
ECHO: An Approach to Enhance Use Case Quality
Exploiting Large Language Models

Gabriele De Vito,1 Fabio Palomba,1 Carmine Gravino,1 Sergio Di Martino,2 Filomena Ferrucci1
1Software Engineering (SeSa) Lab—Department of Computer Science, University of Salerno (Italy)

Department of Electrical, Engineering and Information Technologies—University of Naples ”Federico II” (Italy)
gabriele.devito@gmail.com, fpalomba@unisa.it, gravino@unisa.it, sergio.dimartino@unina.it, fferrucci@unisa.it

Abstract—UML use cases are commonly used in software
engineering to specify the functional requirements of a system
since they are an effective tool for interacting with stakeholders
thanks to the use of natural languages. However, producing high-
quality use cases can be challenging due to the lack of precise
guidelines and suitable tools. This can lead to problems, e.g.
inaccuracy and incompleteness, in the derived software artifacts
and the final product. Recent advancements in Natural Language
Processing and Large Language Models (LLMs) can provide
the premises for developing tools supporting activities based on
natural languages. In this paper, we propose ECHO, a novel
approach for supporting software engineers in enhancing the
quality of UML use cases using LLMs. Our approach consists of a
co-prompt engineering approach and an iterative and interactive
process with the LLM to improve the quality of use cases,
based on practitioners’ feedback. To prove the feasibility of
the proposal, we instantiated the approach using ChatGPT and
performed a controlled experiment to assess its effectiveness by
involving seven software engineering professionals. Three were
part of the experimental group and used ECHO to improve the
quality of the use cases. Three others were the control group
and enhanced the quality of use cases manually. Finally, the
last participant acted as an oracle, blind w.r.t. the groups, and
evaluated the quality of the enhanced use cases, both qualitatively
by means of a questionnaire, and quantitatively, by means of the
Use Case Points metric. Results show that ECHO can effectively
support software engineers to improve use cases’ quality thanks
to the prompts suitably designed to interact with ChaGPT.

Index Terms—UML Use Cases; Large Language Models;
Prompt Engineering; Size/Effort estimation.

I. INTRODUCTION

UML use cases are widely used in software engineering to
express the functional requirements of a system [15]. The main
advantage of use cases is that they are written in natural lan-
guage, and thus can be easily understood also by stakeholders,
to verify if the described functional requirements correspond
to their needs [14]. Nevertheless, this key advantage can also
result in their main drawback, as the absence of precise binding
rules can lead to poorly-written use cases. Let us observe
that the quality of use cases is critical for the quality of
all the other software artifacts deriving from them, such as
more detailed UML models, including sequence diagrams and
analysis object models [6]–[12], and then of the final product.
Accurate use cases are also critical for deriving better software
functional size measures, such as Use Case Points (UCP) [19]
employed for effort/cost estimation, benchmarking, produc-
tivity assessment, etc. [1]. Producing high-quality use cases

is time-consuming due also to the absence of adequate tool
support.

Given the importance of the quality of use cases, many
attempts have been made to apply Natural Language Pro-
cessing (NLP) techniques to reduce the risks of ambiguity,
incorrectness, and incompleteness [2]–[5]. However, as high-
lighted by Zhao et al. [16], these approaches have found
limited adoptions by practitioners, mostly due to technological
limitations of past NLP approaches. On the other hand, in
the last few years, the introduction of deep neural networks
to NLP has significantly changed the scenario, giving rise
to Large Language Models (LLMs). In particular, LLMs like
GPT-3 [23], PaLM [24], Megatron-Turing NLG [25], ChatGPT
[13] have billions of parameters and have been trained on
enormous amounts of text data, demonstrating to be effective
in various applications, including text summarization, machine
translation, and question-answering systems.

To the best of our knowledge, LLMs have not yet been ap-
plied for supporting requirements engineers in tasks involving
natural language and in particular for improving the quality
of use cases. To verify whether LLMs can be effective also in
this domain, we propose ECHO (Effective Communication
with llms to enHance the quality Of use cases), a novel
approach based on LLMs for supporting software engineers
in enhancing the quality of UML use cases. ECHO consists
of two main elements: (1) a novel co-prompt engineering
approach, which lets the LLM learn how to react to users’
inputs and produce the expected output. This technique allows
us to design a suitable prompt for the LLM to obtain the
qualitative analysis of use cases under our identified criteria
(prompt P1 in the sequel); and (2) an iterative process to
enhance the quality of use cases. This process allows software
engineers to interact with the LLM which, starting from
prompt P1, can give accurate suggestions according to the
expected quality criteria, consider the practitioners’ feedback
on the suggested improvements (prompt P2), and formulate
the enhanced version of the use cases based on the agreed
suggestions (prompt P3).

To validate our approach we have performed a study aiming
to address the following research question:

RQ: Can the ECHO approach support software engineers
to improve the quality of UML use cases?

We instantiate ECHO using ChatGPT Web interface. The
study involved seven software engineering professionals. One



of them acted as the oracle, and the other six were randomly
assigned to the experimental group (i.e., they used ECHO
to improve use cases) or to the control group (i.e., they
manually improved use cases). Both groups were given the
same use cases and asked to complete questionnaires. The
oracle assessed the quality of the enhanced use cases at the
final stage, unaware of the group that improved them.

The outcome of this research can contribute to designing
effective prompts to interact with language models and to
develop approaches for enhancing the quality of software
requirements and estimating software development efforts,
leading to improved software development project outcomes.

Structure of the paper. Section II discusses the background
and the motivations leading to our approach. In Section III
we report on the design of our approach, while Section
IV overviews the research method employed to assess it.
Section V discusses the results achieved when measuring the
performance of our approach, with Section VI that presents
the potential limitations of our work and how we addressed
them. Finally, Section VII concludes the paper and outlines
our future research agenda.

II. BACKGROUND AND MOTIVATION

UML use cases are a software engineering technique that
specifies system requirements in natural language. However,
creating high-quality use cases is challenging also since no
precise binding rules are available. To be considered high-
quality, use cases must meet various criteria, including cor-
rectness, completeness, and clarity. Correctness requires the
use case to describe the system’s behavior accurately (i.e., the
steps must be in the correct order, and should be atomic).
Completeness demands that all possible scenarios, including
alternative and error scenarios, be covered. Clarity mandates
that all stakeholders can easily understand the use case without
ambiguity. In addition, the use case must follow a logical
sequence of events, provide the same level of detail for each
step, and use consistent terminology. Many attempts have been
undertaken to examine requirements specifications using NLP
to reduce the risk of quality issues before employing them
in subsequent stages of the software development lifecycle
[2]–[5]. Nonetheless, the approaches employed consider tradi-
tional analysis techniques, general-purpose tools, and generic
language lexicons, which limit their adoption [16].

Over the last years, there have been significant advances
in the NLP domain thanks to the introduction of deep neural
networks and LLMs. LLMs exhibit learning and generalization
abilities with only a few examples (few-shot learning), where
a prompt can guide LLMs to generate the correct answers
for desired tasks [21], [22]. Several studies have shown the
effectiveness of LLMs in supporting software development
tasks [17], [18] (i.e., code generation, bug fixing, and ar-
chitectural analysis). Therefore, it is reasonable to think that
LLMs can help in other software engineering tasks, such as
supporting practitioners in enhancing the quality of UML use
cases. However, the effectiveness of the results produced by
LLM is closely linked to the quality of the prompts the user

gives. Indeed, although various versions of the same sentence
can have the same meaning for humans, the same is not
true for LLMs, which can then provide different answers to
essentially identical questions formulated in a slightly different
way. This behavior might happen because LLMs have learned
that various sentences are employed in different situations,
contexts, and goals.

This means that prompts can heavily impact the subsequent
interactions and output generated by an LLM through specific
instructions for the conversation based on a predetermined set
of rules because “prompting is programming, representing the
query language for large language models” [20].

To better understand the importance of prompt engineering,
see the example in Fig. 1, where we asked ChatGPT to
produce a specific response to improve use case quality.
Without providing ChatGPT with the right prompt, the tool
generates an incomplete and undetailed response, which does
not consider preconditions and does not comprise details for
all the criteria and aspects we need.

Fig. 1. Unoptimized instructions provided to ChatGPT.



As we can note, the default ”behavior” of ChatGPT is
inadequate to achieve the desired result. Therefore, we need
to find the correct prompts and rules to instruct an LLM for
improving use cases quality, which motivated our approach,
as discussed in detail in the next section.

III. THE ECHO APPROACH

This section illustrates ECHO which comprises two primary
phases: 1) Co-Prompting Method Engineering, 2) Feedback-
Based process to enhance the quality of use cases.

A. Co-Prompting Method Engineering

Prompt engineering is a creative fine-tuning approach with
multiple promptings until we get the desired responses from
the model. Some prompt engineering patterns exist. Among
them, the “Persona pattern,” gives the LLM a persona or role to
play when generating output [26]. This pattern intends to give
the LLM a “role” that helps it to select what types of output to
generate and what details to focus on. Based on this pattern,
we set a role for the LLM, i.e., starting our prompt with the
words ”Act as a . . . ” (e.g., ”Act as a software engineer. . . ”)
and then add as many details as possible. The answer will be
more pertinent to the role indicated.

However, this approach still makes a detailed analysis of
the quality of use cases hard to obtain. This issue concerns
the high number of quality criteria and aspects the LMM
must consider simultaneously, acting in that particular role.
Therefore, it is necessary to proceed with subsequent feedback
to allow the LLM to formulate a more precise analysis, such
as: ”You did not consider the preconditions. Moreover, I need
details for each criterion regarding the following aspects:
basic flow, alternative flows, actor descriptions, preconditions,
postconditions, and error handling.”

This process can continue with constant feedback and tuning
until we obtain the desired result.

Taking into account the above considerations, the question
is: having the desired analysis, how can we design the right
prompt to instruct the LLM to produce exactly that output?
Aiming to find an answer, we decided to use ChatGPT as a
prompt engineering companion, asking it how to provide input
to enable it to generate the desired results, as follows: ”Act as
a prompt engineer. Write the prompt I should have written so
that you understood how to provide an analysis similar to the
last one.” This led ChatGPT to suggest the correct instructions
to get that particular response. The final version of the prompt
(P1) to send to ChatGPT in order to provide a preliminary
use case analysis is shown in Fig. 2, while the ChatGPT’s
response to P1 is shown in Fig. 3.

As we can see, the response produced by the tool is now
complete and detailed because it comprises all the criteria and,
for each criterion, the aspects we requested to improve the use
case quality.

B. Iterative process to enhance the quality of Use Cases

The second stage of our approach is related to the design
of an effective process that, starting with the initial qualitative

Fig. 2. Prompt P1: Starting Use Case Analysis.

analysis of a use case using the prompt P1, (i) allows us to tune
the analysis, considering the practitioners’ feedback iteratively,
and (ii) produces the enhanced version of the use case.

Feedback is critical because we want ChatGPT able to
remove suggestions from the qualitative analysis or simply
need more details on a specific criterion. For example, let us
suppose that ChatGPT provides the following suggestion to
improve the use case:

”The use of examples or screenshots could also
enhance clarity.”

While the suggestion is generally valid, adding examples of
values for input (or output) fields does not necessarily make
the use case clearer. In this case, we can ask ChatGPT to ignore
the suggestion in its analysis using the prompt (P2) shown in
Fig. 4, where the ”SUGGESTIONS” placeholder represents
the list of analysis suggestions we want the tool to ignore.

On the other hand, to ask ChatGPT to provide the improved
version of a use case, the prompt (P3) to employ is shown in
Fig. 5. Indeed, we can ask ChatGPT to reanalyze the improved
version of the analyzed use case, and the process can continue
until we are satisfied with the quality of the use case version
provided by the tool.

With these building blocks to instruct the LLM, we can
design the overall iterative ECHO process shown in Fig. 6.

Considering the limitations of the ChatGPT conversational
context (maximum number of tokens 4096, including input



Fig. 3. ChatGPT analysis of a use case in response to P1

Fig. 4. Prompt P2: Feedback to ChatGPT

and output tokens), i.e., the content of the dialogue between
the user and the chatbot, it is necessary to repeat prompt P1
(and following P2 and P3) for each new use case to analyze.

The transcripts of the conversations with ChatGPT for our
prompt engineering approach are available as supplemental
material on GitHub at https://github.com/gadevito/FGG.

IV. EXPERIMENTAL METHOD

This section describes the design of our experimentation
while the results are presented in the next section.

A. Experiment definition and context

To answer our research question and assess the proposed ap-
proach, we conducted an experiment involving 6 professionals
from an Italian IT company and a consultant. The company
was founded in 2002 and has over 50 employees. It has
adopted the Agile development process, using UML regularly.
The involved professionals had the same experience level. All
participants have worked with UML use cases for 5-7 years.
They had the same distribution of roles, with all participants
being business analysts or product owners. Most of them

Fig. 5. Prompt P3: Asking for the Enhanced Use Case version

Fig. 6. Enhancing use case quality activity diagram.

had never used LLMs. The consultant was an experienced
professional with over 25 years of experience in software
engineering and more than 15 years of experience in software
effort/size estimation.

For our experiment, we used 5 use cases, written in English,
from a use case model provided by an Italian IT Company
that works in the Telemedicine field. The use case model
contained the requirement specifications of a microservice
application based on the IoT paradigm. The use cases had
different complexity, quality, and linguistic styles.

B. Variable selection

We identified the following variables for our experiment:
• Quality: high-quality use cases must include elements,

such as the basic flow, alternative flows, actor descrip-
tions, preconditions, post condition, and error handling,
and must satisfy the following criteria:

– Correctness: use cases must accurately describe the
system’s behavior regarding the steps in all flows,
actors, and pre and post-conditions.

– Completeness: the steps in all flows must be present
and in the correct order, all the actors must be



TABLE I
CRITERIA AND ASPECTS FOR EVALUATING THE QUALITY OF USE CASES

Basic Flow Alternative flows Actor descriptions Preconditions and Error handling
postconditions

Completeness No. of missing steps No. of missing or No. of missing or No. of missing or No. of missing or
incomplete flows inaccurately incomplete conditions incomplete scenarios

described actors
1. Poor > 3 > 3 > 3 > 3 > 3
2. Fair 2-3 2-3 2-3 2-3 2-3
3. Sufficient 1 1 1 1 1
4. Good All essential steps are All essential flows are All actors are present All essential conditions are All essential scenarios are

present present and complete present present
5. Excellent All steps are present All alternative flows All actors are present All preconditions and All error scenarios are

are present and complete and accurately postconditions are present and ensure the
described present and complete system’s reliability

Correctness % of incorrect steps % of incorrect flows % of incorrect % of incorrect % of incorrect
descriptions conditions scenarios

1. Poor > 50% > 50% > 50% > 50% > 50%
2. Fair 30− 50% 30− 50% 30− 50% 30− 50% 30− 50%
3. Sufficient 10− 30% 10− 30% 10− 30% 10− 30% 10− 30%
4. Good < 10% < 10% < 10% < 10% < 10%
5. Excellent All the steps are All the alternative All the actor All the conditions All the error scenarios

correct flows are correct descriptions are correct are correct are correct
Clarity No. of unclear or No. of unclear or No. of unclear or No. of unclear or No. of unclear or

ambiguous steps ambiguous flows ambiguous descriptions ambiguous conditions ambiguous scenarios
1. Poor > 3 > 3 > 3 > 3 > 3
2. Fair 2-3 2-3 2-3 2-3 2-3
3. Sufficient 1 1 1 1 1
4. Good All essential steps are All flows are clear All actors are clear All conditions are All scenarios are

clear and unambiguous and unambiguous and unambiguous clear and unambiguous clear and unambiguous
5. Excellent All steps are All flows are All actors are clearly, All conditions are All scenarios are clear

unambiguous and easy unambiguous, and and accurately clear, unambiguous, and unambiguous, and
to follow add value to described, and their and accurately reflect help ensure system’s

the use case interactions are clear the system state reliability

accurately described, and pre and post-conditions
must be present and complete.

– Clarity: use cases must be clear, without ambi-
guities, and easily understandable by stakeholders.
They must not have discrepancies, follow a logical
sequence of events, provide the same level of detail
for each step, and use consistent terminology.

The above quality criteria are evaluated according to
Table I, where the total score (sum of all the scores
of the aspects analyzed) for each criterion is calculated
as follows: Poor (5-10), Fair (11-15), Sufficient (16-20),
Good (21-24), Excellent (25-25).

• Unadjusted UCP: as a sort of sanity check, we used
the number of Unadjusted Use Case Points (UUCP) of
the analyzed use cases to quantitatively assess the impact
of the improvement. In particular, we selected UUCP
method because it is less subjective and less dependent
on weights [19].

C. Experiment setting

We chose the consultant as the oracle and randomly as-
signed the other software engineers to the experimental and
control groups. The members of the two groups did not know
the group they belonged to. We asked both groups to improve
the use cases provided. In particular, the experimental group
was asked to use ECHO, while the control group was asked
to proceed manually.

As a preliminary step, we trained the experimental group’s
members in an hour-long session on using ECHO. In partic-
ular, we taught them how to use the prompts we designed
(described in Section IV) to ask ChatGPT to analyze the
quality of use cases and get suggestions (P1), ask ChatGPT to
consider their feedback (P2) and provide the new, improved
version of the use case (P3). We also asked the experimental
group to execute at least two iterations of the ECHO process to
improve the use cases. We asked each group to keep track of
the changes made to the initial use cases regarding the criteria
and aspects listed in Table I and to fill in the questionnaire n. 1
(see Tables II and III), reporting the scores for each criterion,
and the time taken to improve each use case. Afterward, each
group worked independently while members of each group
performed the required tasks together.

D. Data analysis

The use cases improved by the two groups were subjected
anonymously to the evaluation of the oracle, based on the
criteria indicated in Table I, who proceeded to fill in ques-
tionnaire no. 2 (see Table V), reporting the scores of the
various criteria and calculating the number of UUCPs of the
improved use cases. At the end of the experiment, we asked the
experimental group to fill in questionnaire no. 3 (see Table IV),
which included questions to rate the level of satisfaction with
using ECHO.



TABLE II
QUESTIONNAIRE NO. 1 – QUALITY ASSESSMENT OF USE CASES EXECUTED BY THE CONTROL GROUP

Use Completeness Correctness Clarity Number of Effort
Case (Score: 1-5) (Score: 1-5) (Score: 1-5) changes (Minutes)

1 3 3 2 13 13
2 2 3 2 17 16
3 2 3 3 8 9
4 2 3 2 13 17
5 2 3 2 10 12

TABLE III
QUESTIONNAIRE NO. 1 – QUALITY ASSESSMENT OF USE CASES EXECUTED BY THE EXPERIMENTAL GROUP

Use Completeness Correctness Clarity Number of Number of Effort
Case (Score: 1-5) (Score: 1-5) (Score: 1-5) changes discarded (Minutes)

suggestions
1 2 3 2 16 0 5
2 2 3 2 14 0 6
3 2 3 2 14 0 3
4 2 3 2 14 0 6
5 2 2 2 20 1 6

TABLE IV
QUESTIONNAIRE NO. 3 – EXPERIMENTAL GROUP’S EXPERIENCE WITH USING ECHO

No. Questions Answers
1 How easy was it to use ECHO to enhance the quality of the use cases? - 4.3 (Mean)

(1 Very difficult – 5 Very easy)
2 How useful do you think ECHO was in enhancing the quality of the use case scenarios? - 4.7 (Mean)

(1 Not useful at all - 5 Extremely useful)
3 How satisfied are you with ECHO in improving use cases? - 4.7 (Mean)

(1 Not satisfied at all - 5 Extremely satisfied)
4 Would you use ECHO to improve the quality of use cases? - 4.3 (Mean)

(1 Not probable at all - 5 Very probable)
5 Do you plan to experiment with ChatGPT for other software engineering tasks? - 4.3 (Mean)

(1 Not at all - 5 Sure)
6 If yes, which? - Requirements Engineering: 100%

(Requirements Engineering - System Design - Software Development - Testing - Other) - Testing: 66%

The initial use cases, the use cases improved by the two
groups, the logs of the changes made, and the ChatGPT re-
sponses in the different phases of the experiment are available
as supplemental material on GitHub at: https://github.com/
gadevito/FGG.

V. RESULTS AND DISCUSSION

Tables II and III present the outcomes of questionnaire no.
1, obtained after the two groups improved the provided use
cases in the initial phase of our experiment. Fig. 7 illustrates
an instance of a use case enhanced by the two groups.

The control group spent from 9 to 17 minutes making 12.2
changes on average per use case, while the experimental group
spent from 3 to 6 minutes making 15.6 changes on average and
discarding only one suggestion of those provided by ChatGPT,
indicating that the use of ECHO can reduce the effort required
to improve use cases.

Then, as planned, the oracle assessed the use cases im-
proved by the two groups, calculated their UUCP values, and
answered questionnaire no. 2 (to specify the quality of the
enhanced use cases) whose results are shown in Table V.

We can observe that the oracle’s assessment of the use
cases improved by the control and experimental groups was
similar in clarity. However, the experimental group’s improved
versions were slightly better in correctness and completeness,
indicating that ECHO effectively supports professionals in
enhancing the quality of UML use cases. As for the use case
size measurement, the original versions were characterized by
101 UUCPs in total, as measured by the oracle. Differently,
126 UUCPs were obtained for the use cases enhanced by
the control group and 131 UCCPs for the use case versions
enhanced by the experimental group. Analyzing the number
of UUCPs obtained and use cases, the Oracle found that
the control group merged some system actions, leading to
an error in determining the total number of transactions.
This incorrectness impacted the obtained UUPCs value, which
relies on an accurate transaction count.

Finally, we assessed the level of satisfaction with using
ECHO for software engineering tasks from the answers to the
questionnaire no. 3 provided by the experimental group. The
results are shown in Table IV and indicate that users found
ECHO to be easy to use, helpful, and satisfying in enhancing



TABLE V
QUESTIONNAIRE NO. 2 – QUALITY ASSESSMENT OF THE ENHANCED USE CASES EXECUTED BY THE ORACLE

Completeness Correctness Clarity UUCP
(Score: 1-5) (Score: 1-5) (Score: 1-5) (Score: 1-5)

Use Control ECHO Control ECHO Control ECHO Initial Control ECHO
Case Group Group Group Group Group Group Group Group

1 4 5 4 5 5 4 23 28 33
2 4 4 5 5 5 4 30 30 30
3 4 5 5 5 4 5 20 30 30
4 4 4 4 5 4 4 15 20 20
5 4 5 4 5 4 5 13 18 18

Fig. 7. Example of a use case improved by the two groups.

the quality of use cases. In particular, the average score for
how easy it was to use ECHO was 4.3 out of 5, suggesting that
most users found it straightforward to work with the tool. The
average score for how valuable ECHO was in enhancing the
quality of use case scenarios was 4.7 out of 5, indicating that
users found the approach very effective in improving use cases.
Additionally, the average score for satisfaction with ECHO in
improving use cases was 4.7 out of 5, which implies that users
were generally pleased with the results they obtained from
using the tool. Regarding whether users would use ECHO
to improve the quality of use cases, the average score was
also 4.3 out of 5, indicating that the majority of users were
likely to continue using our approach. Furthermore, the results
show that participants plan to experiment with ChatGPT for
other software engineering tasks, with a special interest for
Requirements Engineering and Testing tasks.

Summary for RQ: ECHO can effectively support software
engineers in improving the quality of UML use cases in terms
of completeness, correctness, and clarity. Moreover, it can help
to identify missing details or unclear requirements, obtain

more complete transactions in the use case scenarios and,
therefore, improve the accuracy of their size estimation in
terms of UCPs.

VI. THREATS TO VALIDITY

In the following we outline potential issues that may have
affected our findings and how we addressed them.

One potential threat to internal validity is the possibil-
ity of participant bias. Participants may have answered the
questionnaires in a way that they believed would please the
researchers or may have been influenced by the knowledge
that they were part of an experiment. To mitigate this threat,
the researchers ensured that the participants were unaware of
the hypothesis being tested and provided anonymity to ensure
honest responses. Moreover, the Hawthorne effect is possible,
where participants may change their behavior because they
know they are being observed. To mitigate this threat, we
divided the participants into two groups, reduced the study
duration, and allowed the groups to operate without being
physically observed.



One potential threat to external validity is the generaliz-
ability of the results to the entire population. The study was
conducted with a small sample of all business analysts or
product owners with experience in UML use cases. Therefore,
the results may not generalize to other groups, such as software
developers or designers. Moreover, the number and the domain
of use cases used for the experiment were limited. Future
studies could include a more diverse sample of participants
and a higher number of use cases related to different domains
to ensure generalizability. Another potential threat is the
potential for a novelty effect. Most of the experimental group’s
participants were using LLMs for the first time, which may
have influenced their results. Future studies could include a
more extended period for participants to become familiar with
LLMs before experimenting.

VII. CONCLUSIONS AND FUTURE WORK

This study provides initial evidence that ECHO can be
effective in enhancing the quality of UML use cases, also
reducing the effort with respect to a manual verification. Our
study also found that starting from the use cases improved
by the experimental group a more accurate size estimation in
terms of UUCPs can be derived w.r.t. the ones based on the
use cases enhanced by the control group, indicating that ECHO
can be effective in improving the accuracy of UCP estimation,
given the better quality of the use cases.

Moreover, the study revealed that our approach could help
identify missing or unclear requirements, improving overall
system quality. The satisfaction survey results show that the
users found ECHO easy to use, helpful, and satisfying in
enhancing the quality of use cases. Additionally, most users
reported continuing to use ECHO to improve the quality of
UML use cases. Many expressed interest in using ChatGPT
for other software engineering tasks.

Future research could investigate the effectiveness of LLMs
in enhancing the quality of other types of software artifacts,
such as requirements documents, design specifications, and
test cases. In addition, studies could explore the impact of
varying the different LLM model hyperparameters.

ACKNOWLEDGMENT

We thank Kiranet s.r.l. for providing the use case model for
the study and thank the professionals for their commitment.

REFERENCES

[1] Azzeh, M., Nassif, A. B., Attili, I. B. (2021). “Predicting software
effort from use case points: A systematic review.” Science of Computer
Programming, 204, 102596.

[2] Antonio Bucchiarone, Stefania Gnesi, Giuseppe Lami, Gianluca
Trentanni, and Alessandro Fantechi. 2008. QuARS Express - A Tool
Demonstration. “In Proceedings of the 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’08). IEEE
Computer Society,” Washington, DC, USA, 473–474.

[3] Leah Goldin and Daniel M. Berry. 1997. AbstFinder, A Prototype
Natural Language Text Abstraction Finder for Use in Requirements
Elicitation. “Automated Software Engg.” 4, 4 (Oct. 1997), 375–412.

[4] Miles Osborne and CK MacNish. 1996. Processing natural language
software requirement specifications. “In Proceedings of the Second
International Conference on Requirements Engineering.” 229–236.

[5] Daniel Popescu, Spencer Rugaber, Nenad Medvidovic, and Daniel M.
Berry. 2008. Innovations for Requirement Analysis. From Stakeholders’
Needs to Formal Designs. Springer-Verlag, “Chapter Reducing Ambigu-
ities in Requirements Specifications Via Automatically Created Object-
Oriented Models,” 103–124.

[6] Alejandro Rago, Claudia Marcos, and J. Andrés Diaz-Pace. 2013.
Uncovering quality-attribute concerns in use case specifications via early
aspect mining. “Requirements Engineering” 18, 1 (01 Mar 2013), 67–84

[7] Alessandro Fantechi, Stefania Gnesi, Giuseppe Lami, and Alessandro
Maccari. 2003. Applications of linguistic techniques for use case anal-
ysis. “Requirements Engineering” 8, 3 (01 Aug 2003), 161–170

[8] Avik Sinha, Stanley M Sutton Jr, and Amit Paradkar. 2010. Text2Test:
Automated Inspection of Natural Language Use Cases. “In 2010 Third
International Conference on Software Testing, Verification and Valida-
tion.” 155–164.

[9] Bente Anda and Dag I. K. Sjøberg. 2002. Towards an Inspection
Technique for Use Case Models. “In Proceedings of the 14th Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE ’02). ACM,” New York, NY, USA, 127–134.

[10] William Brace and Kalevi Ekman. 2014. CORAMOD: a checklist-
oriented modelbased requirements analysis approach. “Requirements
Engineering” 19, 1 (2014), 1–26.

[11] Karl Cox, Aybuke Aurum, and Ross Jeffery. 2004. An Experiment in
Inspecting the Quality of Use Case Descriptions. “Journal of Research
and Practice in Information Technology” 36, 4 (2004), 211–229.

[12] KeithThomas Phalp, Jonathan Vincent, and Karl Cox. 2007. Improving
the quality of use case descriptions: empirical assessment of writing
guidelines. “Software Quality Journal 15,” 4 (2007), 383–399.

[13] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. 2022. Training language models to follow instructions with
human feedback. “arXiv”.

[14] Alistair Cockburn. 2001. Writing effective use cases. Vol. 1. “Addison-
Wesley Boston.”

[15] Ivar Jacobson, Magnus Christerson, Patrik Jonsson and Gunnar Over-
gaard. 1992. Object-Oriented Software Engineering: A Use-Case Driven
Approach (“AddisonWesley,” Reading, MA, 1992 ed.).

[16] Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A.,
Chioasca, E. V., and Batista-Navarro, R. T. (2021). Natural language
processing for requirements engineering: A systematic mapping study.
“ACM Computing Surveys (CSUR),” 54(3), 1-41.

[17] Sobania, D., Briesch, M., Hanna, C., and Petke, J. (2023). An analysis
of the automatic bug fixing performance of chatgpt. “arXiv preprint
arXiv:2301.08653.”

[18] Ahmad, A., Waseem, M., Liang, P., Fehmideh, M., Aktar, M. S.,
and Mikkonen, T. (2023). Towards Human-Bot Collaborative Software
Architecting with ChatGPT. “arXiv preprint arXiv:2302.14600.”

[19] G. Karner, Metrics for objectory, Master’s thesis, University of
Linköping, Sweden, 1993.

[20] Beurer-Kellner, L., Fischer, M., and Vechev, M. (2022). Prompting Is
Programming: A Query Language For Large Language Models. arXiv
preprint arXiv:2212.06094.

[21] Yogatama, D., d’Autume, C. D. M., Connor, J., Kocisky, T.,
Chrzanowski, M., Kong, L., ... & Blunsom, P. (2019). Learning and eval-
uating general linguistic intelligence. arXiv preprint arXiv:1901.11373.

[22] Gao, T., Fisch, A., & Chen, D. (2020). Making pre-trained language
models better few-shot learners. arXiv preprint arXiv:2012.15723.

[23] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal,
P., ... & Amodei, D. (2020). Language models are few-shot learners.
Advances in neural information processing systems, 33, 1877-1901.

[24] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts,
A. ... & Fiedel, N. (2022). Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311.

[25] Kharya, P., & Alvi, A. (2021). Using DeepSpeed and megatron to
train megatron-turing NLG 530B, the world’s largest and most powerful
generative language model. NVIDIA Developer Blog.

[26] White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., ... &
Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382.


