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Abstract—Refactoring is a practice commonly used by de-
velopers to restructure the source code without changing its
external behavior. Over the last decades, the software engineering
research community has been making use of mining software
repository techniques to investigate refactoring under multiple
perspectives, identifying properties and impact of this practice
on source code quality, other than using refactoring data coming
from software repositories to build automated recommendation
systems. While the current state of the art proposes various
automated tools to mine refactoring data, there is still a lack of
instruments that may help researchers when mining test-specific
refactoring data. The availability of those instruments may
enable additional, specialized techniques to support developers
while refactoring test code. In this paper, we introduce an
approach that extends REFACTORINGMINER—a well-established
refactoring mining tool having high precision and recall scores—
and is able to detect seven test-specific refactoring operations.
We perform mixed-method research to assess capabilities and
usefulness of the approach. First, we compare the test-specific
refactoring data extracted by the approach against an oracle of
375 test-specific refactorings. Second, we engage with 15 software
engineering researchers and apply a technology acceptance model
to investigate how they would benefit from our approach. The key
results of the study show that our approach reaches 100% and
92.5% of precision and recall scores, respectively. In addition, the
approach is considered useful and suitable for various research
tasks, including the definition of novel learning models able to
recommend test-specific refactoring actions.

Index Terms—Software testing; Test-Specific refactoring,
Refactoring Mining; Mining Software Repositories.

I. INTRODUCTION

Refactoring is a key practice that provides developers with a
means to improve software quality without changing its exter-
nal behavior [1]. Since decades, refactoring has been attracting
the interest of the software engineering research community,
which investigated the matter under multiple perspectives,
uncovering the reasons why developers perform refactoring
[2]–[4], the concerns that prevent its wider application [5]–
[7], and benefits and drawbacks for software maintenance
and evolution [8], [9]. For instance, researchers showed that
refactoring may enable the removal of code smells [10], [11]
and self-admitted technical debt [12], other than the improve-
ment of program comprehension [13] and language constructs
adaptation [14]. At the same time, researchers have been
identifying cases where the application of refactoring may

induce the introduction of defects [15], design concerns [16],
and vulnerabilities [17], and cause changes to clients’ libraries
and frameworks [18].

Such an extensive body of knowledge has been mostly
enabled by the availability of open data coming from public
software repositories (e.g., GITHUB), which provided re-
searchers with the capability of mining refactoring data to
learn properties and practices, inform the definition of au-
tomated refactoring recommendation systems, and investigate
the impact of refactoring on source code quality [19], [20]. In
this respect, the amount of refactoring mining instruments pro-
posed in literature [21]–[24] has facilitated the data collection
and analysis procedures applied by researchers.

In such a context, we point out that most effort has been
devoted to the definition of automated approaches for mining
refactoring data, while there is still a lack of instruments that
could facilitate researchers in the task of mining test-specific
refactoring actions performed by developers over software
maintenance and evolution. Detecting refactoring from the
test code perspective would have a notable impact on the
capabilities of researchers to support test code evolution and
refactoring. Indeed, despite many previous authors have raised
the need for more research on test code refactoring [25]–[27],
the current knowledge and support is limited [9], hence calling
for novel enabling approaches.

In this paper, we propose a tool-supported approach able
to detect test-specific refactoring operations. Our approach is
built on top of REFACTORINGMINER [24], [28], one the most
established refactoring mining instruments: We first integrate
the test detection mechanisms proposed by REFACTORING-
MINER team in late 20211; secondly, we extended the set
of changes reported by REFACTORINGMINER through the
detection of additions, removals, and modifications on test
assertions; finally, we used the set of changes to implement
rules for detecting seven test refactoring operations.

We assess the soundness and usefulness of our approach
through mixed-method research [29]. First, we compute the
precision and recall of the approach by comparing its output
against a manually-validated dataset of test-specific refac-
toring actions, which we collect and curate from 13 open-

1Available at https://github.com/tsantalis/RefactoringMiner/pull/225
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source projects pertaining to the Apache Software Foundation.
Secondly, we involve 15 software engineering researchers
experienced in software testing and software maintenance and
evolution within the scope of a technology acceptance model
construction [30], which provides insights into the perceived
usefulness and ease of use of the devised approach.

On the one hand, the results indicate that our approach
detects the seven test-specific refactoring operations with an
average precision and recall of 100% and 92.5%, respectively.
On the other hand, the technology acceptance model let arise
the tasks for which our approach may be used in the future
and the new challenges that research might address with it.

To sum up, our work brings the following contributions:
1) A tool-supported approach for mining seven test-specific

refactorings, which researchers may use to enlarge the
body of knowledge on test-specific refactoring;

2) A novel, curated dataset of test-specific refactoring data,
which researchers may use to understand further how test-
specific refactoring is performed in practice;

3) The results coming from the technology acceptance
model construction, which point out future research chal-
lenges that our approach can help address;

4) An online appendix [31] that contains all data/scripts
used in this study and that researchers may use to either
reproduce our work or build on top of that.

II. RELATED WORK

A. Overview of the Refactoring Mining Tools

Early researchers proposed detection approaches and algo-
rithms relevant to establishing a theoretical foundation for
refactoring detection. In order to understand how and why
the systems evolve, Demeyer et al. [32] proposed four heuris-
tics for identifying refactorings using reverse engineering of
reconstructed code. They performed case studies on different
versions of three systems and concluded that these heuristics
help to reveal where, how, and why an implementation has
drifted from its original design.

Weissgerber and Diehl [33] proposed a technique to detect
refactoring candidates by finding pairs of code elements (i.e.,
classes, methods, fields) with some differences in their sig-
natures. Then, the technique ranks the refactoring candidates
based on the results of a code-clone detection algorithm
implemented through the CCFINDER (Code Clone Finder)
tool [34]. The CCFINDER tool implements a technique that
transforms source code into text and performs a token-by-
token comparison. In addition, Weissgerber and Diehl [33]
created an oracle by inspecting commit messages for refer-
ences to refactoring operations, which they used to evaluate
the accuracy of the proposed technique.

Later on, other developers used such theoretical foundations
to develop refactoring detection tools. Dig et al. [21] devel-
oped the first comprehensive detection tool called REFAC-
TORINGCRAWLER. The tool performs a syntactic analysis
to find similar fragments in text files using an Information
Retrieval-based algorithm. Then, the tool performs a semantic

analysis based on the reference graphs to determine whether
the fragments represent a refactoring. The tool is an Eclipse
plug-in and detects seven types of refactorings in Java code,
focusing on rename and move refactorings.

Xing et al. [35] developed JDEVAN (Java Design Evolution
Analysis), a tool that automatically detects the design changes
between two versions of a system. In more detail, JDEVAN
implements a Java fact extractor to reverse engineer logical
design models from source code. Then, it implements the
UMLDiff algorithm [36] to detect design changes, which feed
a set of queries for the refactorings detection. The authors
performed three case studies using the JDEVAN tool, showing
its effectiveness in practice.

Prete et al. [37] developed REF-FINDER, an Eclipse plug-
in that takes two program versions as input and detects 63
refactorings from the Fowler’s catalog [1]. The tool is based
on the tool LSDIFF (Logical Structural Diff) which computes
the delta between two versions of the source code and detects
refactorings using a template-based refactoring reconstruction
approach. For the evaluation, the authors run the tool against
extracted code examples from Fowler’s book and released
pairs of JEDIT, showing the tool’s capabilities.

Silva and Valente [38] developed REFDIFF, a tool that com-
bines heuristics based on static analysis and code similarity
to detect 13 refactorings. The authors evaluated the tool’s
accuracy using an oracle of seeded refactorings performed by
graduate students. Afterward, they used the same approach
to develop the first multilanguage refactoring detection tool,
called REFDIFF 2.0. The authors evaluated the tool’s accuracy
in detecting refactorings in code written in Java, JavaScript,
and C programming languages. Regarding the tool’s accuracy
on Java projects, they relied on an available oracle comprising
536 commits from 185 open-source projects [28].

Tsantalis et al. developed the RMINER (version 1.0) [28]
and REFACTORINGMINER (version 2.0) [24], that implement
an AST-based statement matching algorithm and applies a set
of rules for detecting code refactorings. In its first version,
RMINER detects 15 high-level refactorings from Fowler’s
catalog [1]. The authors created a dataset with 3,188 real refac-
torings instances from 185 open-source projects to evaluate
the RMINER. Differently, REFACTORINGMINER (version 2.0)
builds upon its predecessor to support the detection of 40 low-
level refactorings. In addition, the authors extend their oracle
to comprise 7,226 true instances of refactorings.

B. Extensions of RefactoringMiner tool

Several studies adapted REFACTORINGMINER to detect
code refactorings in different programming languages. Kur-
batova from JetBrains Research leads the development of
KOTLINRMINER, a library that extends REFACTORINGMINER
tool to detect 19 code refactorings in Kotlin code. Later on,
Kurbatova et al. [39] presented REFACTORINGINSIGHT, a
plugin for IntelliJ IDEA built on top of the KOTLINRMINER
library and REFACTORINGMINER tool to detect 19 code refac-
torings in Kotlin and 40 Java code refactorings. In addition,
that extended tool provides developers with different views to
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Fig. 1: Understanding the current state and extension of RefactoringMiner tool.

show a list of code refactorings per commit or pull request and
the history of refactorings for methods and classes. Lastly, the
authors analyzed the time spent detecting the code refactorings
into 960 commits of four projects.

Atwi et al. [40] focused on Python projects, presenting the
PYREF tool to detect four method-level refactorings. The
authors evaluated that tool precision against a manually built
oracle with 327 true and false positive instances. As a result,
the tool scored 89.60% and 76.10% for precision and recall.
Similarly, Dilhara et al. [41] presented the R-CPATMINER
tool that detects 18 refactorings in Python code. The authors
adapted it to create a graph-based representation of Python
projects, combining it with the PY-REFACTORINGMINER tool,
which detects code refactorings in Python code. The tool
achieves an average precision of 97.34%. Later, Dilhara et
al. [41], [42] used the tool to mine 4,166,520 commits from
1,000 Machine Learning application systems to understand the
challenges and frequent code change patterns performed by
developers while evolving those systems.

Inspired by REFACTORINGMINER tool, Shiblu [43] pre-
sented the JSDIFFER tool, which supports the detection of 18
code refactorings in JavaScript projects. As the structure of
JavaScript code differs significantly from Java code, the author
made several adaptations in terms of structural mapping.
Additionally, the author built an oracle of 341 code refactoring
instances mined from 18 open-source JavaScript projects.
Lastly, the authors evaluated the tool’s accuracy, scoring 97%
and 45% for precision and recall, respectively.

Differently, Kim et al. [44] extended REFACTORINGMINER
tool to detect 12 refactorings in test code annotations. The
authors evaluated the tool accuracy against an oracle con-
taining 638 annotation change instances, scoring 99.7% and
98.7% for precision and recall, respectively. In addition, the
authors studied the developers’ maintenance activities on test
annotations. They created a taxonomy by manually inspecting
and classifying a sample of test annotation changes and
documenting the motivations driving those changes.

Looking at the official repository of REFACTORING-
MINER,2 it is possible to observe that some attempts to
cope with test refactoring operations have been proposed in

2Available at https://github.com/tsantalis/RefactoringMiner

late 2021. In particular, one of the repository contributors
opened a pull request3 that detects the migration of expected
exception features between JUnit versions. Nonetheless, those
preliminary attempts have not yet been further explored in the
literature—our paper makes a first step toward this direction.

Unlike the papers discussed above, our extension of REFAC-
TORINGMINER aims to detect test-specific refactoring opera-
tions applied by developers over software evolution. While
the previous versions of REFACTORINGMINER tool detects
refactorings from Fowler’s catalog [1], migrations from JUnit
versions,3 and changes in methods’ annotations [44] of both
production and test code, we focused on general test design
and assertions. Therefore, our extension builds on top of
REFACTORINGMINER tool and other extensions by introduc-
ing new rules for mining refactoring actions in the test code.

III. INTRODUCING TESTREFACTORINGMINER

Fig. 1 presents an overview of the current state of REFAC-
TORINGMINER tool and its extension to detect seven test-
specific refactorings. We selected the test-specific refactorings
based on two criteria. First, the refactorings represent solutions
to fix the most popular test smells in open-source projects [45],
[46]. Second, we manually identified the most popular refac-
torings in the Apache Foundation ecosystem to understand
how developers apply the test code changes.

In the following, we first showcase the main characteristics
of REFACTORINGMINER and, afterwards, we present our
approach to detect test-specific refactorings.

A. Understanding RefactoringMiner

We chose to extend the state-of-the-art refactoring mining
tool (REFACTORINGMINER [24], [28]) with detection rules
for test-specific refactorings for the following reasons:

• The tool has the highest precision (99.8%) and recall
(97.6%) scores among the currently available refactoring
mining tools, hence allowing us to build on top to the
current state of the art;

• The tool encapsulates the changes between the matched
and unmatched statements (i.e., new/deleted statements)
within an object that provides information for detecting
the new test-specific refactorings;

3Available at https://github.com/tsantalis/RefactoringMiner/pull/225
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• The tool only analyzes added, deleted, and changed
files, reducing the time and computational resources for
detecting refactorings in large projects.

Specifically, REFACTORINGMINER differs from other refac-
toring mining tools (e.g., REF-FINDER [37]) by analyzing only
the added, deleted, and changed files between two project
versions. For each version, the tool creates an AST for those
files without resolving binding information from the compiler
(Fig. 1A - Generating ASTs). Then, it implements a three-step
algorithm to match the statements between two code fragments
following a bottom-up approach. First, the algorithm matches
the statements with identical string representations and nesting
depth. Second, the algorithm matches the statements with iden-
tical string representations regardless of their nesting depth.
In the third step, the algorithm matches the statements that
become identical after replacing the AST nodes being different
between the two statements (Fig. 1A - Statement matching).

The tool implements an algorithm that receives two state-
ments and performs replacements of AST nodes until the
statements become textually identical (Fig. 1A - Replacing
ASTs nodes). The algorithm excludes from the replacements
list the AST nodes common in both statements (e.g., variable
identifiers, types, literals, and operators) and the AST nodes
that cover the entire statement (e.g., an expression statement
that is a method invocation or class instance creation followed
by the operator ’;’) to reduce the excessive number of matching
statement combinations. Next, the algorithm calculates and
combines 13 heuristics to allow the matching of textually
different AST nodes that cover the entire statement. They
are: (1) identical receiver expression, (2) identical method
invocation name, (3) identical list of arguments, (4) argu-
ment added/deleted, (5) argument split/merged, (6) argument
wrapped, (7) argument replaced, (8) renamed method invo-
cation, (9) different receiver expression, (10) field assignment
replaced with setter invocation, (11) class instance creation re-
placed with builder call chain, (12) method invocation replaced
with conditional expression, and (13) split/merge invocation
to/from multiple statements.

Finally, the tool implements rules for detecting a set of 93
code refactorings for six different types of code elements,
i.e., packages, type declarations, methods, fields, local vari-
ables/parameters, and type references (Fig. 1A - Refactoring
detection). As a result, the tool reports a set of replacements
between matched statements and a list of unmatched state-
ments (i.e., new/deleted statements).

B. Extending RefactoringMiner for test code

Developers often rely on specific constructs of testing
frameworks to develop test code. For example, developers
invoke the assert methods from the Assert class of the
JUNIT framework to assert the expected outcomes. When the
two statements under analysis (parent and current commits)
are assert method invocations, the replacement corresponds to
AST nodes that cover the entire statement (Fig. 1A - Replacing
ASTs nodes). Therefore, the current version of REFACTORING-
MINER tool excludes those assert method invocations from the

replacements list and does not analyze them to detect code
refactorings.

To overcome this limitation, we extended the tool to get
replacements of assert methods combining the four heuristics
prior cited [24]: (i) Identical receiver expression, (ii) Identical
method invocation name, (iii) Argument added/deleted, and
(iv) Renamed method invocation (Section III-A). We combined
the heuristics (i), (ii), and (iii) to identify added/deleted argu-
ments of method invocation names identical and the heuristics
(i), (ii), and (iv) heuristics to identify added/deleted arguments
of names of method invocation different (Fig. 1B - Combining
heuristics). The combination of heuristics results in a set of
replacements between matched statements, which we used to
create detection rules for the test-specific refactorings (Fig. 1B
- Adding rules for test-specific refactorings):
(a) Add explanation message. Developers should use the

optional parameter of the JUNIT assert methods to pro-
vide an explanatory message to the user when the asser-
tion fails. The assert methods receive a string message in
the first parameter for JUNIT4 or older versions, and in
the last parameter for newer JUNIT versions.

(b) Replace reserved words. Instead of passing reserved
words as parameters for the assert methods, develop-
ers should use the appropriate assert methods from the
testing framework. For example, developers should use
assertNull to verify whether the value of one object
is null, assertTrue to verify whether the value of
one object is true, or assertFalse to verify whether
the value of one object is false.

(c) Split conditional parameters. Developers should not
force conditional expressions into the parameters of the
assertTrue and assertFalse methods to verify
whether two objects are equal, or whether one object con-
tains another. Instead, developers should pass the objects
as parameters for the assertEquals or assertThat
methods, respectively.

(d) Replace the not (!) operator. For readability pur-
poses, the assert methods are given in pairs to
assert whether a condition is true (assertTrue)
or false (assertFalse), two objects are equal
(assertEquals) or different (assertNotEquals),
two objects refer to the same object (assertSame) or
different objects. Instead of creating a conditional logic
in the assertions using the not (!) operator, developers
should use an equivalent assert method.

In addition, we used the list of unmatched statements of the
test code to derive new test-specific refactorings. For exam-
ple, developers insert logic in the test methods when using
try/catch statements for handling exceptions with JUNIT3.
JUNIT4 solved this problem by introducing the @Rule and
@Test expected annotations, and JUNIT5 introduced the
assertThrows method to fail the test methods. To detect
whether developers migrated from JUNIT3 to JUNIT5 or from
JUNIT4 to JUNIT5, we analyzed the unmatched statements,
i.e., the deleted leaf statements from the parent commit and the

4



Refactoring Parent Commit Current commit
  (a) Add explanation
  message

assertTrue(boolean condition); assertTrue( , boolean condition);
assertEquals(Object expected, Object actual) assertEquals( , Object expected, Object actual);

  (b) Replace
  reserved words

(String message, boolean condition, ); (String message, boolean condition);
(String message, boolean condition, ); (String message, boolean condition);
(String message,boolean condition, ); (String message, boolean condition);

  (c) Split conditional
  parameters

(String message, boolean expected. (actual)); (String message, Object expected, Object actual);
(String message, boolean expected  actual); (String message, Object expected, Object actual);
(String message, boolean expected. (actual)); (String message, T actual, Matcher<T> matcher);

  (d) Replace the
  not (!) operator

(String message, boolean condition); (String message, boolean condition);
(String message, boolean condition); (String message, boolean condition);

(String message, Object expected, Object actual); (String message, Object expected, Object actual);

  (e) Replace
  try/catch
  with asserThrows

{
   statements;
   (String failMessage);
} (ExpectedException exception) { (ExpectedException.class,
   statements;                         {statements},  String failMessage);
}

  (f) Replace @Rule
  annotation with
  assertThrows

@Test @Test 
public void testMethod()  { public void testMethod() { 

ExpectedException.class    (ExpectedException.class,
   statements;                            {statements}, String message);
} }

  (g) Replace @Test
  annotation with
  assertThrows

@Test( ) @Test 
public void testMethod() { public void testMethod() { 
   statements;    (ExpectedException.class,

                           {statements}, String message);
} }
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String message
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assertFalse
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assertThrows
() ->

assertThrows
() ->

assertEquals ReservedWord true
assertEquals ReservedWord false
assertEquals ReservedWord null
assertTrue equals
assertTrue ==
assertTrue contains
assertTrue !
assertNull !
assertEquals  !  
try 

fail
catch 

@Rule
public ExpectedException exception = ExpectedException.none();

 throws ExpectedException
   exception.expect( );

expected = ExpectedException.class
 throws ExpectedException 

Fig. 2: Extension of rules for detecting the test-specific refactorings. The column parent commit highlights in red the removal
of code, and the current commit highlights in green the addition of code.

newly added leaf statements from the current commit. From a
technical perspective, we exploited the source code developed
by one of the contributors of the repository in late 2021 [47]
to add the detection rules for three test-specific refactorings
(Fig. 1B - Adding rules for test-specific refactorings):

(e) Replace try/catch with assertThrows. Instead of us-
ing try/catch blocks to insert logic for handling
exceptions, developers should use the assertThrows
method of JUNIT5.

(f) Replace @Rule annotation with assertThrows. JU-
NIT4 uses the @Rule annotation to check whether a
method throws an exception. That annotation allows
developers to write the test methods without assertion
statements. Therefore, they replace the @Rule annotation
with the assertThrows method.

(g) Replace @Test annotation with assertThrows. The
@Text expected annotation of JUNIT4 indicates an
exception can be thrown anywhere in the test method, not
requiring developers to write the assertions. Therefore,
developers replace the @Test expected annotation
with the assertThrows method.

Fig. 2 presents excerpts of test code in JUNIT4 to exemplify
the test-specific refactorings supported by our TESTREFAC-
TORINGMINER4. The column parent commit highlights the
removal of code in red, and the column current commit

4Available at https://github.com/arieslab/TestRefactoringMiner

highlights the addition of code in green. It is worth noticing
that the test-specific refactorings from (a) to (d) are inde-
pendent from the JUNIT version. For example, to detect the
(a) Add explanation message, we follow three steps: (1) match
the assert method in the current and parent commits, where
the list of arguments in the current commit has one more
argument than the parent commit, (2) remove the identical
arguments from the list of arguments in the current and parent
commits, and (3) check whether the remaining argument is
a string. Therefore, our detection rule is able to identify
the addition of an explanation message independently of the
assert method receiving the string message as the first or
last parameter. Differently, the @Test annotation and
@Rule annotation are JUNIT4 constructs. Therefore, the
replacements (f) and (g) are dependent on the JUNIT version.

IV. STUDY I: EVALUATING THE ACCURACY OF
TESTREFACTORINGMINER

The goal of the first study is to analyze the accuracy of
the proposed TESTREFACTORINGMINER, with the purpose
of understanding the actual capabilities of the tool when
employed for the detection of test-specific refactoring actions
on test cases written with JUNIT. The main perspective is
that of software engineering researchers, who are interested in
understanding how our approach can support mining software
repository studies. More specifically, the goal of the study was
mapped onto the following research question (RQ):

5
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TABLE I: An overview of the studied systems

Project Contributors Stars Tags # Commits
[2019, 2021]

# Refactored
classes

Accumulo 149 971 41 1,628 18,453
Bookkeeper 172 1.7k 57 1008 4,692
Camel 963 4.8k 217 27,169 115,803
Cassandra 410 7.9k 289 1981 33,045
Cxf 197 811 181 2436 1,156
Flink 1,125 21.1k 221 17,801 65,624
Groovy 355 4.8k 248 4,405 23,708
Hadoop 513 13.5k 371 5,481 35,440
Hive 344 4.8k 84 4,050 26,867
kafka 1,009 24.7k 208 4,939 20,005
karaf 151 622 106 1100 10,591
wicket 96 676 303 864 22,630
Zookeeper 192 11.2k 153 677 3,580

ü RQ1. What is the accuracy of TESTREFACTORING-
MINER, in terms of precision and recall?

To address RQ1, we first required to create a dataset re-
porting actual test-specific refactoring operations applied over
the software evolution of open-source systems. Afterwards,
we could proceed with comparing the outcome of TESTRE-
FACTORINGMINER against the curated dataset. To design
and report our empirical study, we followed the empirical
software engineering guidelines by Wohlin et al. [48] and the
ACM/SIGSOFT Empirical Standards.5

A. Context of the study

The context of the empirical study was composed of a
set of 13 open-source projects from the APACHE SOFTWARE
FOUNDATION. Those projects were selected from GITHUB
by Kim et al. [49], following the criteria: (i) top 1,000
Java projects ordered by popularity (i.e., stargazer count),
(ii) repositories that are not forks, (iii) projects that are
above the 90th percentile in terms of size (i.e., lines of
code), repository popularity (i.e., stars), and the number of
commits. The community has widely studied those projects
in the past as they cover different domains, from big data
processing and warehousing solutions to distributed databases
and programming languages [44], [49]–[52]. In addition, we
analyzed a three-year window because studying the evolution
of test code on a commit-by-commit basis is expensive. This
time window also provides information on refactorings related
to recent versions of the testing frameworks (test cases written
with JUNIT4 and their migration to JUNIT5). Table I shows
an overview of the studied software projects.

B. Building a dataset of test-specific refactoring operations

We implemented a GIT commit history analyzer using
JGIT6 to mine all the commits related to changes in the test
files from 2019 to 2021 of the 13 open-source JAVA projects
selected. Given a set of files as input, the analyzer selects the
commits related to changes in the test files and discards the
other commits from further analysis. A commit changes the

5Available at https://github.com/acmsigsoft/EmpiricalStandards.
6The JGIT framework: https://www.eclipse.org/jgit/.

test file if the involved files have the extension .java and
have the [Tt]est(s*) prefix or suffix. We obtained 12,363
commits with 41,995 changed test files.

As a test file is a common place to receive new test cases,
we analyzed whether its commit message suggests refactorings
or the co-evolution between test and production code. We
manually analyzed all the commit messages of the 12,363
commits to select the relevant ones. As a result, we identified
3,786 relevant commits containing 14,829 changed test files.

Subsequently, we applied stratified random sampling on
the test files in the selected commits with a 95% confidence
level and 5% confidence interval. As a result, we selected a
statistically significant sample of 375 changed test files.

Then, we manually analyzed the statistically significant
sample of 375 test files to classify the test-specific refactor-
ings. We analyzed the GIT diff between the current and
parent commits, representing the changes in the test files. We
analyzed whether the lines removed from the parent commit
occurs in the test setup, verification, or teardown (parameters
in the assertions, annotation tags, and methods signature).
Then, we analyzed whether the lines added in the current
commit helped organize the code without changing its logic.
We did not consider the changes in test files that either add
or remove entire test methods or classes as refactorings. In
more detail, two coders manually analyzed the changes in the
test files to understand the test code problem and classified the
test-specific refactorings. Coder A is a Ph.D. candidate, and
Coder B is a postdoctoral researcher; both have experience
with software quality and they are not authors of the paper—as
such, the coders did not have any knowledge on the approach
devised in this paper and could provide us with a reliable
dataset to compare the output of our approach with. Coder
A and Coder B analyzed the same subset of 50 test files
and classified 98 instances containing pairs of smelly and
refactored test code. The agreement level between the coders
was high; they agreed on 196 instances, and each one missed
2 instances (Cohen’s kappa = 0.98). Next, a third researcher
joined the discussion to classify the four missed instances.
The coders added the four missed instances in the final set,
totaling 200 instances. Then, Coder A analyzed the remaining
325 test files, generating a dataset containing 729 instances
of test refactorings. From this dataset, we generated a sub-
dataset containing 417 instances of the most frequent test-
specific refactorings.7

C. Evaluation of the accuracy of the tool

We run TESTREFACTORINGMINER on the same set of
open-source projects selected in the study. Table II presents the
distribution of 2,816 refactorings mined by our tool from 2019
to 2021. As the tool did not detect any test-specific refactorings
in the projects BOOKKEEPER, HIVE, and KARAF for this time
window, we omitted those projects from the table. Most test-
specific refactorings performed in the ACCUMULO (46.5%),
CAMEL (45.9%), KAFKA (66.9%), and ZOOKEEPER (98.2%)

7Available at https://figshare.com/s/506813a38d1e3e709533
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TABLE II: Diffusion of the test-specific refactorings per-
formed in the studied projects between 2019 and 2021

Projects (a) (b) (c) (d) (e) (f) (g) Total
Accumulo 3 3 8 3 113 59 164 353
Camel 19 112 117 15 116 8 329 716
Cassandra 14 21 10 3 - 0 - 48
Cxf 2 65 78 204 - - - 349
Flink 11 6 23 1 - - 2 43
Groovy 2 0 0 1 - - - 3
Hadoop 3 - 1 - - - - 4
Kafka 102 135 19 8 111 7 771 1,153
Wicket - 75 16 - - - 91
Zookeeper - - - 1 - - 55 56
Total 156 417 272 236 340 74 1321 2,816

(a) Add explanation message, (b) Replace reserved words, (c) Split conditional
parameters, (d) Replace the not (!) operator, (e) Replace try/catch with
assertThrows, (f) Replace @Rule annotation with assertThrows, (g) Replace
@Test annotation with assertThrows

TABLE III: Accuracy of the tool’s extension in terms of
precision and recall per test-specific refactoring type

ID test-specific refactoring TP FN FP Precision Recall
(a) Add explanation message 63 18 0 1.00 0.78
(b) Replace reserved words 9 0 0 1.00 1.00
(c) Split conditional parameters 7 0 0 1.00 1.00
(d) Replace the not (!) operator 2 0 0 1.00 1.00
(e) Replace try/catch with assertThrows 40 5 0 1.00 0.89
(f) Replace @Rule annot. with assertThrows 15 2 0 1.00 0.88
(g) Replace @Test annot. with assertThrows 237 19 0 1.00 0.93

Total 373 44 0 1.00 0.92

projects correspond to the (g) Replace @Test annotation with
assertThrows refactoring. Differently, most test-specific refac-
torings in the GROOVY (66.7%) and HADOOP (75%) projects
correspond to (a) Add explanation message refactorings. While
most test-specific refactorings performed in the CASSANDRA
(43.8%) and WICKET (82.4%) projects correspond to the
(b) Replace reserved words, in the FLINK (53.5%) project,
they correspond to (c) Split conditional parameters, and, in
the CXF (58.5%) projects, they correspond to the (d) Replace
the not (!) operator refactorings.

Subsequently, we matched the test-specific refactorings
composing our dataset to those the tool detected. Table III
presents the accuracy of the extended tool in terms of precision
and recall, answering the RQ1. The precision corresponds
to ( TP

TP+FP ) metric, and the recall corresponds to ( TP
TP+FN )

metric, where TP is the number of true positive instances, FP
is the number of false positives, and FN is the number of false
negatives. Overall, the tools’ extension presents a precision
score of 100% and a recall score ranging from 78% to 100%.

While our approach revealed high accuracy scores, it is
worth discussing when it failed to inform researchers on
the corner cases to consider when using TESTREFACTOR-
INGMINER. It fails to detect the refactorings (e) Replace
try/catch with assertThrows, (f) Replace @Rule annotation
with assertThrows, and (g) Replace @Test annotation with
assertThrows because it expects the developers to use a
lambda expression within the assertThrows method. The
approach checks whether at least one line in the test method

184 @Test(expected = IllegalArgumentException.class)
185 public void testWriteIdempotentWithInvalidEpoch(){
. . .

195 builder.close();
196 }

Listing 1: Test method of Kafka project (Parent commit).

184 @Test
185 public void testWriteIdempotentWithInvalidEpoch(){
. . .

195 assertThrows(IllegalArgumentException.class, builder::
close)

196 }

Listing 2: Test method of Kafka project (Current commit).

in the parent commit is equal to a line within the lambda
expression in the current commit. Listing 1 shows the test-
WriteIdempotentWithInvalidEpoch test method is
handling an exception through @Test annotation (line
184), which is thrown by the builder.close() (line
195) in the parent commit of KAFKA project. Listing 2
shows the refactoring performed by developers, using an
assertThrows method without a lambda expression (line 195).
The tool was unable to match the builder.close()
in the parent commit with the builder::close in the
current commit (lines 195), because they should be iden-
tical. In other words, the tool was expecting to find as-
sertThrows(IllegalArgumentException.class,
() → builder.close()) in line 195 of the commit.

Besides, the tool also fails for some instances of (a) Add
explanation message. It occurs because the tool is not able
to identify that the code changes refer to a replacement.
As it is a problem carried from the previous version of
REFACTORINGMINER tool, we need to further investigate how
to improve the matching statements for the test code.

 SummaryRQ1. TESTREFACTORINGMINER performs the
test-specific refactorings detection with a mean of 100% and
92% precision and recall scores, respectively.

D. Threats to validity

In the following, we discuss some limitations along with
the actions performed to mitigate their effects.

Missing context. REFACTORINGMINER analyzes only the
added, deleted, and changed files from two versions. Although
that analysis saves computational resources to detect code
refactorings, the tool can report incorrect refactoring when it
involves unchanged files. Missing context is a limitation we
carried on from tool previous versions for detecting code refac-
torings but does not apply to the new test-specific refactorings.

Nested and composite test-specific refactorings. Our
TESTREFACTORINGMINER tool can detect nested test-
specific refactorings within a single commit following the im-
plementation of its previous versions. However, we did not im-
plement rules for composite refactorings for this first version.
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For example, test-specific refactorings can occur to (b) Replace
reserved words, (c) Split conditional parameters or (d) Replace
the not (!) operator. Those three replacements are low-level
test-specific refactorings, which developers can combine to
refactor more complex inappropriate assertions such as the
sequence of replacements: assertTrue(object.equals(null)
→ assertEquals(object, null) → assertNull(object).

Unsupported refactoring types. We presented and eval-
uated the detection rules for seven test-specific refactorings.
Some test-specific refactorings are defined in the literature
and applied in practice [25], [46], [53] (a) Add explanation
message, (e) Replace try/catch with assertThrows, (f) Replace
@Rule annotation with assertThrows, and (g) Replace @Test
annotation with assertThrows. Other refactorings we identi-
fied in practice were: (b) Replace reserved words, (c) Split
conditional parameters, and (d) Replace the not (!) operator.
Therefore, we extended REFACTORINGMINER tool with some
refactorings defined in formal and gray literature.

Dataset bias. Two experienced external coders built the
dataset we employed to address the accuracy of our approach.
The coders did not have any knowledge on the inner working
of TESTREFACTORINGMINER and could therefore provide us
with a reliable source to assess our approach. Nonetheless, the
coders still performed manual analysis: although we reduced
bias in the dataset construction by assessing the coders’
reliability, we could not claim the dataset is unbiased.

V. STUDY II: EVALUATING THE USEFULNESS AND EASE
OF USE OF TESTREFACTORINGMINER

The goal of the second study was to analyze the viability
of TESTREFACTORINGMINER with respect to its usefulness,
ease of use, and self-predicted future use from the point of
view of researchers in the context of mining software reposito-
ries, with the purpose to assess the practicality and usefulness
of our tool. The perspective was of software engineering
researchers, who are interested in assessing the maturity of our
tool. In particular, the goal of the study aimed at addressing
the following RQ:

ü RQ2. How is the viability of TESTREFACTORINGMINER
to perform mining test-specific refactorings?

As the goal of RQ2 was concerned with the perception of
the adoption of new technology, we conducted the evaluation
using the Technology Acceptance Model (TAM) [54]: this is
an information systems theory having the goal of eliciting how
the stakeholders of a novel technology (software engineering
researchers in our case) come to accept and use the technology
(TESTREFACTORINGMINER tool in our case). TAM considers
three constructs [55]: (1) perceived usefulness to indicate the
degree to which a person believes that using a particular
system would enhance his or her job performance, (2) ease
of use to indicate the degree to which a person believes that
using a particular system would be free of effort, and (3) self-
predicted future use to indicate the degree to which a person
believes that he or she would use a system in the future.

A. Procedure and instrumentation

Target Audience: To ensure valid results, we only se-
lected software engineering researchers with knowledge on
software repository mining and code refactoring. More partic-
ularly, we involved 15 researchers from our contact network,
which we personally invited to perform the study. Their
experience with software repository mining ranges between
1 and 5 years, while their experience with refactoring ranges
between 1 and 4 years. More importantly, only two participants
engaged with REFACTORINGMINER in the past. Therefore, we
could gather insights from researchers who were not used to
the instrument and not affected by any learning effect.

Questionnaire: We applied a three-step questionnaire:
(1) Part I: Participants’ characterization. Participants

filled out consent and a characterization form. The goal
was to investigate the respondent profile, with information
about name, level of education, and experience;

(2) Part II: Participants’ tasks performance and percep-
tions. Participants described their perceptions regarding
the positive and negative points of the tool and sugges-
tions for improvements.

(3) Part III: Perceived usefulness, ease of use, and future
use. Participants filled out an evaluation form about their
perceptions of the tool. The questions in the evaluation
form are based on TAM (Table IV), which answers
follow a six-point Likert scale to indicate the degree of
likelihood that a statement about the usefulness and ease
of use of TESTREFACTORINGMINER tool is true (from
“Extremely unlikely” (1) to “Extremely likely” (6)). As
recommended in previous work [55], we chose a six-point
Likert scale to avoid indecisive answers, e.g., the number
3 in a five-point Likert scale.

Pilot test questionnaire: We conducted a pilot study
with two participants to improve the instrumentation of this
evaluation. One of the participants is experienced in software
repository mining and code refactoring, while the other has
no experience in performing those activities. We selected
them in an effort of gathering opinions from researchers with
different expertise, which would have possibly highlighted
complementary issues in the way questions were phrased,
other than in the way the approach was released. We asked
them to perform the tasks and review the survey to ensure the
questions were clear and complete. The responses of the pilot
study were not considered in the final assessment of the tool.

Tool training and usage: We sent invitations to our
target audience via email. In the first step, participants signed
the consent term and filled out the participants’ characteri-
zation form. In the second step, participants read a manual
to learn how to install TESTREFACTORINGMINER tool and
understand the tasks composing this evaluation. In the third
step, participants performed three tasks, as described in Ta-
ble V, using TESTREFACTORINGMINER tool and filled out
the Participants’ tasks performance and perceptions form. In
the fourth step, participants filled out the usefulness, ease of
use evaluation, and self-predicted future use form.
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TABLE IV: Question to evaluate the perceived usefulness, ease
of use, and self-predicted future use.

Questions regarding perceived “Usefulness” (U):
U1 Using the TestRefactoringMiner tool in my job, I would be able to

mine test-specific refactorings more quickly.
U2 Using the TestRefactoringMiner tool would improve my perfor-

mance on mining test-specific refactorings.
U3 Using the TestRefactoringMiner tool for mining test-specific refac-

torings would increase my productivity.
U4 Using the TestRefactoringMiner tool would enhance my effective-

ness on mining test-specific refactorings.
U5 Using the TestRefactoringMiner tool would make it easier to mine

test-specific refactorings.
U6 I would find the TestRefactoringMiner tool useful to perform

mining test-specific refactorings.
Questions regarding perceived “Ease of Use” (E):
E1 Learning to operate the TestRefactoringMiner tool would be easy

for me.
E2 I would find it easy to get the TestRefactoringMiner tool to do what

I want it to do.
E3 My interaction with the TestRefactoringMiner tool would be clear

and understandable.
E4 It would be easy to become skillful in using the TestRefactoring-

Miner tool.
E5 It would be easy to remember how to mine test-specific refactorings

using the TestRefactoringMiner tool.
E6 I would find the TestRefactoringMiner tool easy to use.
Self-predicted future use (S):
S1 Assuming the TestRefactoringMiner tool is available on my job, I

predict that I will use it on a regular basis in the future.
S2 I prefer using the TestRefactoringMiner tool for mining test-specific

refactorings than not using it.

B. TAM reliability and factor validity

We calculated Cronbach alpha values to perform a reliability
analysis to ensure the internal validity and consistency of
the items used for each variable [56]. A Cronbach’s alpha
reliability level ranging from 0.61 to 0.70 corresponds to the
lower limit of acceptability, from 0.71 to 0.80 indicates that
the items are homogeneous and measuring the same constant,
and from 0.81 to 1.00 indicates a reliable measure [56], [57].
Our results show Cronbach’s alpha reliability level over 0.80
for the three TAM variables; 0.972 for perceived usefulness,
0.948 for ease of use, and 0.858 for self-predicted future use.

We performed a factor analysis to check whether the use-
fulness (U), ease of use (E), and self-predicted future (S) use
items form distinct constructs. In our case, the variables are the
questionnaire questions (Ui, Ei, and Si) and three factors (U,
E, S). The threshold level for sufficient loading is 0.7 [57]. But
even lower values are sometimes considered important for a
particular factor [57]. Table VI shows that the 14 questionnaire
items load on three different factors. Although some items in
usefulness (U3) and ease of use (E2 and E3) have values below
0.7, they still load higher on their respective factors.

C. The usefulness, ease of use and self-predicted use of
TestRefactoringMiner

Fig. 3 also presents the results of each question related to
usefulness, ease of use, and self-predicted use. The partic-

TABLE V: List of tasks the participants performed.

Task Description
T1 Execute TESTREFACTORINGMINER tool in the project JUNIT-

TEAM/JUNIT4 from the first to the last commit of the main branch
to collect all refactorings. Locate the test-specific refactoring “Add
assert message” and answer the questions:
(a) How many test-specific refactorings did the tool report in total?
(b) What is the test class name where the test-specific refactoring
was applied?
(c) What is the line number where the refactoring was applied?

T2 Execute TESTREFACTORINGMINER tool in the project JUNIT-
TEAM/JUNIT4 from the main branch’s first to the last commit to
collect only test-specific refactorings.
(a) How many test-specific refactorings did the tool report?
(b) Which are the test-specific refactorings reported by the tool?
(c) Which is the test-specific refactoring with the highest number
of occurrences?

T3 Execute TESTREFACTORINGMINER tool to identify test-specific
refactorings in the versions R4.12 and R4.13 of the JUNIT-
TEAM/JUNIT4 project.
(a) How many test-specific refactorings did the tool report?
(b) Which are the test-specific refactorings reported by the tool?
(c) What is the test class name where the test-specific refactorings
were applied?

TABLE VI: Factor Analysis.

Variable Usefulness Ease of use Future use
U1 0.94 0.06 0.00
U2 1.00 -0.08 0.02
U3 0.57 0.23 0.15
U4 0.93 -0.16 0.02
U5 0.88 0.14 0.02
U6 0.89 0.15 -0.05
E1 0.03 0.96 -0.02
E2 0.16 0.55 0.36
E3 0.18 0.6 0.19
E4 0.34 0.74 -0.04
E5 -0.03 1.00 -0.09
E6 -0.08 0.87 0.25
S1 0.01 0.04 0.93
S2 0.49 0.10 0.48

ipants found that TESTREFACTORINGMINER tool is useful
for mining test-specific refactoring in software repositories
(mean of 5.07). However, the tool requires some effort to use
(mean of 4.5), especially regarding the “Learning to operate
TESTREFACTORINGMINER tool would be easy for me”.

So far, our data analysis shows that the participants consider
TESTREFACTORINGMINER tool useful and easy to use. For
example, P11 stated that “the tool facilitates mining tasks
by providing a list of analyzed commits and showing the
location where the refactoring occurred, if any. The output
file is a .json, which would make it easier to use other
tools to analyze the data and generate charts, e.g. software R”.
Besides, P15 pointed out that the “tool can be useful to focus
only on test-specific refactorings; using the classic version of
REFACTORINGMINER would require additional effort to filter
out the refactorings performed on production classes”.

In order to investigate how their opinions impact user
acceptance, we correlated the summative results referring to
usefulness, ease of use, and self-predicted future usage [57].
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Fig. 3: Usefulness, ease of use, and self-predicted use of TESTREFACTORINGMINER tool. The data is presented on a six-point
Likert-scale from (1) Extremely unlikely to (6) Extremely likely.

Ease of use and usefulness are positively correlated (0.43),
and both of them are positively correlated with self-predicted
future use. The correlation between ease of use and self-
predicted future is higher (0.53) than the correlation between
usefulness and self-predicted future usage (0.40). It means that
the participants’ decision-making of using TESTREFACTOR-
INGMINER relies more on how easy or hard it is to use the
tool and then its functionalities.

 SummaryRQ2. The participants consider TESTREFAC-
TORINGMINER tool useful to detect test-specific refactor-
ings in software repositories, and easy to use as its results
can serve as input to other complementary tools to perform
the data analysis. Still, the participants would prefer using
a Graphical Interface with filter mechanisms to execute the
tool than running it via command line.

D. Threats to validity

We found two main limitations that might have threatened
the results reported in our empirical study.

Tool familiarity. Most participants used REFACTORING-
MINER and TESTREFACTORINGMINER tools for the first
time during the execution of the empirical study. They only
counted on a tutorial to learn how to configure the environment
and three examples on how to use the tool. Despite their
low experience with the tool, they performed 99.8% of tasks
correctly. This further indicates the simplicity of our approach
in terms of installation and use.

Process validity. Another threat may be the representa-
tiveness of the tasks for mining software repositories. We
asked the participants to mine test-specific refactorings with
TESTREFACTORINGMINER tool. Then, we asked them to
open a .json file to answer some questions, aiming to
validate the tasks’ correctness. On the one hand, participants
reported that searching for specific refactorings in a large
.json file is exhaustive. On the other hand, participants also
recognized that a .json file could be easily imported to
an environment for statistical computing to work with large
amounts of data.

VI. CONCLUSION

This paper introduced TESTREFACTORINGMINER, an ap-
proach that extends the well-known REFACTORINGMINER to
mine seven types of test code refactoring operations performed
by developers. The empirical assessment of the approach
revealed a precision and recall close to 100%, showing that our
approach represents a reliable tool to conduct mining software
repository studies. In addition, we surveyed researchers to
evaluate the perceived usefulness, ease of use, and self-
predicted future use of the tool. We found that TESTREFAC-
TORINGMINER is generally perceived as an actually useful
tool, with a few limitations to address and with a high potential
to enable further knowledge on test-specific refactoring.

As such, our paper offers to the research community a
validated instrument to perform mining software repository
studies involving test code: it is our hope that TESTREFAC-
TORINGMINER may actually lead to a number of valuable
findings with actionable implications. As for our future work,
we aim to continue extending TESTREFACTORINGMINER to
mine other test-specific refactorings. In addition, we aim at
collecting a larger-scale dataset of test-specific refactorings to
assess the recommendations provided by the tool and perform
a comparative analysis with alternative approaches able to
detect change patterns in the test code.
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[48] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[49] D. J. Kim, T.-H. P. Chen, and J. Yang, “The secret life of test smells-
an empirical study on test smell evolution and maintenance,” Empirical

Software Engineering, vol. 26, no. 5, pp. 1–47, 2021.
[50] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Which variables

should i log?” IEEE Transactions on Software Engineering, vol. 47,
no. 9, pp. 2012–2031, 2019.

[51] R. Vieira, A. da Silva, L. Rocha, and J. a. P. Gomes, “From reports
to bug-fix commits: A 10 years dataset of bug-fixing activity from
55 apache’s open source projects,” in Proceedings of the Fifteenth
International Conference on Predictive Models and Data Analytics
in Software Engineering, ser. PROMISE’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 80–89.

[52] D. J. Kim, “An empirical study on the evolution of test smell,” in Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Companion Proceedings, 2020, pp. 149–151.

[53] E. Soares, M. Ribeiro, R. Gheyi, G. Amaral, and A. M. Santos,
“Refactoring test smells with junit 5: Why should developers keep up-
to-date,” IEEE Transactions on Software Engineering, 2022.

[54] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS quarterly, pp. 319–340,
1989.

[55] M. A. Babar, D. Winkler, and S. Biffl, “Evaluating the usefulness
and ease of use of a groupware tool for the software architecture
evaluation process,” in First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), 2007, pp. 430–
439.

[56] E. G. Carmines and R. A. Zeller, Reliability and validity assessment.
Sage publications, 1979.

[57] O. Laitenberger and H. M. Dreyer, “Evaluating the usefulness and
the ease of use of a web-based inspection data collection tool,” in
Proceedings Fifth International Software Metrics Symposium. Metrics
(Cat. No. 98TB100262). IEEE, 1998, pp. 122–132.

12

https://github.com/victorgveloso/RefactoringMiner

	Introduction
	Related Work
	Overview of the Refactoring Mining Tools
	Extensions of RefactoringMiner tool

	Introducing TestRefactoringMiner
	Understanding RefactoringMiner
	Extending RefactoringMiner for test code

	Study I: Evaluating the Accuracy of TestRefactoringMiner
	Context of the study
	Building a dataset of test-specific refactoring operations
	Evaluation of the accuracy of the tool
	Threats to validity

	Study II: Evaluating the Usefulness and Ease of Use of TestRefactoringMiner
	Procedure and instrumentation
	TAM reliability and factor validity
	The usefulness, ease of use and self-predicted use of TestRefactoringMiner
	Threats to validity

	Conclusion
	References

