testing is performed less during
maintenance, deployment, and requirements.

Regarding the standards and frameworks applied for per-
forming security testing, two arose during our interviews, i.e.,
the Microsoft Security Development Life-cycle (MS-SDL) and
the OpenSAMM framework. Both frameworks are adopted
to perform security testing, but the first is primarily pre-
ferred. The motivation for this can be found in the fact that
a large and well-known company supports MS-SDL—i.e.,
Microsoft—that continuously updates the framework and per-
forms improvements on it.

5

https://www.industry.gov.au/news/second-national-data-report-on-girls-and-women-in-stem
https://www.industry.gov.au/news/second-national-data-report-on-girls-and-women-in-stem


As for the strategies applied, we extracted the ones de-
scribed in Table I, ordered by relevance—i.e., the ones with
lower rank have been discussed and cited by most of the
participants. The identified strategies perfectly match the most
well-known procedures already identified by state of the art
for mitigating and resolving security issues [4]. For this
reason, our results contribute by (1) providing a qualitative
confirmation of state-of-the-art findings and (2) ranking them
by relevance. The most used strategies are (1) Static Source
Code Analysis, (2) Automated Vulnerability Scanner, and
(3) Architecture Security review—described in Table I. The
previous question also confirms such ranking—the one whose
results are described in Figure 2; indeed, the phases where
these strategies are performed are also the phases in which
security testing is mainly done—according to practitioners’
opinion. The semi-structured interview confirmed that the
techniques mentioned are widely used and provide guidelines
to security experts to prevent security problems. In addition, it
is important to emphasize that security experts and developers
should together contribute to the creation of a well-defined
development and security testing process. Static source code
analysis tools represent the instruments that most easily allow
security testers and developers to collaborate, as those tools
are frequently included in continuous integration and testing
pipelines: as such, the outcomes reported by static code
analyzers can be visualized and manipulated by both the
figures that, therefore, are more able to interact between each
other and find quality assurance concerns, including security
issues. Regarding the second and third strategies, they are
specifically designed to identify security problems, and—for
such a reason—it is normal that they are largely adopted.

As a final note, we were interested in exploring if security
testing can be collaboratively managed as a team or whether,
instead, it should be mostly considered as an individual activity
performed by practitioners. With respect to this point, 13 inter-
viewees reported that security testing could be a collaborative
activity, especially when it revolves around the interaction
between internal and external experts, e.g., in cases where the
security testing processes are outsourced to external compa-
nies. In these cases, our semi-structured interview revealed
that: “We need to engage companies experienced in security
testing to verify our software. We used to include more than
one third-party company to mitigate the learning effect that
can be created over time”. However, given the high business
value of software products and the need to optimize costs for
third-party companies, the interviewee revealed the need to
create an in-house ethical hacker team. The interviewee also
highlighted that: “By doing so, developers have the support
of guidelines to develop procedures. After the guidelines
are defined, the internal ethical hacker team checks that
everything is correct, and finally, we involve external security
professionals”. For this reason, they need a security manager
from the company side—or the development team—that com-
municates with ethical hackers and the third-party team to
organize the activities. For this reason, the role of managers
also changes, as the security manager will direct the activities

between internal and external security teams and orchestrate
communication with the project manager, who will lead the
activities of the development team. Overall, communication
between the development and security teams is managed by
two managerial entities.

V. LESSONS LEARNED

Our study was conducted in the context of security testing to
elicit managerial insights to improve this activity and increase
the robustness of software products. On the basis of the
findings collected in our study, we were able to distill a list
of lessons learned which may be potentially useful to (1)
practitioners, who may use our insights to make more informed
decisions on the way security testing would be worth to be
performed; and (2) researchers, who may want to take our
findings as a base for building further knowledge on the matter.

First of all, our findings suggest that practitioners perceive
security testing as an “elite” activity that must be performed by
individuals with affirmed skills in both software engineering
and security fields. Furthermore, only these individuals should
use a security framework to ensure the consistency and correct
execution of the activities. Hence, we can conclude that:

✓ Only a specialized team of security experts should use
security testing frameworks.

Although most companies rely on third-party companies
to perform security testing, managerial figures agree on the
fact that assembling and training an internal team is the best
way to ensure (i) a high-quality process and (ii) a continuous
improvement tailored to the specific working context—which
is essential for the quality improvement cycle [20].

✓ Create an internal team that does security testing to
enable quality improvement over time.

Finally, security testing undoubtedly needs a managerial
effort, especially in cases where a third-party company is
involved. A dedicated manager should guide the security
testing team and communicate with the development team
manager, other than facilitating the coordination with third-
party companies. In addition, the figures of security and
project managers should be separated to ensure the correct
and unbiased execution of the activity.

✓ Arrange for two management figures, one for the
development team and one for the security team, who
communicate with each other.

VI. THREATS TO VALIDITY

We report on them and discuss the possible confounding
factors that might have influenced the results of our study.

6



A. Threats to Construct Validity

Threats in this category are mainly due to imprecision in
performed measurements [46]. In the context of our empirical
study, these are mainly related to the way we designed the
interviews. Starting from the objectives posed, we attempted
to define clear and explicit questions in the survey that could
allow participants to properly understand the meaning/phrasing
and provide an answer that could have been directly mapped
onto our objectives. The survey design involved the first three
authors of the paper, who all have experience in software
testing, empirical software engineering, and research design.
While this already partially mitigated threats to construct
validity, we also involved five external software engineering
developers with work in the context of security testing. This
additional investigation aimed to preliminarily assess our sam-
ple population’s opinions, highlighting possible issues to be
fixed before the large-scale survey was released. The pilot
study let some minor concerns emerge that we promptly fixed.
The follow-up double-checks of the involved developers let us
be even more confident of the validity of our survey. Nonethe-
less, replications of the survey study would be beneficial to
discover additional points of view and perspectives we might
have missed. In this respect, we made all our data publicly
available to make our results repeatable and reproducible [11].

B. Threats to Conclusion Validity

Threats in this category are concerned with the ability
to draw correct conclusions about relations between treat-
ments and outcomes [46]. We conducted a content analysis
to interpret the opinions of participants. In this respect, we
systematically approached the matter with three researchers
involved. In any case, we released all the material produced
in the context of this study to enable the verifiability of the
conclusions described in our online appendix [11].

Our findings are based on the perspective of the interviewees
involved and must therefore be considered limited to the prac-
titioners’ own experience and opinions: while we argue that
the insights of our work can already provide initial, significant
reflections on the way security testing may be improved, we
acknowledge the need for further studies aiming at analyzing
the impact of the strategies indicated by our interviewees
on multiple performance indicators, hence corroborating and
extending the findings of our work. Part of our future research
agenda plans for these extended investigations.

An additional point of discussion concerns the data filtering
process conducted, which might have missed the exclusion
of answers released by participants who did not have enough
expertise to approach our study. In this respect, the paper’s first
author went through each response and validated it. Then, the
second and third authors confirmed the operations performed.
Such a double-check makes us confident of not considering
answers that might have biased our conclusions.

C. Threats to External Validity

Threats in this category are concerned with the general-
izability of the results [46]. Our conclusions pertain to a

sample of 19 participants (18 practitioners and one CTO).
On the one hand, the amount of interviewees involved is
our study is close to the one of other studies published
in similar software engineering research contexts [9, 14].
On the other hand, our participants have the characteristics
described in Section IV-A, i.e., they work in multinational
IT security and development companies with at least 200
employees. Despite they were selected through the use of
convenience sampling [16], the interviewees have a profile that
characterizes them as experienced security experts working in
a global software engineering context on the maintenance and
evolution of large-scale software systems. As such, we are
confident that our findings might be satisfactorily transferred
to the more general population of security experts working
under the same working conditions and context as those that
took part of our study [15, 45]. Of course, replications of
our work would corroborate our hypothesis—we provided an
online appendix with all the relevant information to stimulate
replications [11]. Part of our future research agenda aims at
generalizing the findings obtained and verifying the extent to
which the reported results might be actually transferred to a
more general population of security experts.

The second main threat concerns the design of the inter-
views. In order to be sure to collect all the relevant infor-
mation, we followed the guidelines provided by Andrews et
al. [3], Hove and Ada [18], and Stol et al. [42] to define
clear and explicit questions. Additionally, we conducted a pilot
study with four developers that reported possible biases and
flaws that we fixed before conducting the real interviews.

VII. CONCLUSION

Our study aimed at enlarging the current knowledge of
security testing in practice through a qualitative investiga-
tion. Despite being collected on a relatively low amount of
practitioners, our results could already provide insights into
the security testing practices adopted in the industry and the
managerial aspects that might help address security.

To sum up, our work provides the following contribution:
1) We analyzed the security activities performed in business

companies and how these strategies are integrated into
the software life cycle;

2) We provided managerial insights on the figure of security
tester in terms of technical skills;

3) We released a publicly available appendix [11] providing
data and results of our study. Other researchers may use
it to replicate and further extend our work.

Our future research agenda includes a larger-scale analysis
of security testing in practice aiming at addressing potential
threats to the conclusion and external validity of our work.

ACKNOWLEDGMENTS

This work has been partially supported by (i) the Swiss Na-
tional Science Foundation - SNF Project No. PZ00P2 186090
(ii) the project SERICS (PE00000014) under the NRRP MUR
program funded by the EU - NGEU.

7



REFERENCES
[1] K. Abouelmehdi, A. Beni-Hessane, and H. Khaloufi, “Big healthcare

data: preserving security and privacy,” Journal of big data, vol. 5, no. 1,
pp. 1–18, 2018.

[2] H. M. Z. Al Shebli and B. D. Beheshti, “A study on penetration testing
process and tools,” in 2018 IEEE Long Island Systems, Applications and
Technology Conference (LISAT). IEEE, 2018, pp. 1–7.

[3] D. Andrews, B. Nonnecke, and J. Preece, “Conducting research on
the internet:: On- line survey design, development and implementation
guidelines,” 2007.

[4] R. Bachmann and A. D. Brucker, “Developing secure software: A
holistic approach to security testing,” Datenschutz und Datensicherheit
(DuD), vol. 38, pp. 257–261, 2014.

[5] S. Baltes and P. Ralph, “Sampling in software engineering research: A
critical review and guidelines,” Empirical Software Engineering, vol. 27,
no. 4, p. 94, 2022.

[6] A. H. D. Bernd Brugge, Object-Oriented Software Engineering Using
UML, Patterns, and Java, 2nd ed., 2004.

[7] S. Cavanagh, “Content analysis: concepts, methods and applications.”
Nurse researcher, vol. 4, no. 3, pp. 5–16, 1997.

[8] P. Chandra. Software assurance maturity model. [Online]. Available:
https://opensamm.org/downloads/SAMM-1.0.pdf

[9] V. Chang, P. Baudier, H. Zhang, Q. Xu, J. Zhang, and M. Arami, “How
blockchain can impact financial services–the overview, challenges and
recommendations from expert interviewees,” Technological forecasting
and social change, vol. 158, p. 120166, 2020.

[10] M. Denis, C. Zena, and T. Hayajneh, “Penetration testing: Concepts,
attack methods, and defense strategies,” in 2016 IEEE Long Island
Systems, Applications and Technology Conference (LISAT). IEEE, 2016,
pp. 1–6.

[11] D. Di Dario, V. Pontillo, S. Lambiase, F. Ferrucci, and F. Palomba,
“Security testing in the wild: An interview study – online
appendix,” 2023. [Online]. Available: https://drive.google.com/drive/
folders/1LqHwc5vA8lmrLAlJueO750TSNYOX2f8b?usp=share link

[12] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar, “Software
security patch management-a systematic literature review of challenges,
approaches, tools and practices,” Information and Software Technology,
vol. 144, p. 106771, 2022.

[13] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and
A. Pretschner, “Security testing: A survey,” in Advances in Computers.
Elsevier, 2016, vol. 101, pp. 1–51.

[14] H. Frluckaj, L. Dabbish, D. G. Widder, H. S. Qiu, and J. HERB-
SLEB, “Gender and participation in open source software development,”
Proceedings of the ACM on Human-Computer Interaction, vol. 6, no.
CSCW2, pp. 1–31, 2022.

[15] S. Ghaisas, P. Rose, M. Daneva, K. Sikkel, and R. J. Wieringa,
“Generalizing by similarity: Lessons learnt from industrial case studies,”
in 2013 1st International Workshop on Conducting Empirical Studies in
Industry (CESI). IEEE, 2013, pp. 37–42.

[16] J. F. Hair, A. H. Money, P. Samouel, and M. Page, “Research methods
for business,” Education+ Training, vol. 49, no. 4, pp. 336–337, 2007.

[17] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvitie,
S. Hyrynsalmi, and V. Leppänen, “Diversification and obfuscation tech-
niques for software security: A systematic literature review,” Information
and Software Technology, vol. 104, pp. 72–93, 2018.

[18] S. Hove and B. Anda, “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in 11th IEEE
International Software Metrics Symposium (METRICS’05), 2005, pp.
10 pp.–23.

[19] M. Howard and S. Lipner, The security development lifecycle. Microsoft
Press Redmond, 2006, vol. 8.

[20] P. M. Institute, A Guide to the Project Management Body of Knowledge,
7th ed., 8 2021.

[21] J. Jones. (2008) Windows vista one year vulnerability report.
[Online]. Available: https://www.microsoft.com/security/blog/2008/01/
23/download-windows-vista-one-year-vulnerability-report

[22] R. A. Khan, S. U. Khan, M. Ilyas, and M. Y. Idris, “The state of the art on
secure software engineering: A systematic mapping study,” Proceedings
of the Evaluation and Assessment in Software Engineering, pp. 487–492,
2020.

[23] J. C. Knight, “Safety critical systems: challenges and directions,” in Pro-

ceedings of the 24th international conference on software engineering,
2002, pp. 547–550.

[24] M. N. Kreeger, “Security testing: Mind the knowledge gap,” ACM
SIGCSE Bulletin, vol. 41, no. 2, pp. 99–102, 2009.

[25] M. Kreitz, “Security by design in software engineering,” ACM SIGSOFT
Software Engineering Notes, vol. 44, no. 3, pp. 23–23, 2019.

[26] I. Krsul, “Software vulnerability analysis,” ETD Collection for Purdue
University, 01 2011.

[27] I. V. Krsul, Software vulnerability analysis. Purdue University, 1998.
[28] M. Kumar and A. Sharma, “An integrated framework for software

vulnerability detection, analysis and mitigation: an autonomic system,”
Sādhanā, vol. 42, pp. 1481–1493, 2017.

[29] P. Kumar and H.-J. Lee, “Security issues in healthcare applications using
wireless medical sensor networks: A survey,” sensors, vol. 12, no. 1, pp.
55–91, 2011.

[30] D. R. McKinnel, T. Dargahi, A. Dehghantanha, and K.-K. R. Choo, “A
systematic literature review and meta-analysis on artificial intelligence
in penetration testing and vulnerability assessment,” Computers &
Electrical Engineering, vol. 75, pp. 175–188, 2019.

[31] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
3rd ed. Wiley Publishing, 2011.

[32] M. Pezzè and M. Young, Software testing and analysis: process,
principles, and techniques. John Wiley & Sons, 2008.

[33] B. Potter and G. McGraw, “Software security testing,” IEEE Security &
Privacy, vol. 2, no. 5, pp. 81–85, 2004.

[34] B. Potter, “Microsoft sdl threat modelling tool,” Network Security, vol.
2009, no. 1, pp. 15–18, 2009.

[35] B. Potter and G. McGraw, “Software security testing,” IEEE Security &
Privacy, vol. 2, no. 5, pp. 81–85, 2004.

[36] S. Rafique, M. Humayun, Z. Gul, A. Abbas, H. Javed et al., “Systematic
review of web application security vulnerabilities detection methods,”
Journal of Computer and Communications, vol. 3, no. 09, p. 28, 2015.

[37] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges and
solutions when adopting devsecops: A systematic review,” Information
and software technology, vol. 141, p. 106700, 2022.

[38] M. C. Sánchez, J. M. C. de Gea, J. L. Fernández-Alemán, J. Garcerán,
and A. Toval, “Software vulnerabilities overview: A descriptive study,”
Tsinghua Science and Technology, vol. 25, no. 2, pp. 270–280, 2019.

[39] M. Sánchez-Gordón and R. Colomo-Palacios, “Security as culture:
a systematic literature review of devsecops,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, 2020, pp. 266–269.

[40] I. Schieferdecker, J. Grossmann, and M. Schneider, “Model-based secu-
rity testing,” arXiv preprint arXiv:1202.6118, 2012.

[41] D. Stahl, T. Martensson, and J. Bosch, “Continuous practices and
devops: beyond the buzz, what does it all mean?” in 2017 43rd Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2017, pp. 440–448.

[42] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in
software engineering research: A critical review and guidelines,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 120–131. [Online]. Available:
https://doi.org/10.1145/2884781.2884833

[43] H. Thompson, “Why security testing is hard,” IEEE Security & Privacy,
vol. 1, no. 4, pp. 83–86, 2003.

[44] K. Tuma, G. Calikli, and R. Scandariato, “Threat analysis of software
systems: A systematic literature review,” Journal of Systems and Soft-
ware, vol. 144, pp. 275–294, 2018.

[45] R. Wieringa and M. Daneva, “Six strategies for generalizing software
engineering theories,” Science of computer programming, vol. 101, pp.
136–152, 2015.

[46] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research methods
in software engineering,” in Empirical methods and studies in software
engineering. Springer, 2003, pp. 7–23.

[47] C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, The Art of Software
Security Testing: Identifying Software Security Flaws (Symantec Press).
Addison-Wesley Professional, 2006.

[48] J.-P. A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab, “Robotics
cyber security: Vulnerabilities, attacks, countermeasures, and recommen-
dations,” International Journal of Information Security, pp. 1–44, 2022.

8

https://opensamm.org/downloads/SAMM-1.0.pdf
https://drive.google.com/drive/folders/1LqHwc5vA8lmrLAlJueO750TSNYOX2f8b?usp=share_link
https://drive.google.com/drive/folders/1LqHwc5vA8lmrLAlJueO750TSNYOX2f8b?usp=share_link
https://www.microsoft.com/security/blog/2008/01/23/download-windows-vista-one-year-vulnerability-report
https://www.microsoft.com/security/blog/2008/01/23/download-windows-vista-one-year-vulnerability-report
https://doi.org/10.1145/2884781.2884833

	Introduction
	Related Work
	Research Study Design
	Step 1: Data Gathering
	Design of the Structured Interviews
	Design of the Semi-structured Interviews

	Step 2: Data Processing and Synthesis

	Analysis of the Results
	Participants Background Information
	RQ1 – Security Testing Arrangment
	RQ2 – How security testing is performed

	Lessons Learned
	Threats to Validity
	Threats to Construct Validity
	Threats to Conclusion Validity
	Threats to External Validity

	Conclusion

