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Abstract—The importance of human-related factors in the
introduction of bugs has recently been the subject of a number
of empirical studies. However, these observations have not been
captured yet in bug prediction models which simply exploit
product metrics or process metrics based on the number and
type of changes or on the number of developers working on a
software component. Some previous studies have demonstrated
that focused developers are less prone to introduce defects
than non focused developers. According to this observation,
software components changed by focused developers should also
be less error prone than software components changed by less
focused developers. In this paper we capture this observation
by measuring the structural and semantic scattering of changes
performed by the developers working on a software component
and use these two measures to build a bug prediction model.
Such a model has been evaluated on five open source systems
and compared with two competitive prediction models: the first
exploits the number of developers working on a code component
in a given time period as predictor, while the second is based on
the concept of code change entropy. The achieved results show
the superiority of our model with respect to the two competitive
approaches, and the complementarity of the defined scattering
measures with respect to standard predictors commonly used in
the literature.

I. INTRODUCTION

Empirical studies have been carried out to assess under
which circumstances and during which coding activities de-
velopers tend to introduce bugs (see e.g., [1], [2], [3], [4], [5],
[6]). Also, bug prediction techniques built on top of process
metrics (i.e., metrics capturing specific aspects of the devel-
opment process, like the frequency of changes performed to
code components) have been proposed [7], [8], [9], [10], [11],
[12], [13]. Several of these techniques have demonstrated their
superiority [14] with respect to approaches only exploiting
product metrics (i.e., metrics capturing intrinsic characteristics
of the code components, like their size and complexity) [15],
[16], [17], [18], [19].

However, the role of developer-related factors in the bug
prediction field is only partially explored. Indeed, our knowl-
edge on this topic is mainly amenable to few empirical studies
performed in the last years. The first is the one by Eyolfson et
al. [2], who showed that more experienced developers tend to
introduce less faults in software systems. The second has been
performed by Rahman and Devanbu [3], and contradicts in part
the study by Eyolfson et al. [2] by showing that the experience
of a developer has no clear association with the introduction
of buggy code. Bird et al. [20] found that high levels of
ownership are associated with fewer bugs. Posnett et al. [6]
showed that focused developers (i.e., developers focusing their

attention on a specific part of the system) introduce fewer
bugs than unfocused developers. This observation has been
confirmed by Tufano et al. [21], who reported as commits
(i.e., code changes) impacting unrelated code components (i.e.,
files belonging to different subsystems or, more in general,
implementing unrelated responsibilities) are more likely to
introduce bugs with respect to commits performed on highly
related code components. These works have pioneered the
investigation of human-related factors in the context of bug
introduction.

Although such studies showed the importance of human-
related factors in bug prediction, these observations have not
been captured yet in bug prediction models based on process
metrics extracted from version history. Indeed, previous work
have proposed the use of predictors based (i) on the number of
developers working on a code component [10] [11]; (ii) on the
analysis of change-proneness [14] [12] [13]; and (iii) on the
entropy of changes [9]. None of them consider how focused
are the developers performing changes and how scattered are
these changes. With this work we aim at making a further
step ahead, by studying the role played by scattering changes
in bug prediction. We firstly define two measures, namely the
developer’s structural and semantic scattering. The first aims
at assessing how “structurally far” in the software project
are the code components modified in a given time period
by a developer. The “structural distance” between two code
components is measured as the number of subsystems one
needs to cross in order to reach one component from the other.
The second measure (i.e., the semantic scattering) is instead
meant to capture how much spread in terms of implemented
responsibilities are the code components modified in a given
time period by a developer. We expect that high levels of
structural and semantic scattering make the developer more
error-prone. In order to verify our conjecture we build two
predictors exploiting the proposed measures, and then we use
them in a prediction model, comparing its performances with
two baseline techniques based on the number of developers
working on a code component and the entropy of changes,
respectively [10], [9].

The context of our empirical investigation is represented
by five large Java open-source systems. The results achieved
show the superiority of our model, achieving a prediction
accuracy ranging between 68% and 94%, as compared to
the 43%-74% achieved by the change entropy model [9]
and the 19%-49% obtained by exploiting the number of
developers working on a code component as predictor.



Most importantly, the two scattering measures show a high
degree of complementarity with the measures exploited by
the baseline prediction models, paving the way to more
sophisticated and performing bug prediction models to be
developed in the future.

II. RELATED WORK

In the last decade a lot of effort has been devoted to the
definition of approaches aimed at predicting bug-prone code
components. Such approaches mainly differ for the underlying
algorithmic solution they exploit and for the predictors they
use, with the main distinction between product metrics (e.g.,
lines of code, code complexity, etc) and process metrics (e.g.,
past changes and bug fixes performed on a code component).

Basili et al. [15] proposed the use of the Chidamber and
Kemerer (CK) metrics [22] to identify buggy classes, showing
that five of the experimented metrics are actually useful in
characterizing the bug-proneness of a class. The same set
of metrics has been successfully exploited in the context of
bug prediction by El Emam et al. [23] and by Subramanyam
et al. [24]. Both works concur on reporting the ability of
CK metrics in predicting buggy code components. A deeper
investigation on the relationship between CK metrics and code
bug-proneness has been performed later on by Gyimothy et al.
[16] by exploiting issues data present in the Bugzilla database.
Their results report that the Coupling Between Object metric
is the best in predicting the bug-proneness of classes, while
other CK metrics—such as the Dept of Inheritance Tree—
are untrustworthy. Ohisson et al. [17] focused the attention
on the use of design metrics to identify bug-prone modules.
The investigated metrics include the number of nodes, and
the fan-in and fan-out of modules. Their model has been
experimented on a system developed at Ericsson, reporting the
practical applicability of design metrics for the identification
of buggy modules. Nagappan and Ball [18] exploited two
static analysis tools to predict the pre-release bug density
for Windows Server. Their results show that it is possible to
perform a coarse grained classification between high and low
quality components with an accuracy of 83%. Nagappan et
al. [25] also investigated the use of metrics in the prediction
of buggy components across five Microsoft projects. Their
main finding highlights that while it is possible to successfully
exploit complexity metrics in bug prediction, there is no single
metric that could act as a universally best bug predictor (i.e.,
the best predictor is project-dependent). Complexity metrics
in the context of bug prediction is also the focus of the work
by Zimmerman et al. [19]. Their study reports a positive
correlation between code complexity and bugs. Still in terms of
product metrics, Nikora et al. [26] showed that measurements
of a system’s structural evolution (e.g., number of executable
statements, number of nodes in the control flow graph, etc)
can serve as predictors of the number of bugs inserted into a
system during its development.

Differently from the previous discussed techniques, other
approaches try to predict bugs by exploiting process metrics.

Khoshgoftaar et al. [7] studied two subsequent releases of a
large legacy system to assess the role played by debug churns
(i.e., the number of lines of code changed to fix bugs) in the
identification of bug-prone modules. In particular, modules
showing a debug churns exceeding a defined threshold are
marked as bug-prone. The reported results show a misclas-
sification rate of 21%. Graves et al. [8] experimented both
product and process metrics for bug prediction. Their findings
contradict in part what observed by other authors, showing
that product metrics are poor predictors of bugs. Instead, they
found process metrics and in particular the module’s age and
its change-proneness to be the best predictors. D’Ambros et
al. [27] performed an extensive comparison of bug prediction
approaches relying on process and product metrics, showing
that there is not a technique that works better in all contexts.
Hassan and Holt [28] introduced the concept of entropy of
changes as a measure of the complexity of the development
process. They also presented some years later “The Top
Ten List” [29], a methodology to highlight to managers the
top ten subsystems more likely to present bugs. The set of
heuristics behind their approach includes a number of process
metrics, such as considering the most recently modified, the
most recently fixed and the most frequently fixed subsystems.
Moser et al. [14] performed a comparative study between the
predictive power of product and process metrics. Their study,
performed on Eclipse, highlights the superiority of process
metrics in predicting buggy code components. Moser et al.
[12] also performed a deeper study on the bug prediction
accuracy of process metrics, reporting that the past number
of bug-fixes performed on a file (i.e., bug-proneness), the
maximum changeset size occurred in a given period, and the
number of changes involving a file in a given period (i.e.,
change-proneness) are the process metrics ensuring the best
performances in bug prediction. Also Bell et al. [13] pointed
to the code components’ change-proneness as the best bug
predictor. The complexity of the development process, and
in particular the entropy of changes, has been exploited by
Hassan [9] to build two bug prediction models, namely Basic
Code Change Model (BCCM) and Extended Code Change
Model (ECCM). These two models mainly differ for the
choice of the temporal interval where the bug proneness of
components is studied. The results of a reported case study
indicate that the proposed techniques have a prediction accu-
racy of a prediction model based purely on code components
changes. All of the predictors above do not consider how
many developers apply changes to a component, neither how
many components they changed at the same time. Ostrand et
al. [11], [10] propose the use of the number of developers
who modified a code component in a give time period as a
bug-proneness predictor. Their results show that the detection
accuracy of prediction model exploiting products and process
metrics is poorly (positively) impacted by also considering the
developers’ information. Our work does not use a simple count
information of developers who worked on a file, but also takes
into consideration the change activities they carry out. Finally,
among the studies investigating the influence of developers’
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Fig. 1. Example of two developers having different levels of “scattering”

related factors on the introduction of bugs (see Section I),
worthy deepening in this section is the one by Posnett et
al. [6]. The authors investigate factors related to the one we
aim at capturing in this paper, i.e., the developer’s scattering.
In particular, the “focus” metric presented by Posnett et al.
[6] is based on the idea that a developer performing most
of her activities on a single module (a module could be a
method, a class, etc) has a higher focus on the activities she
is performing and is less likely to introduce bugs. As it will
be clearer later, our scattering measures not only take into
account the frequency of changes made by developers over the
different system’s modules, but also considers the “distance”
between the modified modules. This means that, for example,
the contribution of a developer working on a high number of
files all closely related to a specific responsibility might not be
as much “scattered” as the contribution of a developer working
on few unrelated files.

III. COMPUTING DEVELOPER’S SCATTERING CHANGES

We conjecture that the developer’s effort in performing
maintenance and evolution tasks is proportional to the number
of involved components and their spread across different
subsystems. In other words, we believe that a developer
working on different components scatters her attention due
to continuous changes of context. This might lead to an
increase of the developer’s “scattering” with a consequent
higher chance of introducing bugs.

To get a better idea of our conjecture, consider the situation
depicted in Figure 1, where two developers, d1 (black point)
and d2 (grey point) are working on the same system, during
the same time period, but on different code components. The
tasks performed by d1 are very focused on a specific part of
the system (she mainly works on the systems’ GUI) and on
a very targeted topic (she is mainly in charge of working on
GUIs related to the users’ registration and login features). On
the contrary, d2 performs tasks scattered across different parts
of the system (from GUIs to database management) and on
different topics (users’ accounts, payslips, warehouse stocks).

Our conjecture is that during the time period shown in
Figure 1, the contribution of d2 might have been more
“scattered” than the contribution of d1, and has a higher
likelihood of introducing bugs in the system during her change
activities. To verify our conjecture we define two measures,
named the structural and the semantic scattering measures,
aimed at assessing the scattering of a developer d in a given
time period p. Note that both measures are meant to work in
object oriented systems at the class level granularity. In other
words, we measure how scattered are the changes performed
by developer d during the time period p across the the different
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Fig. 2. Example of structural scattering

classes of the system. However, our measures can be easily
adapted to work at other granularity levels.

A. Structural scattering

Let CHd,p be the set of classes changed by a developer
d during a time period p. We define the structural scattering
measure as:

StrScatd,p =
|CHd,p|(|CHd,p|

2

) × ∑
∀ci,cj∈CHd,p

[dist(ci, cj)] (1)

where dist is the number of packages to traverse in order to
go from class ci to class cj ; dist is computed by applying the
shortest path algorithm on the graph representing the system’s
package structure. For example, the dist between two classes
it.user.gui.c1 and it.user.business.db.c1 is
three, since in order to reach c1 from c2 we need to
traverse it.user.business.db, it.user.business,
and it.user.gui. The multiplication factor at the begin-
ning of the formula has a two-fold objective: (i) normalizing
the distances between the code components by the number of
pairs of code components modified by the developer during
the time period p—see the denominator

(|CHd,p|
2

)
—and (ii)

assigning a higher scattering to developers working on a higher
number of code components in the given time period—see the
numerator |CHd,p|.

To better understand how the structural scattering measure
is computed and how it is possible to use it in order to estimate
the developer’s scattering in a time period, Figure 2 provides a
running example based on a real scenario we found in the open
source project Apache Ant1, a tool to automate the building of
software projects.

The tree shown in Figure 2 depicts the activity of a
single developer in the time period between 2012-03-01
and 2012-04-30. In particular, the leafs of the tree rep-
resent the classes modified by the developer in the con-
sidered time period, while the internal nodes (as well as
the root node) illustrate the package structure of Apache
Ant. In this example, the developer worked on the classes
Target and UpToDate, both contained in the package
org.apache.tools.ant.taskdefs grouping together
classes managing the definition of new commands that the
Ant’s user can create for customizing her own building process.
In addition, the developer also modified FilterMapper, a
class containing utility methods (e.g., map a java String into

1http://ant.apache.org/



TABLE I
EXAMPLE OF STRUCTURAL SCATTERING COMPUTATION

Changed components Distance
org.apache.tools.ant.ProjectHelper org.apache.tools.ant.taskdefs.Target 1
org.apache.tools.ant.ProjectHelper org.apache.tools.ant.taskdefs.UpToDate 1
org.apache.tools.ant.ProjectHelper org.apache.tools.ant.types.mappers.FilterMapper 2
org.apache.tools.ant.taskdefs.Target org.apache.tools.ant.taskdefs.UpToDate 0
org.apache.tools.ant.taskdefs.Target org.apache.tools.ant.types.mappers.FilterMapper 3
org.apache.tools.ant.taskdefs.UpToDate org.apache.tools.ant.types.mappers.FilterMapper 3
Structural Developer scattering 6.67

an array), and the class ProjectHelper responsible for
parsing the build file and creating java instances representing
the build workflow. To compute the structural scattering we
calculate the distances between every pair of classes modified
by the developer. If two classes are in the same package,
as in the case of the classes Target and UpToDate, then
the distance between them will be 0. Instead, if they are in
different packages, like in the case of ProjectHelper and
Target, their distance is the minimum number of packages
one needs to traverse to reach one class from the other. For
example, the distance is one between ProjectHelper and
Target (we need to traverse the package taskdefs), and
three between UpToDate and FilterMapper (we need to
traverse the packages taskdefs, types and mappers).

After computing the distance between every pair of classes,
it is possible to calculate the structural scattering measure.
Table I shows a summary of the computation of the distances
between every pair of classes involved in our example and
the value for the final measure. Note that, if the developer
had modified only the Target and UpToDate classes in the
considered time period, then her structural scattering would
have been zero (the lowest possible), since her changes were
focused on just one package. By adding the change performed
to ProjectHelper, the structural scattering raises to 3.00,
and reaches the reported value on 6.67 when also considering
the change to the FilterMapper class. Thus, the structural
scattering is a direct scattering measure (i.e., the higher the
measure, the higher the estimated developer’s scattering).

B. Semantic scattering

Considering the package structure might not be an effective
way of assessing the classes similarity (i.e., how much the
modified classes implement the same responsibilities). Be-
cause of the software “aging” or wrong design decisions,
classes grouped in the same package may have completely
different responsibilities [30]. In such cases, the structural
scattering measure might provide a wrong assessment of
the level of developer’s scattering, by considering classes
implementing different responsibilities as similar only because
contained inside the same package. For this reason, we propose
the semantic scattering measure, based on the textual simi-
larity of the changed software components. Textual similarity
between documents is computed using the Vector Space Model
(VSM) [31] technique. In our application of VSM we (i)
used tf-idf weighting scheme [31], (ii) normalized text by
performing the splitting of identifiers (we also have maintained
the original identifiers), (iii) applied a stop word removal, and
(iv) made stemming (using the well known Porter stemmer).

org.apache.tools.ant.type
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Fig. 3. Example of semantic scattering measure

TABLE II
EXAMPLE OF SEMANTIC SCATTERING COMPUTATION

Changed components Text. sim.
org.apache.tools.ant.type.Path org.apache.tools.ant.type.Resource 0.22
org.apache.tools.ant.type.Path org.apache.tools.ant.type.ZipScanner 0.05
org.apache.tools.ant.type.Resource org.apache.tools.ant.type.ZipScanner 0.10
Semantic Developer scattering 36.39

The semantic scattering measure is computed as:

SemScatd,p =
|CHd,p|(|CHd,p|

2

) × 1∑
∀ci,cj∈CHd,p

[sim(ci, cj)]
(2)

where the sim function returns the textual similarity between
the classes ci and cj as a value between zero (no textual
similarity) and one (the textual content of the two classes is
identical). Note that, as for the structural scattering, we also
adopt a normalization factor taking into account the number
of code components modified by developer d during the time
period p.

Figure 3 shows an example of computation for the semantic
scattering measure. Also in this case the figure depicts a real
scenario we identified in Apache Ant of a single developer in
the time period between 2004-04-01 and 2004-06-30. In the
example shown, the developer worked on the classes Path,
Resource and ZipScanner, all contained in the package
org.apache.tools.ant.types. Path and Resource
are two data types and have some code in common, while
ZipScanner is an archive scanner. To compute the semantic
scattering we calculate the textual similarities between every
pair of classes modified by the developer, as reported in Table
II. While the structural scattering is zero for the example
depicted in Figure 3 (all classes are from the same package),
the semantic scattering is quite high (36.39) due to the low
textual similarity between the pairs of classes contained in the
package (see Table II).

C. Applications of scattering Measures

The scattering measures defined above could be adopted
in different areas related to the monitoring of maintenance
and evolution activities. As an example, a project manager
could use the scattering measures to estimate the workload of a
developer, as well as to the re-allocate resources. In the context
of this paper, we propose the use of the defined measures for
bug prediction. The basic conjecture is that developers having
a high scattering are more likely to introduce bugs during code
change activities. To exploit the defined scattering measures in
the context of bug prediction, we built a new prediction model
called Developer Changes Based Model (DCBM) that analyzes
the components modified by developers in a given time period.
The model exploits a machine learning algorithm built on
top of two predictors. The first, called structural scattering
predictor, is defined starting from the structural scattering
measure, while the second one, called semantic scattering



TABLE III
CHARACTERISTICS OF THE SOFTWARE SYSTEMS USED IN THE STUDY

Project Period #Commits #Dev. #Classes KLOC % buggy
classes

Ant Jan 2000-Jul 2014 13,054 55 1,215 266 72
JMeter Sep 1998-Apr 2014 10,440 34 1,054 192 37
Log4j Nov 2000-Feb 2014 3,274 21 309 59 58
Poi Jan 2002-Aug 2014 5,742 35 2,854 542 62
Xerces-J Nov 1999-Feb 2014 5,471 34 833 260 6
Overall - 37,981 179 6,265 1,319 52

predictor, is based on the semantic scattering measure. The
predictors are defined as follow:

StrScatPredc,p =
∑

d∈developersc

StrScatd,p (3)

SemScatPredc,p =
∑

d∈developersc

SemScatd,p (4)

where the developersc is the set of developers that worked
on the component c during the time period p.

IV. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the study is to evaluate the ability of the
developer’s scattering measures in the prediction of bug-prone
components, with the purpose of improving the allocation of
resources in the verification & validation activities focusing on
components having an higher bug-proneness. The quality focus
is on the detection accuracy and completeness as compared
to state-of-the-art approaches, while the perspective is of
researchers, who want to evaluate the effectiveness of using
information about developer scattered changes in identifying
bug-prone components.

The context of the study consists of five software projects
with different size and scope, namely Apache Ant2,
Apache JMeter3, Apache Log4j4, Apache Poi5, and
Apache Xerces Java6. Table III reports the characteris-
tics of the analyzed systems, and in particular (i) the software
history that we investigated, (ii) the mined number of com-
mits, (iii) the size of the active developers base (those who
performed at least one commit in the analyzed time period),
(iv) the system’s size in terms of KLOC and number of classes,
and (v) the percentage of buggy files identified (as explained
later) during the entire change history. All data used in our
study are publicly available [32].

A. Research Questions and Oracle Definition

In the context of the study, we formulated the following
research questions:
• RQ1: Which is the accuracy of a predictor based on

developer’s scattering measures in detecting bug-prone
components? This research question aims at quantifying
the accuracy of a prediction model based on developer’s
scattering measures (DCBM).

• RQ2: How does a predictor based on developer’s scatter-
ing measures compare with state-of-the-art techniques?

2http://ant.apache.org/
3http://jmeter.apache.org/
4http://logging.apache.org/log4j/
5http://poi.apache.org/
6http://xerces.apache.org/xerces-j/

This research question compares the accuracy of DCBM
in detecting bug-prone components with two baseline
prediction models. The first is the prediction model based
on the work by Ostrand et al. [11], [10] and exploiting the
number of developers that work on a code component in
a specific time period as predictor variable (from now on,
we refer to this model as DM). The second is the Basic
Code Change Model (BCCM) proposed by Hassan and
using code change entropy information [9]. The results of
this comparison will provide insights on the usefulness of
developer’s scattering measures for detecting bug-prone
components.

Our choices of the baselines with which to compare is
mainly focused on techniques exploiting similar information.
In particular, the prediction model proposed by Ostrand et al.
[11], [10] is based on the developers working on a software
component, while the prediction model proposed by Hassan
[9] is based on the changes to a software component. Our
approach combine these two types of information by consid-
ering the way the changes made by the different developers
on a software components are scattered within the system. In
addition our choice of BCCM is also justified by its superiority
with respect to other techniques exploiting change-proneness
information [14], [12], [13]. While such a superiority has been
already demonstrated by Hassan [9], we also compared these
techniques before choosing BCCM as one of the baselines
for evaluating our approach. In particular, it is worth noting
that the BCCM works better with respect to a model that
simply counts the number of changes because it filters the
changes that differ from the code change process (i.e., fault
repairing and general maintenance modifications) considering
only the Feature Introduction modifications (FI), namely the
changes related to the adding or enhancing features. However,
we observed a high overlap between the BCCM and the model
that use the number of changes as predictor (almost 84%) on
the dataset used for the comparison, probably due to the fact
that the nature of the information exploited by the two models
is the same. The interested reader can find the comparison
between these two models in our online appendix [32].
To answer our research questions, we need an oracle report-
ing the presence of bugs in the source code. Although the
PROMISE repository collects a large dataset of bugs in open
source systems [33], it provides oracles at release-level. Since
the proposed measures work at time period-level, we had to
build our own oracle. Firstly, we identified bug fixing commits
happened during the change history of each object system
by mining regular expressions containing issue IDs in the
change log of the versioning system, e.g., “fixed issue #ID”
or “issue ID”. After that, for each identified issue ID, we
downloaded the corresponding issue reports from their issue
tracking system and extracted the following information from
them: product name; issue’s type, i.e., whether an issue is a
bug, enhancement request, etc; issue’s status, i.e., whether an
issue was closed or not; issue’s resolution, i.e., whether an
issue was resolved by fixing it, or whether it was a duplicate



bug report, or a “works for me” case; issue’s opening date;
issue’s closing date, if available.

Then, we checked each issue’s report to be correctly down-
loaded (e.g., the issue’s ID identified from the versioning
system commit note could be a false positive). After that, we
used the issue type field to classify the issue and distinguish
bug fixes from other issue types (e.g., enhancements). Finally,
we only considered bugs having Closed status and Fixed
resolution. Basically, we restricted our attention to (i) issues
that were related to bugs as we used them as a measure
of fault-proneness, and (ii) issues that were neither duplicate
reports nor false alarms.

Once collected the set of bugs fixed in the change history of
each system, we used the SZZ algorithm [34] to identify when
each fixed bug was introduced. The SZZ algorithm relies on
the annotation/blame feature of versioning systems. In essence,
given a bug-fix identified by the bug ID, k, the approach works
as follows:

1) For each file fi, i = 1 . . .mk involved in the bug-fix k
(mk is the number of files changed in the bug-fix k), and
fixed in its revision rel-fixi,k, we extract the file revision
just before the bug fixing (rel-fixi,k − 1).

2) starting from the revision rel-fixi,k − 1, for each source
line in fi changed to fix the bug k the blame feature of
Git is used to identify the file revision where the last
change to that line occurred. In doing that, blank lines
and lines that only contain comments are identified using
an island grammar parser [35]. This produces, for each
file fi, a set of ni,k fix-inducing revisions rel-bugi,j,k,
j = 1 . . . ni,k. Thus, more than one commit can be
indicated by the SZZ algorithm as responsible for the
inducing of a fix.

By adopting the process described above we are able to
approximate the periods of time where each class of the object
systems was affected by one or more bugs (i.e., was a buggy
class). In particular, given a bug-fix BFk performed on a class
ci, we consider ci buggy from the date in which the bug fixed
in BFk was introduced (as indicated by the SZZ algorithm)
to the date in which BFk (i.e., the patch) was committed in
the repository.

B. Data Analysis

To evaluate the performances of the experimented bug
prediction techniques (i.e., DBCM, BCCM, and DM), firstly
we need to define the machine learning classifier to use. For
each prediction technique, we experimented several classifiers,
namely ADTree [36], Decision Table Majority [37], Logistic
Regression [38], Multilayer Perceptron [39] and Naive Bayes
[40]. We empirically compared the results achieved by the
three different models on the software systems used in our
study (more details on the adopted procedure later in this
section). For all the prediction models the best results were
obtained using the Majority Decision Table (the comparison
among the classifiers can be found in our online appendix
[32]). Thus, we exploit it in the implementation of the three

models. This classifier can be viewed as an extension of one-
valued decision trees [37]. It is a rectangular table where
the columns are labeled with predictors and rows are sets
of decision rules. Each decision rule of a decision table is
composed of (i) a pool of conditions, linked through and/or
logical operators which are used to reflect the structure of
the if-then rules; and (ii) an outcome which mirrors the
classification of a software entity respecting the corresponding
rule as bug-prone or non bug-prone. Majority Decision Table
uses an attribute reduction algorithm to find a good subset of
predictors with the goal of eliminating equivalent rules and
reducing the likelihood of over-fitting the data.

To assess the performance of the three models, we split the
change-history of the object systems into three-month time
periods and we adopt a three-month sliding window to train
and test the bug prediction models. In particular, starting from
the first time period TP1 (i.e., the one starting at the first
commit), we train each model on it, and test its ability in
predicting buggy classes on TP2 (i.e., the subsequent three-
month time period). Then, we move three months forward the
sliding window, training the classifiers on TP2 and testing
their accuracy on TP3. This process is repeated until the
end of the analyzed change history (see Table III) is reached.
Note that our choice of considering three-month periods is not
random, but based on: (i) choices made in previous work, like
the one by Hassan et al. [9]; and (ii) the results of an empirical
assessment we performed on such a parameter showing that
the best results for all experimented techniques are achieved
by using three-months length periods. In particular, we experi-
mented with time windows of one, two, three, and six months.
The complete results are available in our replication package
[32].

Once defined the oracle and obtained the predicted buggy
classes by DCBM for every three-month period, we answer
RQ1 by using three widely-adopted metrics, namely accuracy,
precision and recall [31]:

accuracy =
TP + TN

TP + FP + TN + FN
(5)

precision =
TP

TP + FN
(6)

recall =
TP

TP + TN
(7)

where TP is the number of classes containing bugs that are
correctly classified as bug-prone; TN denotes the number of
bug-free classes classified as non bug-prone classes; FP and
FN measure the number of classes for which a prediction
model fails to identify bug-prone classes by declaring bug-
free classes as bug-prone (FP ) or identifying actually buggy
classes as non buggy ones (FN ). As an aggregate indicator
of precision and recall, we also report the F-measure, defined
as the harmonic mean of precision and recall:

F -measure = 2 ∗ precision ∗ recall
precision+ recall

(8)



To answer RQ2, we performed the bug prediction using
BCCM and DM on the same systems and the same periods
on which we previously run DCBM in the context of RQ1.

After that, we analyzed the equivalence of the different
measures used by the three experimented bug prediction
models using Principal Component Analysis (PCA). PCA
is a statistical technique able to identify various orthogonal
dimensions (principal components) captured by the data (bug-
proneness of classes in our case) which measure contributes to
the identified dimensions. Through the analysis of the principal
components and the contributions (scores) of each predictor to
such components, it is possible to understand whether differ-
ent predictors contribute to the same principal components.
Two models are complementary if the predictors they exploit
contribute to capture different principal components. Hence,
the analysis of the principal components provides insights on
the complementarity between models.

Such an analysis was necessary to assess whether the
exploited predictors (e.g., the number of developers for DM
as compared to structural and semantic scattering for DCBM)
assign the same bug-proneness to the same set of classes.
However, PCA does not tell the whole story. Indeed, using
PCA it is not possible to identify to what extent a prediction
model complements another and vice versa. This is the reason
why we complemented the PCA by analyzing the overlap of
the three prediction models. Specifically, given two prediction
models mi and mj , we computed:

corrmi∩mj
=
|corrmi

∩ corrmj
|

|corrmi ∪ corrmj |
% (9)

corrmi\mj
=
|corrmi \ corrmj |
|corrmi

∪ corrmj
|
% (10)

where corrmi represents the set of bug-prone classes correctly
classified by the prediction model mi, corrmi∩mj

measures
the overlap between the set of true positive correctly identified
by both models mi and mj , corrmi\mj

measures bug-prone
classes correctly classified by mi only and missed by mj .
Clearly, the overlap metrics are computed by considering each
combination of the three experimented detection techniques
(e.g., we compute corrBCCM∩DM , corrBCCM∩DCBM , and
corrDM∩DCBM ). In addition, given the three experimented
prediction models mi, mj and mk, we computed:

corrmi\(mj∪mk) =
|corrmi

\ (corrmj
∪ corrmk

)|
|corrmi ∪ corrmj ∪ corrmk

|
% (11)

that represents the bug-prone classes correctly identified only
by the prediction model mi.

V. EMPIRICAL STUDY RESULTS

In this section we discuss the results achieved aiming at
answering the research questions formulated in Section IV.
To avoid redundancies, we report the results for both research
questions together.

Table IV reports the results—in terms of accuracy, precision,
recall, and F-measure—achieved by the three experimented

TABLE V
RESULTS ACHIEVED APPLYING THE PRINCIPAL COMPONENT ANALYSIS

PC1 PC2 PC3 PC4
Proportion of Variance 0.76 0.15 0.08 0.01
Cumulative Variance 0.76 0.91 0.99 1.00
Structural scattering predictor 1.00 - - 0.11
Semantic scattering predictor - 0.53 0.45 0.27
Change entropy - 0.47 0.54 0.42
Number of Developers - - 0.01 0.29

bug prediction models, i.e., our model, exploiting the devel-
oper’s scattering metrics (DCBM), the BCCM proposed by
Hassan [9], and a prediction model that uses as predictor the
number of developers that work on a code component (DM)
[11], [10]. The achieved results indicate that the proposed pre-
diction model (i.e., DCBM) ensures better prediction accuracy
as compared to the competitive techniques. Indeed, the accu-
racy of DCBM ranges between 68% and 94%, outperforming
the competitive models. Also, in terms of precision and recall
(and, consequently, the value of F-measure) DCBM achieves
better results. In particular, across all the five object systems,
DCBM achieves a higher F-measure with respect to both DM
(mean=+46.2%, median=+45%) and BCCM (mean=+11.4%,
median=+13.5%). The higher values achieved for precision
and recall means that DCBM provides less false positive (i.e.,
non-buggy classes indicated as buggy ones) while also being
able to discover more classes actually affected by a bug as
compared to the competitive models.

Interesting is the case of Xerces-J where DCBM is able
to identify buggy classes with 94% of accuracy (see Table
IV), as compared to the 74% achieved by BCCM and the
49% of DM. We looked inside this project to understand
the reasons behind such a strong result. We found that the
Xerces-J’s buggy classes are often modified by few devel-
opers that, on average, perform a small number of changes
on them. As an example, the class XSSimpleTypeDecl
of the package org.apache.xerces.impl.dv.xs has
been modified only two times between May 2008 and July
2008 (i.e., one of the three-month periods considered in our
study), by two developers. However, the sum of their structural
and semantic scattering in that period was very high (161 and
1,932, respectively). Thus, while a model based on the change
entropy (BCCM) or on the number of developers modifying a
class (DM) experiences difficulties in identifying this class
as buggy due to the low number of changes it underwent
and to the low number of involved developers, respectively,
our model does not suffer of such a limitation thanks to the
exploited developers’ scattering information.

Table V reports the results of the Principal Component
Analysis (PCA), aimed at investigating the complementarity
between the predictors exploited by the different models. The
different columns (PC1 to PC4) represent the components
identified by the PCA as those describing the phenomenon
of interest (in our case, bug-proneness). The first row (i.e., the
proportion of variance) indicates on a scale between zero and
one how much each component contributes to the phenomenon
description (the higher the proportion of variance, the higher
the component’s contribution). The identified components are
ordered on the basis of their “importance” in describing the



TABLE IV
ACCURACY, PRECISION, RECALL, AND F-MEASURE OF THE THREE BUG PREDICTION MODELS

System DCBM DM BCCM
Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure

Ant 69% 66% 72% 69% 26% 28% 37% 31% 63% 67% 68% 68%
JMeter 77% 72% 68% 70% 29% 24% 53% 33% 65% 65% 63% 64%
Log4j 71% 62% 66% 64% 19% 13% 26% 17% 43% 36% 78% 49%
Poi 68% 88% 59% 71% 25% 34% 16% 22% 60% 74% 49% 59%
Xerces-J 94% 94% 88% 91% 49% 28% 35% 31% 74% 59% 80% 68%

TABLE VI
OVERLAP ANALYSIS BETWEEN DCBM AND DM

System DCBM ∩ DCBM \ DM \
DM% DM% DCBM%

Ant 9 74 17
JMeter 8 89 3
Log4j 13 75 12
Poi 11 72 17
Xerces 32 55 13
Overall 16 70 14

TABLE VII
OVERLAP ANALYSIS BETWEEN DCBM AND BCCM

System DCBM ∩ DCBM \ BCCM \
BCCM % BCCM % DCBM %

Ant 39 37 24
JMeter 28 45 27
Log4j 16 67 17
Poi 37 33 30
Xerces 22 43 35
Overall 32 45 23

phenomenon (e.g., the PC1 in Table V is the most important,
capturing almost 76% of the phenomenon as compared to 1%
of PC4). Finally, the real values reported at row i and column
j indicate how much the predictor i contributes in capturing
the PCj (e.g., structural scattering captures 100% of PC1).
Interestingly, the structural scattering predictor is the only
predictor fully orthogonal with respect to the other three, since
it is the only capturing PC1. As for the other predictors, the
semantic scattering and the change entropy information seem
to be quite related by capturing the same components (i.e.,
PC2 and PC3). Finally, the number of developers is the one
better capturing the less important component (PC4).

As a next step toward understanding the complementarity
of the three prediction models, Tables VI, VII, and VIII report
the overlap metrics computed between DCBM-DM, DCBM-
BCCM, and DM-BCCM, respectively. In addition, Table IX
shows the percentage of buggy classes correctly identified only
by each of the single bug prediction models (e.g., identified
by DCBM and not by DM and BCCM).

Regarding the overlap between our predictor (DCBM) and
the one built using the number of developers (DM), it is
interesting to observe that there are some complementarity
between the two models, with an overall 70% of correctly
classified buggy classes only identified by our model, 14%
only by DM, and 16% of instances correctly classified by
both models. This result is consistent on all the object systems
(see Table VI). A similar trend is shown in Table VII, when
analyzing the overlap between our model and BCCM. In this
case, our model correctly classified 45% of buggy classes that
are not identified by BCCM that is, however, able to capture
a 23% of buggy classes missed by our approach. Finally, 32%
of buggy classes are correctly identified by both models.

Thus, our prediction model showed a high degree of com-

TABLE VIII
OVERLAP ANALYSIS BETWEEN DM AND BCCM

System DM ∩ BCCM \ DM \
BCCM % DM % BCCM %

Ant 10 71 19
JMeter 11 83 6
Log4j 15 69 16
Poi 15 68 17
Xerces 30 59 11
Overall 13 69 18

TABLE IX
OVERLAP ANALYSIS CONSIDERING EACH MODEL INDEPENDENTLY

System DCBM \ BCCM \ DM \
(BCCM ∪ DM)% (DCBM ∪ DM)% (DCBM ∪ BCCM)%

Ant 51 31 18
JMeter 65 26 9
Log4j 61 28 11
Poi 48 36 16
Xerces 53 33 16
Overall 59 32 9

plementarity with the two competitive models. On the same
line, when looking at the overlap metrics between the DM and
the BCCM (see Table VIII), we can see that the models are
highly complementary too, with the BCCM providing much
better performances and identifying 69% of correct buggy
classes missed by DM.

Finally, looking at Table IX, we can see that our approach
identifies 59% of buggy classes missed by the other two
techniques, as compared to 32% of BCCM and 9% of DM.
This confirms that (i) our model captures something missed by
the competitive models, and (ii) by combining our model with
BCCM/DM we could further improve the detection accuracy
of our technique.

An example of a buggy class detected only by DCBM can
be found in the Apache Ant system. The class Exit belonging
to the package org.apache.tools.ant.taskdefs has
been modified just one time by a single developer in the time
period going from January 2004 to April 2004. However, the
sum of the structural and semantic scattering in that period was
very high for the involved developer (461.61 and 5,603.19,
respectively), who modified a total of 38 classes spread over
6 subsystems. In the considered time period the DM does
not identify Exit as buggy given the single developer who
worked on it, and the BCCM fails too due to the single change
Exit underwent between January and April 2004. Overall, the
results achieved in our study allow us to answer our research
questions:
• RQ1: Our approach showed quite high accuracy in de-

tecting buggy classes. Among the five object systems its
accuracy ranged between 66% and 94%, while the F-
measure between 64% and 91%.

• RQ2: The comparison between our approach and the



two competitive techniques showed (i) its superiority in
detecting buggy classes providing a lower number of false
positives, and (ii) its high complementarity, paving the
way to future developments of our model aimed at further
increasing its performances.

VI. THREATS TO VALIDITY

This section describes the threats that can affect the validity
our study. Threats to construct validity concern the relation
between the theory and the observation, and in this work are
mainly due to the measurements we performed. This is the
most important kind of threat for our study, and is related to:
• Missing or wrong links between bug tracking systems and

versioning systems [41]: although not much can be done
for missing links, as explained in the design we verified
that links between commit notes and issues are correct;

• Imprecision due to tangled code changes [42]. We cannot
exclude that some commits we identified as bug-fixes
grouped together tangled code changes, of which just a
subset represented the committed patch.

• Imprecision in issue classification made by issue-tracking
systems [4]: while we cannot exclude misclassification of
issues (e.g., an enhancement classified as a bug), at least
all the systems considered in our study used Bugzilla as
issue tracking system, explicitly pointing to bugs in the
issue type field;

• Undocumented bugs present in the system: while we
relied on the issue tracker to identify the bugs fixed during
the change history of the object systems, it is possible that
undocumented bugs were present in some classes, leading
to wrong classifications of buggy classes as “clean” ones.

• Approximations due to identifying fix-inducing changes
using the SZZ algorithm [34]: at least we used heuristics
to limit the number of false positives, for example exclud-
ing blank and comment lines from the set of fix-inducing
changes.

Threats to internal validity concern external factors we did
not consider that could affect the variables being investigated.
We computed the developer’s scattering measures by analyzing
the developers’ activity on a single software system. However,
it is well known that, especially in open source communities
and ecosystems, developers contribute to multiple projects in
parallel [43]. This might negatively influence the “developer’s
scattering” assessment made by our metrics. Still, the results
of our approach can only improve by considering more so-
phisticated ways of computing our metrics.

Threats to conclusion validity concern the relation between
the treatment and the outcome. The metrics used in order
to evaluate our defect prediction approach, i.e., accuracy,
precision, recall, and F-Measure, are widely used in the
evaluation of the performances of defect prediction techniques
[27]. Moreover, we used appropriate statistical procedures, i.e.,
PCA [44], and the computation of overlap metrics to study the
orthogonality between our model and the competitive ones.

Threats to external validity concern the generalization of
results. We analyzed five different systems from different

application domains and with different characteristics (number
of developers, size, number of classes, etc). However, other
systems should be analyzed to corroborate our findings.

VII. CONCLUSION AND FUTURE WORK

A lot of effort in the last decade has been devoted to analyze
the influence of the development process in the likelihood of
introducing bugs. Several empirical studies have been carried
out to assess under which circumstances and during which
coding activities developers tend to introduce bugs. In addition,
bug prediction techniques built on top of process metrics have
been proposed. However, changes in source code are made by
developers that often work under stressing conditions due to
the need of delivering their work as soon as possible.

The role of developer-related factors in the bug prediction
field is still a partially explored area. This paper makes a
further step ahead, by studying the role played by the devel-
oper’s scattering in bug prediction. Specifically, we defined
two measures that consider the amount of code components
a developer modifies in a given time period and how these
components are spread structurally (structural scattering) and
in terms of the responsibilities they implement (semantic
scattering). The defined measures have been evaluated as
bug predictors in an empirical study performed on five open
source systems. In particular, we build a prediction model
exploiting our measures and compared its prediction accuracy
with two state-of-the-art techniques exploiting process metrics
as predictors. The achieved results showed the superiority of
our model and its high level of complementarity with respect
to the considered competitive techniques.

Our future research agenda includes:
1) the definition of more sophisticated bug prediction tech-

niques, flanking the defined measures with complemen-
tary predictors, like those exploited by Hassan [9].

2) a deeper investigation of the factors causing scattering
to developers, and negatively impacting their ability of
dealing with code change tasks. We plan to reach such
an objective by performing a large survey with industrial
and open source developers.

3) the replication of our study on a larger set of systems,
implemented in different programming languages.
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