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Abstract—The software industry has rapidly increased in
complexity and scale, leading to challenges in managing in-
formation and tasks among developer teams, often resulting
in inefficiencies, misunderstandings, and delays. Moreover, the
increasing search for automated tasks led to the extensive
adoption of chatbots—a.k.a. conversational agents—for software
development purposes. However, despite their undoubted positive
contributions, practitioners started to identify numerous issues
deriving from their adoption, both technical and social, first of
which, the uselessness of the provided support due to the bot’s
lack of full working context. To address such a limitation, we
propose C4SE, a chatbot designed to assist software engineers
and managers in performing several tasks. The idea behind the
bot is to collect information from the different tasks that could be
useful for others to provide better support and tailor the bot to
the specific operational context—i.e., the development team using
it. To enable such task heterogeneity and contextual persistence,
we operationalize the GPT 3.5 model for understanding the user’s
intent and a specialized data store based on a vector database
for long-term memory for maintaining contextual information.
With these characteristics, C4SE can provide benefits to the
entire software development lifecycle increasing practitioners’
productivity. We presented a prototype of the tool able to perform
code suggestions, code reviews, GitHub API operationalization,
and unit and acceptance test case generation. A preliminary
evaluation was carried out reporting encouraging results.

Index Terms—Chatbot, software engineering, large language
model, LangChain, vector database

I. INTRODUCTION

Software development has become increasingly complex,
requiring software teams to handle an overwhelming amount
of information and tasks. For such a reason, chatbots (a.k.a.
conversational agents) have become popular thanks to their
ability to automate tasks and improve communication and
collaboration among team members [3, 25]. Specifically, prac-
titioners have started to use chatbots for a large plethora of
tasks, e.g., supporting writing code [2, 31], information shar-
ing [10, 17], and improving communication and collaboration
in team [6]. Moreover, big techs have been proposing their
own solutions for supporting developers during code writing,
like Copilot,1 for GitHub, and Tabnine.2

However, existing chatbots for software engineering pur-
poses (SE chatbots) have several limitations. They cannot
often fully contextualize users’ prompts, resulting in lim-
ited flexibility and clarity in communication [15, 28, 31].
Moreover, they usually support a very narrow set of tasks

1GitHub Copilot site: https://github.com/features/copilot
2Tabnine site: https://www.tabnine.com

(usually a single task such as code suggestion), limiting their
effectiveness and value to software engineers. Furthermore,
chatbots are usually trained with external resources (e.g., Stack
Overflow and GitHub). In this way, they cannot learn from
the data available within a software development project to
provide personalized and context-driven support. The above
limitations have been partially addressed by Large Language
Models (LLMs)—i.e., complex models consisting of a neural
network trained on large quantities of unlabelled text using
self-supervised learning [23]. Systems using such models, like
GPT-3.5,3 can contextualize and reason over prompts and
converse naturally and flexibly, eliminating the context issue
described above. However, current LLMs have limitations,
including challenges in controlling them to obtain the desired
output, fixed and limited knowledge bases (KBs), and no
memory of previous conversations.

Starting from the limitations mentioned above, this paper
introduces C4SE, a chatbot powered by GPT-3.5, and designed
specifically for software engineering teams. C4SE can be seen
as a value-added software team member and can assist with a
large plethora of tasks—e.g., code review, code suggestion,
unit and acceptance test case generation, and GitHub task
execution—improving team productivity, collaboration, and
increasing projects’ success rate. C4SE implements a novel
storage technology—based on vector databases— for imple-
menting long-term memory, allowing it to learn quickly and
remember past interactions with the team.

The contributions of our paper are threefold. Firstly, we
introduce C4SE, an open-source, fully extendable bot for
supporting software engineers during all the phases of the
software development lifecycle. Moreover, we provide a novel
approach for building and designing chatbots that go beyond
the limitations of traditional SE chatbots by enabling our
chatbot to (1) understand and maintain the context of the
conversation, (2) answer users’ requests according to past
interactions, and (3) propose tailored solutions on problems
that go beyond his “default” knowledge. Finally, our paper
provides insights into the potential of LLMs and vector
databases to dynamically enrich LLM’s knowledge base and
ensure accurate answers to user queries and practical support
to software engineers. With our study, we hope to help teams
collaborate more effectively, with a consequent increase in the
practitioner’s quality of life.

3GPT Models site: https://platform.openai.com/docs/models
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II. RELATED WORK

The recent progress in Artificial Intelligence (AI) and
Natural Language Processing (NLP) led to the widespread
utilization of chatbots [24, 29], especially in the software
engineering context [3, 21, 27]. A chatbot is a particular
type of bot—an application that automates repetitive, dull, or
predefined tasks [20, 25]—characterized by the fact that it
communicates with users using a communication channel and
natural language.

In the context of code generation, Qasse et al. [21] pro-
posed iContractBot, a conversational bot, to aid developers
in constructing smart contracts on blockchain platforms. A
use case is presented to demonstrate how the bot can be
utilized for creating models and generating the deployment
artifacts for smart contracts based on a simple conversation.
Moreover, GitHub and OpenAI collaborated to release GitHub
Copilot, a so-called “AI pair programmer“ able to support
developers in writing source code. Utilizing the comprehensive
OpenAI Codex model, which underwent training on open-
source GitHub code, Copilot is competent in proposing code
snippets for various programming languages starting from
user comments. More related to testing activities, Okanović
et al. [18] developed PerformoBot. The bot operates in the
context of load testing and guides developers through the
process of properly specifying the parameters of the test, other
than automatically executing it.

Analyzing such tools, we identified two important limi-
tations when analyzing the state of the art about bots for
SE tasks. First, most of the available bots are designed for
performing a single (or few) tasks, forcing developers to
adopt many tools—often not goodly integrated through each
other—during their work cycle. Second, practitioners lament
a lack of context awareness of the utilized bots [15, 28, 31],
which answer questions generally and not considering their
working habits.

LLMs, such as GPT-3.5 and ChatGPT [19], have emerged
as a valuable technology to perform NLP tasks and de-
velop chatbots. Indeed, ChatGPT is a chatbot model that
can quickly generate high-quality text, saving time and effort
in the software development process. ChatGPT can assist in
various tasks in software development, such as requirements
elicitation, natural language processing, and automated code
generation [1, 8]. However, ChatGPT has several limitations
and drawbacks. The first limitation is the chatbot’s context
size, namely the total number of tokens that comprise the
user’s input and the generated text, which is limited to 4096
tokens. So, it cannot deal with long conversations or analyze
long documents, such as use case documents or other software
artifacts. In addition, the knowledge base on which it was
trained is fixed and limited to the end of 2021. So, ChatGPT
does not know what happened in the world after that date, and
consequently, in the software engineering field. For example,
asking ChatGPT to explain what LangChain is will answer as
follows: “I’m sorry, but I don’t have any information on a
technology or concept called ”Langchain”. Could you please

provide more context or background information so I can
better understand what you are referring to?”. Moreover, it
cannot execute scripts or external software, which limits its
potential, especially regarding software engineering tasks.

As a result, there is a need to find different approaches
for chatbots based on LLMs to manage long texts (for exam-
ple, for Q&A), enlarge their memory to deal with extended
conversations, augment their knowledge base, and execute
external software and functionalities. C4SE aims to address
these limitations, as described in detail in the next section.

III. THE C4SE SYSTEM

This work aims to present C4SE, a chatbot designed to
perform a large plethora of software engineering tasks and
support both engineers and managers during the software
development lifecycle. The bot relies on three different tech-
nologies: LangChain,4 GPT-3.5, and Pinecone.5 LangChain
is a software development framework designed to simplify
the creation of applications using LLMs. LangChain helps
create more complex workflows using agents and chaining
different prompts interactively. GPT-3.5 is one of the most
advanced LLMs and a powerful tool for natural language
processing tasks. Therefore, it allows C4SE to provide an
intuitive and fluid conversation with users. Finally, Pinecone
is a fully managed vector database that stores and indexes
the vector representation of NLP sentences, allowing for fast
and accurate similarity search and retrieval across massive
datasets of unstructured data. Combining these technologies
allows for the orchestration of the different tasks of C4SE and
the enhancement of the bot with a large knowledge base.

Another essential aspect to consider is that LangChain
allows using different types of LLMs (i.e., AI21,6 Aleph Alfa,7

Cohere,8) and different types of vector databases (i.e., Qdrant,9

Chroma,10 and Redis11) and simply interfacing new ones.
Therefore, it is possible to choose the most suitable tool for
each task; for instance, it is possible to make various LLMs
interact to carry out a specific task in the best way.

A. Motivating Scenarios

In this section, to better understand the potential impact
and contribution of C4SE, we present two scenarios—as-is
and visionary [5]. The former aims to provide the current state
and identify limitations and challenges; the second present the
situation with the tool and stresses the gained benefits (the two
scenarios share the same characteristics for the actor).

As-is Scenario

4LangChain site: https://github.com/hwchase17/langchain
5Pincone site: https://www.pinecone.io/
6AI21 site: https://docs.ai21.com/
7Aleph Alfa site: https://docs.aleph-alpha.com/docs/introduction/luminous/
8Cohere site: https://cohere.com/about
9Qdrant site: https://qdrant.tech/
10Chroma site: https://github.com/chroma-core/chroma
11Redis site: https://redis.com/solutions/use-cases/vector-database/
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Mary is a software engineer working in a software team
that has to implement a software module starting from
a use case. Such a software module must take a list
of books (as information) from an API and translate
them into a format that an already implemented web
application uses. Mary has no knowledge about the API,
so they ask a bot, GitHub Copilot, to help implement
the module. Therefore, Copilot provides Mary with the
code, and Mary implements it and makes the software
module. Then, they use Probot—a bot for automatically
performing some action on GitHub—to push the code to
the repository. On the day above, Mary wanted to update
the code and make some documentation for acceptance
testing. First, Mary indicates Probot to clone the code
from the repository; to do this, she needs to specify
precisely the repo and code to clone. After updating it,
she started from the use case to write the acceptance
testing for the implemented feature. Unfortunately, there
is no bot for performing this, so Mary has to do this on
their hand.

The as-is scenario described a typical situation reported by
many works on state of the art about chatbots adopted for
software engineering. First, using different bots to perform
each task leads to a loss of productivity due to the time spent
interacting with and mastering the different tools [26, 28].
Second, linked to the previous issues, there is a lack of
context issue; the fact that the tools do not share or maintain
knowledge leads developers to repeat essential information to
achieve their goals [15, 28, 31]. Moreover, the use of third-
party tools—most of the time deployed on the web—could
also bring privacy issues—at least in terms of practitioners’
perceptions [4, 9, 16].

Visionary Scenario

[...] Mary has no knowledge about the API, so he asks
C4SE to help implement the module. Therefore, the bot
provides Mary with the code, and Mary implements it
and makes the software module. Moreover, Mary asks
the bot to push the developed component on the GitHub
repository. The day after, Mary wanted to update the
code and do acceptance testing for the developed feature.
Using C4SE, he simply asks the bot to provide the code
generated the day before and give it the use case asking
for acceptance testing specification; C4SE, using the
collected context, provides a possible test based on the
high-level specification and the code.

From the visionary scenario, we can evince how the
previously-mentioned limitations are partially or fully ad-
dressed. First of all, having one bot that does everything
negates the need to move to different tools and waste time.
Moreover, the capacity of C4SE to maintain information and
the fact that all the tasks involve its use lead to the maintenance
of the context and address the lack of contextual information

Fig. 1. The C4SE’s architecture.

that characterizes the state-of-the-art solutions. Furthermore,
C4SE is designed to be an open-source on-premise tool
resolving the privacy issues derived from using on-cloud third
parties tools. Finally, as an ulterior note, our solution partially
resolves the well-known noise problem—i.e., the tendency of a
bot or a set of collaborating bots to be unnecessarily verbose,
leading to information loss [9, 28]. Indeed, having a single
bot to communicate with that is tailored to the single user
and business brings improved communication through a more
precise interaction.

B. Tool Architecture and Functionalities

The main goal of C4SE is to provide practitioners with a
unique place to perform the majority of their tasks—e.g., code
and test generation. In order to reach this, we developed the
tool as a typical three-tier application characterized by various
modules depicted in Figure 1.

Conversational Interface. This component is responsible for
making the bots feature available to different communication
platforms—e.g., Teams, Slack, and Discord.

BL Manager. Such a module is responsible for classi-
fying user requests and executing the steps to fulfill
them—implemented using agents described below. It ex-
ploits the power of GPT-3.5 to classify requests using a
specialized prompt, which allows launching the correct agent
based on user queries and executing external scripts and
services that cannot be done with GPT-3.5 alone—e.g.,
GitHub API query.

Agents. Each potential request for C4SE—or set of cohesive
requests—is mapped in an agent. For example, all the
requests related to GitHub are responsible for a single agent
(GitHub Task Agent). An agent is a software component
implementing the application logic to fulfill a specific re-
quest. The package Agents contains the developed agents
and offers a unified interface for querying them. Each agent
is a service that uses its specific pipeline (or chain) to
produce responses. A chain allows the joining of various
components to form a unified application. For instance, we
can create a chain that accepts input from the user, applies
a prompt template to format it, and transfers the formatted
response to an LLM. We can develop more complex chains
by integrating numerous chains or combining chains with
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other components (i.e., Vector databases, LLMs, Document
loaders).

Memory. This module uses a specialized vector database to
memorize conversations between C4SE and users, allowing
long-term memory. We can configure the Memory compo-
nent to temporarily (i.e., for an hour) or permanently store
the conversations. Having long-term memory, C4SE can
extract the most relevant information from previous conver-
sations to answer user queries appropriately. For example,
suppose the user has previously asked C4SE to write a Java
Entity class using JPA and wants the bot to explain the code.
In that case, the user can ask, “Can you explain the previous
code?”. C4SE, using the Memory module, will retrieve from
the conversation history with that specific user (the vector
database index) the information relevant to the question (i.e.,
the previous Java class). The bot will then augment the
context and, exploiting the correct agent, send the question
to the LLM to provide the final answer.

Dynamic Knowledge Base. Such a module stores and in-
dexes new data as embedding vectors into C4SE. It provides
the necessary services to “upsert” (i.e., update and insert)
and “retrieve” documents exploiting vector databases. Doc-
uments can be of any type, such as plain text, pdf, html,
Microsoft Word, Excel, Powerpoint, XML, etc. The upsert
service converts documents into embeddings and indexes
them in the vector database. The retrieval service allows
searching for the most relevant documents from a semantic
point of view to a given search query. This component
allows searching for the most relevant information in the
C4SE knowledge base and ingesting this information as
an augmented context into the prompt to send to GPT-3.5.
For example, we can upload the LangChain documentation
using the upsert service and then ask C4SE questions about
it (i.e., “provide the snippet to develop a Conversation-
alRetrievalChain in LangChain”). C4SE will forward the
questions to the correct agent (i.e., “SnippetAgent”). Using
Dynamic memory, the agent will retrieve the information
relevant to the questions and augment the context with it. In
our example, this means injecting into the final prompt the
collected information as follows:

Augmented prompt

“... Answer the QUESTION at your best.
Current conversation:{augmented context}
QUESTION: {input}”

In the prompt above, the variable “augmented context”
represents the augmented information, namely the most
relevant k results retrieved from the vector database. Then,
using the augmented prompt, the agent will request the LLM
to generate the final answer.

The functional behavior of C4SE is illustrated by the se-
quence diagram in Fig. 2 that shows how the key components
interact to respond to user requests. Let us examine the
following example to clarify the system interactions:

Fig. 2. C4SE functional behavior.

1) The user asks the system the following question: “Please,
provide an example of a prompt template code usage in
LangChain.”

2) The Conversational Interface forwards the request to
the BL Manager component, which uses the Memory
component to retrieve the most relevant information based
on the previous conversations.

3) The Memory component exploits the Vector DB to re-
trieve the most relevant information related to the user’s
query.

4) Suppose there are no conversations yet; the Memory
component returns an empty list.

5) The BL Manager component sends the classification
prompt to the LLM, asking GPT-3.5 to classify the user’s
question as follows:

Classification prompt

Classify the following question as Code task, GitHub
task, Test case, or Q&A. The rules are the following:
- The question should be classified as a GitHub task
if it means executing a task on or related to a specific
repository.
- The question should be classified as a Test case if
and only if it explicitly requests an acceptance test
case for a provided use case.
- The question should be classified as a “Code task”
if it is related to code or unit test code.
- The question should be classified as Q&A in all
the other cases.
Provide only the classification.
Current conversation:{history}
Question:{input}

6) The LLM classifies the user’s question as a “Code task.”
7) The BL Manager component instantiates the Code task

agent to process the user’s request.
8) To answer the user’s request, the Code task agent in-

quiries the Dynamic KB component for the most relevant
documents.
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9) The Dynamic KB retrieves the most relevant information
using the Vector database as follows:

Relevant information

PromptTemplates are responsible for constructing
a prompt value. They are basically objects that
expose a format prompt method for constructing a
prompt. For example
from langchain.prompts import PromptTemplate
string prompt =
PromptTemplate.from template(“tell me a joke
about {subject}”)

Part of the context has been omitted for simplicity.
10) The Code task agent sends a new query to the LLM,

augmenting the context with the information retrieved,
as follows:

New prompt with augmented context

Act as a software engineer. Check if the question
relates to the last code we discussed in the conver-
sation. Answer the question at your best.
Current conversation:{augmented context}
QUESTION: {input}

Where the variable “augmented context” contains the
new augmented context.

11) GPT-3.5, using its “in-context learning” capabilities, pro-
vides the requested code as follows:

GPT-3.5 final response

Sure, here’s an example usage of PromptTemplate
in LangChain:
from langchain.prompts import PromptTemplate
# Define a prompt template
prompt template = PromptTemplate(
input variables=[“subject”],
template=“Tell me a joke about {subject}.”)
# Format the prompt template with input
formatted prompt =
prompt template.format(subject=“cats”)
# Print the formatted prompt
print(formatted prompt)

12) The BL manager component memorizes the new conver-
sation using the Memory component. It sends the final
response to the Conversational interface.

C. Novel Characteristics

C4SE presents a novel approach to address the challenges
faced by software engineering practitioners in their day-to-day
tasks. The bot’s architecture is designed to provide a unique

platform for performing various tasks while addressing the
challenges existing chatbots pose.

First, our bot was designed specifically for the software
engineering context and, consequentially, for software engi-
neers and project managers. In fact, we designed a specialized
prompt to classify users’ requests and provide them with
the correct answer or interaction. Moreover, such a focus on
software engineering allows the bot to be more accurate in
its interactions, thus limiting the risk of producing inaccurate
responses and lowering practitioners’ productivity.

Second, LLMs are stateless and limited in their memory
conservation, other than presenting, in most cases, query limits
(i.e., the length of a single request/response exchange) [7].
This limitation makes it challenging to maintain the con-
versation chain, leading to a loss of context and causing
frustration in users. C4SE addresses this challenge by using
a specialized data store to memorize conversations between
the bot and users, thus allowing long-term memory contextual
information. This mechanism enables C4SE to answer more
accurately based on the conversation context by splitting the
user’s request into multiple tasks and combining multiple
answers to overcome the LLM’s query limits.

Third, software engineering constantly evolves, requiring
practitioners to be up-to-date with new technologies, pro-
cesses, methodologies, and other developments. C4SE is built
to be always up-to-date with an infinite knowledge base that
enables practitioners to acquire new skills and execute new
SE tasks. The bot’s dynamic knowledge base is another novel
feature of C4SE. C4SE can also use multiple Knowledge Base
memory modules (using several vector databases) to serve
different agents. This aspect has two important implications:
1) the bot can scale by using several KB memory instances;
2) each agent can have its specialized dynamic memory.

Finally, the bot’s architecture is distributable and can exploit
microservices and containerized computing technologies. Con-
cretely, each agent—responsible for handling a single task and
the corresponding interaction with users—can be implemented
as microservices exploiting its own resources.

D. Use Case Example

At the current state, we have tested and validated five
features of C4SE, i.e., code suggestion, code review, GitHub
task execution, unit testing generation, and acceptance testing
generation. It is important to note that, seeing the knowledge
base of the bot, the potential tasks that it can perform are
much more than these. This section presents a few examples
of C4SE in action.

The conversation between the user and C4SE starts with the
user asking C4SE to show the list of the contents of a GitHub
repository, as shown in Figure 3. The chain of reasoning C4SE
performs on the request and the contextual information allows
the tool to identify what the user wants accurately.

In the second request—Figure 4—the user asks for a code
snippet. In this case, C4SE executes the Coding agent because
the request is related to coding. Moreover, as shown in Figure
5, the users request the test code to test the component.
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Fig. 3. C4SE GitHub task example.

Fig. 4. C4SE Code Snippet example.

Then, the user asks C4SE to provide the contents of a
specific file in the same GitHub repository of the first exam-
ple—Figure 6—without reporting further details. As we can
notice, C4SE has the memory of the previous conversation and
can execute the task correctly.

In the last example—Figure 7—the user’s request is related
to a use case (CPM:US1.001), which was previously uploaded
in the C4SE knowledge base DB. In this case, the user
asks to produce the acceptance test. C4SE infers contextual
information from its KB. It ingests the information in the
context of the Test Cases agent that can produce the requested
test case.

IV. C4SE EVALUATION

This section presents the preliminary evaluation of the tool
and associated lessons learned.

A. Evaluation Methodology

As a preliminary evaluation of C4SE, we decided to assess
its usability. The ISO 9241-11 standard 12 defines usability
as “the extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use”. Effectiveness,

12ISO 9241-11 site: https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-1:
v1:en

Fig. 5. C4SE Unit Test example.

Fig. 6. C4SE GitHub task with ingested context.

efficiency, and satisfaction are considered important aspects in
chatbot evaluation [11, 12, 22]. These aspects are so defined:

• Effectiveness, i.e., the accuracy and completeness with
which users achieve a desired goal;

• Efficiency, i.e., the trade-off between the resource
used—expressed in terms of completion time, mental, and
communication effort—and accuracy and completeness
with which the users achieve their goals;

• Satisfaction, i.e., the user’s satisfaction when using a tool
in a specific context.

In order to evaluate the bot in terms of these three factors,
we performed a two-step study that has been demonstrated
to be helpful in evaluating chatbot usability [22]. First, we
recruited 5 participants and asked them to complete a series
of tasks using our bot in an experiment in vitro; then, we
interviewed them to collect first impressions and feedback.
For conducting the experiment, we followed the well-known
guidelines provided by Wohlin et al. [30], while for the
interviews, we followed the guidelines of Hove and Anda [13]
and Kitchenham and Pfleeger [14].

We asked each participant to execute four tasks in line
with the current version of C4SE. Specifically, we asked
them to use the bot to (1) get a use case from a GitHub
repository; (2) generate the Java or Python code to implement
the selected use case; (3) generate an acceptance test case
for the use case; and (4) generate the unit test for one of
the classes obtained during the second task. At the end of

6

https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-1:v1:en


Fig. 7. C4SE Test Case example.

each step, participants analyzed the answers provided by the
bot and, eventually, asked for explanations or more details.
After this, each participant was interviewed by the first two
authors of the paper about C4SE effectiveness, efficiency, and
satisfaction. For each factor, participants expressed their level
of agreement with a series of statements (Likert Scale from
Strongly Disagree (1) to Strongly Agree (5). For example, as
for effectiveness, we asked for accuracy and completeness.

In experimenting with tools usability, accurately reproduc-
ing the tool operation context comes to be mandatory to collect
reliable data [22]. For such reason, we selected 5 participants
with experience in developing and evaluating the usability
of software development tools; we selected them from our
network through a convenience sampling strategy. Moreover,
we provided them with a series of dummy information and
scenarios to make them enter an imaginary development
context to perform the required tasks.

B. Analysis of the Results

Regarding the results from the experiment, we collected
both numerical values expressing the opinions of participants
about the tool and opinions expressed in natural language. We
recruited five graduate students (master’s degree) who attended
and achieved a Human-Computer Interaction course during
their degree and have experience in using support tools for
SE tasks—e.g., ChatGPT and Copilot.

Concerning the perceived effectiveness of the tool, par-
ticipants expressed positive opinions. Indeed, related to the
accuracy—i.e., the tool’s capacity to correctly understand the
user’s request—all the participants evaluated the tool with a
value of three or superior (one expressed 3 and the others
4). The only concern reported for this is the perceived need
for documentation associated with each task; on this, one
participant said that “for being more precise and fast in
the request, I would have appreciated having documentation
telling me which information was important to provide the tool
for doing the task.”. Moreover, regarding the completeness of
the provided answers—i.e., the tool’s capacity to provide all
the relevant information for satisfying the user’s needs—all
the participants expressed positive opinions (one expressed 3
and the others 5).

Regarding the perceived efficiency of the tool, the collected
opinions depicted a positive picture. Participants reported that

it is easy when questioned about the tool’s ease and rapidity
of use. Still, in its current version, it needs some support to
be adopted (all participants said values ranged from 3 to 4).
We obtained similar results regarding how stressful it was
to interact with the tool. More for this than in the previous
evaluation, participants asked for ulterior documentation in
order to correctly understand which pieces of information are
mandatory for obtaining precise responses.

Concerning the perceived satisfaction derived from using
the tool, participants were generally satisfied (two reported 4,
two reported 3, and one reported 2). Specifically, they said that
despite the undoubted usefulness and rapidity derived from its
use, the tool—as well as other similar instruments—deprives
them of some processes that, when satisfied, turn out to be
rewarding. For example, one participant said, ”I enjoy writing
code and solving a problem, even if trivial, on my own. It gives
me great satisfaction. Using the tool makes it faster but takes
away a little of that pleasure. Undoubtedly, getting advice
rather than completely automating the process is better.”.

To summarize, participants in the experiment expressed
positive opinions about the tool and its use to accomplish some
tasks related to software engineering. These results encourage
further tool development and studies.

C. Lessons Learned and Limitations

After developing and evaluating C4SE, we have gained
valuable insights and identified a few limitations. We
learned two essential lessons regarding accuracy and Human-
Computer Interaction (HCI). Regarding the first, the quality of
C4SE’s responses depends on the quality and relevance of the
data used to enhance the bot’s knowledge base. Concerning
the second, designing practical HCI is crucial, especially for
software engineering chatbots. Since software engineers are
often pressed for time, their interaction with C4SE must be
efficient and straightforward.

On the other hand, despite the potential benefits of C4SE,
there are some limitations. Firstly, C4SE is limited to a
predefined set of tasks. Therefore, it is critical to expand its
capabilities to enable it to perform a broader range of software
engineering tasks. Secondly, C4SE is currently only available
in English but should support other languages, broadening
its user base. Thirdly, while C4SE is designed to be scal-
able, further work is required to ensure it can handle large
user requests and messages without experiencing performance
degradation. Thus, further research should focus on these
aspects to improve the effectiveness and efficiency of C4SE.

Finally, the chatbot was evaluated in an experiment in
vitro with few participants and a limited number of software
engineering tasks. Therefore, the results may not be general-
izable. Future studies could include a more diverse sample of
participants and a higher number of tasks related to different
domains in real-world scenarios.

V. CONCLUSION

In this paper, we introduced C4SE, a chatbot designed
specifically for software engineering tasks aimed at addressing
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the limitations of existing chatbots and providing a unique
platform for software engineering practitioners to perform
a large plethora of tasks. C4SE exploits LLMs and vec-
tor databases, presenting a novel approach to address daily
challenges for software engineering teams and potentially
increasing their productivity and overall success in software
engineering projects.

The evaluation of C4SE showed positive effectiveness, effi-
ciency, and satisfaction results. Participants expressed positive
opinions about the tool’s capacity to understand the user’s
request accurately and provide all the relevant information for
satisfying the user’s needs. Moreover, the tool was perceived
as easy to use and fast. Nonetheless, some participants asked
for further documentation to understand which information is
mandatory for obtaining precise responses.

Despite the potential benefits of C4SE, there are limitations
to be addressed in future work. C4SE is currently limited to
a predefined set of tasks and is only available in English. It
needs expansion to support other languages and handle diverse
tasks related to different domains for better generalizability.
Furthermore, further research is required to evaluate C4SE
with larger sample sizes and a broader range of software
engineering practitioners.
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