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ABSTRACT
Artificial Intelligence (AI) is rapidly advancing with a data-centered

approach suitable for various domains. Nevertheless, AI faces signif-

icant challenges, particularly in data quality. Data collection from

diverse sources can introduce quality issues that may threaten the

development of AI-enabled systems. A growing concern in this

context is the emergence of data smells – issues specific to the

data used in building AI models, which can have long-term con-

sequences. In this paper, we aim at enlarging the current body of

knowledge on data smells, by proposing a two-step investigation

into the matter. First, we updated an existing literature review in

an effort of cataloguing the currently existing data smells and the

tools to detect them. Afterward, we assess the prevalence of data

smells and their correlation with data quality metrics. We identify

a novel set composed of 12 data smells distributed across three

additional categories. Secondly, we observe that the correlation be-

tween data smells and data quality is notably impactful, exhibiting

a pronounced and substantial effect, especially in highly diffused

data smell instances. This research sheds light on the complex rela-

tionship between data smells and data quality, providing valuable

insights into the challenges of maintaining AI-enabled systems.
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• Software and its engineering→ Softwaremaintenance tools.
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AI Technical Debt; Data Smells; Data Quality; Software Engineering

for Artificial Intelligence, Empirical Software Engineering.

ACM Reference Format:
Gilberto Recupito, Raimondo Rapacciuolo, Dario Di Nucci, and Fabio Palomba.

2023. Unmasking Data Secrets: An Empirical Investigation into Data Smells

and Their Impact on Data Quality. In CAIN ’24: 3rd International Conference

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CAIN 2024, April 2024, Lisbon, Portugal
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

on AI Engineering – Software Engineering for AI, April 14–15, 2024, Lisbon, ES.
ACM, New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Artificial Intelligence (AI) is more and more diffused nowadays, be-

ing used by individuals and companies to make informed decisions

[54] and automate tasks that would typically done by humans [38].

Indeed, AI-intensive systems, i.e., systems that embed artificial in-

telligence models and algorithms, have been recently deployed in

multiple domains, with some recent applications showing highly

efficient and accurate performance [31, 34].

However, the development of artificial intelligence-enabled sys-

tems differs from other types of software because the program and

its effectiveness in solving a specific task heavily rely on the data

and observations used to train models [3].

More specifically, AI-enabled systems are defined as a system
consisting of various software components, out of which at least one
is an AI-specific component [30]. In this context, data represents

the primary source of producing business-oriented AI-enabled sys-

tems. Performing data analysis and validation is a crucial initial

step for designers of machine learning components. Failure to prop-

erly analyze the training data may lead to model degradation [27].

Therefore, it is crucial to prioritize data quality to build a reliable

and effective AI-enabled system. Data quality issues can arise for

various reasons, e.g., data entry errors, inadequate data cleaning,

or bias in the data. Addressing these issues requires a well-defined

data quality management strategy that includes profiling, cleansing,

and data enrichment [33]. While different tools and practices are

available to support feature engineering and data transformation

for managing AI pipelines [39], the need to improve the practices

related to quality assurance is continuously increasing [10].

Data quality degradation could also lead to technical debt for the

whole system [13]. Data debt, primarily when introduced by data

quality issues or data anomalies, can strongly impact AI-enabled

systems, degrading model performance and causing problems to

all the subsequent phases involved in the pipeline [2].

In analyzing technical debt specific to data, data smells are repre-
sented using the analogy of code smells. As code smells are defined

as symptoms of poor design and implementation choices [15], data
smells are data value-based indications of latent data quality issues
caused by poor practices that may lead to problems in the future [14].
While other types of data quality issues are investigated in research
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to be addressed [17, 19, 28, 49], the knowledge about the effect and

the presence of data smells is still limited to the catalog provided

by Foidl et al. [14].

This limitation confines the possibility of spending research ef-

forts to increase the data quality management process of the system.

Since the actual state of the definition of data smells is preliminary, it

has been difficult to conduct studies to find management strategies

for this type of data quality issue. Increasing the knowledge base

of data smells, this study aims to provide researchers with a better

understanding of how data smells can be identified and managed.

Therefore, this study first explores the novel literature to update

and extend the catalog of data smells. Subsequently, through em-

pirical methods, analyzed the prevalence and impact of data smells

in real-world datasets on data quality aspects. In particular, we

updated the literature review and introduced three new types of

data smells ( i.e., Redundant Value Smells, Distribution Smells, and
Miscellaneous Smells) and 12 new data smells to the existing catalog.

We identify data smells in the most frequently used dataset and

examine their relationship with data quality.

To sum up, our work provides the following main contributions:

• An updated catalog of data smells, which advances the state

of the art by providing the definition of novel data smells,

along with the information on how to detect them;

• Results of an empirical investigation into the prevalence and

impact of data smells on data quality metrics, which can be

used by researchers and practitioners to understand how

data smells may impact the training of AI solutions;

• A publicly available replication package [1], which includes

the whole set of data and scripts used in the study and that

can be used by researchers to build on top of our findings.

Structure of the paper. The article continues with the following

sections: Section 2 provides information about the state of data

smells and discusses related work. Section 3 explains the main goal

and the overall method to address our research questions. Section 4

details the method and the results obtained to produce the new

catalog of data smells. Section 5 details the method and the results

of the empirical analysis for the correlation of data smells and data

quality. Section 6 discusses the threats faced and mitigated in this

study. Section 7 outlines the implications and discusses the study

results. Section 8 conclude the article with the key findings.

2 BACKGROUND AND RELATEDWORK
In this section, we first provide a background on AI technical debt,

discussing the main research advances in the area. Secondly, we

elaborate on the related works, explaining how our study compares

and advances them.

2.1 Technical Debt
The term “technical debt” was coined by Cunningham [8] as a

metaphor for describing the adoption of suboptimal solutions to

achieve short-term benefits, which are expected to be repaid with

greater costs in the medium or long term. Similar to financial debt,

technical debt can pose serious challenges to the maintainability

of a system, leading to increased maintenance costs and reduced

quality [24, 42]. The concept of technical debt has been explored

through various studies. Tom et al. [47] discussed the different types

of granularity that highlight the level of the effect of each technical

debt, including code debt, architectural debt, environmental debt,

knowledge distribution debt, and testing debt. Li et al. [25] extended

the classification to include requirements and infrastructure debt.

Specifically for code debt, code smells are symptoms of poor de-

sign and implementation choices that can significantly impact the

maintainability of a software system [15]. Structural metrics and

historical metrics were explored, resulting in the proposal of various

tools and methodologies [29, 32, 35, 36, 48]. Therefore, the research

effort invested in addressing technical debt increases the overall

quality of software systems and allow practitioners to automatically

detect code smells to guarantee high system’s quality.

In traditional software systems the effort to investigate technical

debt has been enough to align several benefits that practitioners

could use to increase the system’s overall quality. With the rise of

AI-enabled systems, exploring technical debt opens new challenges.

Sculley et al. [41] brings the definition of technical debt inside AI-

enabled systems, highlighting all the potential issues that can arise

when using machine learning models. For instance, changes to the

data distribution over time can also lead to the unpredictable impact

to the whole system, defined as CACE principle (Changing Anything
Changes Everything). The significant contribution that Sculley et

al. [41] give to define technical debt in AI-enabled systems, opens

the road to conduct several studies. Tang et al. [45] carried out an

empirical study that analyzed 26 machine learning (ML) projects.

They identified seven new ML-specific technical debt types, focus-

ing on aspects related to the model code. Their findings shed light

on unique challenges and debt types specific to ML projects, helping

researchers and practitioners understand the nature of technical

debt in ML projects. In a recent study, Bogner et al. [2] analyzed

technical debt in AI-enabled systems using a systematic mapping

study. The analysis identified 72 antipatterns, most related to data

and model debt. The study’s findings offer valuable insights into

the specific areas requiring attention to manage technical debt in

AI-enabled systems effectively.

2.2 Related Work
Several studies explored the definition of data debt in AI-enabled

systems. Sculley et al. [41] defined the concept of technical debt in

the context of the data used for building AI models. In detail, they

explored the dependencies of the data, warning for the dependen-

cies which changes could provoke unpredictable consequences to

the whole system (Unstable data dependencies) and the underutilized
data dependencies in an AI pipeline. Bogner et al. [2] subsequently

conducted a systematic mapping study to explore the types of data

smells. Data debt is the most recurrent type of AI-specific debt

of all the types of technical debt explored for AI-enabled systems.

Munappy et al. [33] employed a case study to explore data manage-

ment issues in Deep-Learning systems. They discovered as main

issues related to the data structure the critical challenges related to

the deduplication of the data and management of heterogeneous

data in terms of encoding and format. Bosu and MacDonell [4]

conducted a systematic literature review of data quality research

in empirical software engineering. They reported that only a few

studies (23) considered the three essential activities related to data
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quality management (data collection reporting, data pre-processing,

and data quality issues). Yoon and Doo [52] evaluated six different

techniques to face outliers anomalies in the context of software

project data, discovering that data cleaning techniques on artificial

data sets are a considerable solution for this type of data quality

issue. Liebchen and Shepperd [26] updated the conducted literature

review to discover new challenges related to data quality manage-

ment in software engineering, highlighting an increasing interest of

the practitioners in exploring techniques that automatically detect

data quality issues. These studies put the basis by leveraging the

need to explore further issues related to data debt.

Specifically for data smells, the actual state of research is at a

preliminary stage. Foidl et al. [14] conducted a literature review to

present the definition of data smells and define a catalog with 36

data smells in three main categories: Believability Smells, Under-
standability Smells, andConsistency Smells. Moreover, they proposed

two tools to detect part of the smell defined. Similarly, Shome et

al. [43] explored and analyzed commonly used datasets in Kaggle
1

to identify and define data smells. They defined four categories

of specific data smells: Redundant value smells, Categorical value
smells, Missing value smells, and String value smells. While these

contributions provide valuable insights, the current research re-

veals a scattered comprehension of the ramifications of data smells.

The fragmented nature of this knowledge implies a need for further

integration and synthesis to extract a unified catalog, useful for

practitioners and researchers to have a complete overview of all

the data smells defined in the literature. Subsequently, even if the

literature provides a clear definition that eases the understanding

of the implication of data smells, there is still a lack of knowledge

about how these smells affect the overall data quality. This study

aims to fill this gap regarding data smells and their impact on data

quality. To achieve this, we created an updated and unified catalog

of data smells, consolidating categorizations for a more cohesive

understanding. Then, we conducted empirical analysis to uncover

the intricate relationship between different data smells and various

aspects of data quality. Our research aims to substantially con-

tribute to advancing our comprehension of data smells and their

implications in the broader context of data quality assurance.

3 RESEARCH QUESTIONS AND METHODS
The goal of the study is to address the existing gaps and limita-

tions in understanding data smells and their impact on data quality.

Specifically, it aims to contribute to the field by undertaking two

primary objectives. On the one hand, it seeks to create an updated

and unified catalog of data smells, building upon the previous liter-

ature review conducted by Foidl et al. [14]. On the other hand, the

study intends to understand the relationship between data smells

and data quality. To formalize and address the main goal of our

study, we applied the Goal-Question-Metric approach proposed by

Caldiera et al. [7]. In detail, we defined the goal of our study:

1
Kaggle: https://www.kaggle.com/

◎ Our Goal.
Purpose: Understand
Issue: the characteristics of
Object: data smells, their prevalence, and their relationship with

data quality aspects

Viewpoint: from the points of view of researchers and data engi-

neers.

From the goal, we defined three main research questions. First,

since there is a lack of a unified definition of the data smells defined

in the literature, we wanted to elicit a complete and unified catalog

of the main data smells defined in the literature with a name and a

description of their features. In particular, we asked:

ü RQ1.What specific data smells are documented in the existing
literature and what are the tools to detect data smells?

Additionally, we needed a comprehensive analysis of data smell

prevalence as a foundational step in developing effective data qual-

ity management strategies. Identifying common data smells and

their frequency allows for prioritizing efforts in data cleaning, vali-

dation, and improvement. Therefore, we identified the following

research question:

ü RQ2. What is the prevalence of data smells in contemporary
datasets?

Finally, practitioners and researchers need to understand the

relationship between data smells and data quality metrics to un-

derstand their severity and develop targeted strategies for data

quality enhancement. By exploring significant relationships, we

pinpointed the specific data quality dimensions most affected by

certain data smells. With this aim, we formulated the following

research question:

ü RQ3. How do these data smells contribute to the degradation of
data quality?

We leveraged two methods to address the main goal of the study

and the related research questions. First, we followed the method by

Wohlin [51] to update systematic literature reviews to explore data

smells. This method provides a structured framework to collect,

evaluate, and synthesize existing literature on data smells. Follow-

ing the systematic literature review process, we aimed to identify

and consolidate comprehensive information on documented data

smells, their categorizations, and tools proposed for their detection,

starting from the basis of the knowledge defined by Foidl et al. [14].

The tools delineated in the review process served as the foun-

dation for the analytical phase to address the second and third

research questions. Identifying data smells, we conducted a preva-

lence analysis within widely utilized datasets. In the final stage, we

employed the metrics established by Elouataoui et al. [11] to under-

take a correlation analysis to delve into the intricate relationships

between the identified data smells and various data quality metrics.

4 ON THE EXPLORATION OF DATA SMELLS
To collect a comprehensive overview of the data smells defined by

researchers so far, we extended the taxonomy provided by Foidl

et al. [14]. In particular, we followed the guidelines by Kitchen-

ham et al. [22] and Wohlin et al. [51], conducting four main steps,
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namely (i) database search, (ii) snowballing, (iii) application of ex-

clusion/inclusion criteria, and (iv) quality assessment.

Database Search. As a first step, we identified the key terms to

use within the queries, extracting them from the research questions.

Then, we found alternative spellings and synonyms for these terms

and applied boolean operators as conjunctions, in particular, the

“OR” operator for the union of alternative spellings and synonyms

and the “AND” operator for the concatenation of the key terms.

These steps led to defining the following search query:

(“data smell*” OR “data defect*” OR “data debt*”) AND ((“tool”

OR “technique*” OR “strateg*” OR “identification” OR “refac-

toring”) OR ( “dataset*”) OR (“definition*” OR “catalog*”) OR
( (“machine learning” OR “artificial intelligence” OR “ai” OR
“deep learning” OR “dl”)))

The search query was executed against three databases, namely

IEEEExplore, ACM Digital Library, and Scopus.

Inclusion & Exclusion Criteria. The study selection criteria are

intended to identify the primary studies that may address the re-

search questions. Inclusion and exclusion criteria were based on

the research questions and piloted to ensure they can be reliably

interpreted to classify primary studies [22]. In our case, we filtered

out resources based on the following exclusion criteria:

EC1. Articles not written in English.

EC2. Restricted license papers, so papers whose full-text read was
not available for free.

EC3. Articles that were not peer-reviewed.

As for inclusion criteria, we defined the following:

IC1. Articles defining data smells.

IC2. Articles assessing tools about data quality and smells.

Snowballing. According to the guidelines formulated byWohlin [50],

we applied the exclusion and inclusion criteria defined before and

after each iteration of backward and forward snowballing. The

snowballing process has been iterated until a state of saturation (

i.e., the snowballing process continued until the last iteration does

not allow the inclusion of new articles).

Quality Assessment. Before data extraction, we defined a list

of questions to help assess the quality of the selected paper with

the final goal of having high-quality resources and discarding the

papers that did not provide enough details. Following, we report

the set questions:

Q1. Does the paper define one or more data smells?

Q2. Does the paper provide instances of the impact of the data

smell on a machine learning system?

Q3. Does the paper clearly define how the method is conducted

to assess the presence of data smells?

Q4. Does the paper define one or more tools or techniques to

identify or refactor the presence of data smells in a dataset?

Q5. Are the main aspects of the paper clearly defined?

The first four questions can be considered mutually exclusive.

All the questions can be answered with "Yes" (Score = 1), "Partially"

(Score = 0.5), or "No" (Score = 0); the final quality score for each

paper was computed by summing up the score of the answers to

the two questions, to be accepted the article should have at least a

score of 1.5.

4.1 Research Method Execution
We began our exploration by comprehensively searching databases,

which yielded an initial collection of 197 articles. We applied the

inclusion and exclusion criteria to refine this pool and were left

with a core set of just four papers. Following the methodology rec-

ommended by Wohlin et al. [51], we initiated a process of forward

snowballing from the seminal work of Foidl et al. [14], as well as

backward and forward snowballing for newly identified articles

during the literature review. This method allowed for adding 14

other articles during the first iteration and eight more during the

second iteration, bringing our total to 26 papers. The third iteration

was significant in helping us determine the saturation state of our

search. By applying rigorous quality assessment criteria, we identi-

fied a final set of 12 papers that were eligible for inclusion. These

selected contributions augment and refine the taxonomy, thus en-

hancing our understanding of the domain. This process allowed us

to effectively narrow down a large set of articles to a smaller, more

relevant set.

4.2 Analysis of the Results
4.2.1 Data Smells Catalog. Starting from the initial catalog de-

fined by Foidl et al. [14], we collected data on smell definitions and

types from 12 articles. To answer the first research question, we

reported all the main data smells defined in the literature under a

unified catalog divided by classes of smells containing a name and

description.

In detail, starting from the original catalog defined, we found

three new categories of data smell and 12 new data smells.

Figure 1 outlines various types of data quality issues known as

“smells” within different categories such as Believability,Understand-
ability, Consistency, Redundancy, Distribution, and Miscellaneous.
These smells are early indicators of potential problems in datasets,

which can affect data analysis and machine learning models. In the

following, we describe each category in more detail:

Believability smells encompass issues related to the credibility

and trustworthiness of data. New smells identified in this cate-

gory are Multiple Value Smell [44] that describe multiple data in

a unique value (e.g., the age and the gender of a specific person

are represented as a unified value). In contrast, Splitted Value Smell
represents a single data split in more columns [44].

Understandability Smells deals with issues affecting data compre-

hensibility, and it involves two subcategories. Encoding Smells high-
light problems like representing integers as strings or vice versa,

which can lead to confusion during data processing [14, 16]. Syntac-
tic Smells cover issues such as special characters, spacing inconsis-

tencies, and data values that are too long to understand. New smells

retrieved and grouped in this category are String in human-friendly
format [43] and Missing value Smell [5, 9, 12, 18, 37, 40, 43, 44].

Consistency smells relates to the uniformity and consistency

of data elements. Problems like Syntax Inconsistency and Special
Character Inconsistency show discrepancies in how data values are

used. Inconsistencies in spacing, casing, and unit measurements can

also be problematic. Identifying and rectifying these inconsistencies
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Data Smells

Encoding Smells Syntactic Smells

Dummy value
Meaningless value
Suspect precision
Suspect distribution
Suspect Date/Time interval
Suspect Date value
Column header
containing value
Incorrect Column Header
Multiple Value Smell
Splitted Value Smell

Presence of sensitive
features

Extreme Value Smell
Circular Domain as Linear

Believability
Smells

Understandability
Smells

Consistency
Smells Redundant Value

Smells

Distribution
Smells

Miscellaneous 
Smells

Correlated features
Unique identifiers

Integer as String
Integer as Floating-point 
Floating-point as String
Time as String
Date/Time as String
Date as String
Date as Date/Time

Separating
Extraneous value
Synonym
Special character
Spacing
Long data value
Intermingled data type
Contracting
Casing
Ambiguous value
Small number
Ambiguous Date/Time format
String in human-friendly format
Missing value Smell

Syntax inconsistency
Missing value inconsistency
Transposition inconsistency
Special character inconsistency
Spacing inconsistency
Separating inconsistency
Casing inconsistency
Abbreviation inconsistency
Unit inconsistency
Data/Time format inconsistency
Precision inconsistency
Value length Inconsistency

Legend:

New Data Smell Category

Established Data Smell Category

Figure 1: An extended version of the catalog of data smells defined by Foidl et al. [14]. The new data smells are highlighted in bold.

is crucial for accurate data analysis and reporting. A new smell

identified in this category is Value Length inconsistency [21], related

to some of the values of a set that are represented with a significant

difference in terms of length.

Redundant value smells point to data elements or features that

provide little to no additional information for the training of AI

models. Correlated Features [43] indicate redundant data when two

features have a linear relationship, potentially introducing noise in

models. Unique Identifiers [43] signifies redundant data that can be

removed to improve data quality and model performance.

Distribution smells are related to the values in terms of the whole

range of values represented. New smells under this category are

Extreme Value Smell [5, 21], in which some of the values strongly

differ from the distribution, and Circular Domain as Linear [21], in
which a feature that has a range of values limited in a set of values

( i.e., days of the week) are represented as linear. A possible solu-

tion to refactor this data smell is data binning, grouping values in

intervals to select a single value representing the whole range [21].

Finally, Miscellaneous Smells covers various data quality issues

that do not fit into the previous categories. The presence of Sensitive
Features warns against including high-impact features that may

introduce bias and unfairness in predictions [43].

Addressing these data smells is essential for ensuring the quality

and reliability of data, which is fundamental for making informed

decisions and building accurate machine learning models. Data

cleaning and preprocessing techniques can help mitigate these is-

sues, making the data more suitable for analysis and model training.

4.2.2 Data Smells Identification Tools and Strategies. The results
highlight three main tools helpful in identifying data smells. To

get further information about the characteristics of these tools, we

analyzed the documentation to understand their characteristics and

which data smells can be detected using them.

The first tool is Rule-Based Data Smell Detection [14]. This tool

uses an open-source data validation approach focusing on rule-

based data smell detection. This tool is designed to identify smells

such as Long Data Value, Casing, and several Encoding Smells. It

includes a user-friendly graphical interface for uploading CSV files,

enabling users to adjust the suspicion level based on predefined

settings. Moreover, users can define parameters for each detection

method individually. Subsequently, a machine learning-based ver-

sion of data smell detection tools is implemented and proposed

by Foidl et al. [14]. This version uses machine learning algorithms

to detect data smells. In detail, different models are implemented

and used to detect several Inconsistency Smells and Encoding Smells.
Furthermore, to detect smells that rely on the semantics of the

value, the tool uses an NLP approach ( i.e., Word2Vec) to detect

a Believability Smell ( i.e., Synonyms). Finally, Data Validator is a
component inside the framework TensorFlow Extended (TFX) that

automatically collects information about the data schemas used for

training machine learning models and reports quality issues to the

user. From the set of quality issues able to define, Data Validator

reports the presence of Encoding Smells ( i.e., Non-boolean value for
boolean feature type and Extreme Value Smell).

 Answer to RQ1. Data smells can be classified into eight cat-

egories, namely, Believability Smells, Encoding Smells, Syntactic
Smells, Consistency Smells, Redundant Value Smells, Distribution
Smells, and Miscellaneous Smells, with a final catalog of 50 data

smells. From the original study, 12 more data smells are added

to the catalog, and three new data smell categories are defined.

Finally, the results show three data smell detection tools to identify

a significant part of the data smells.
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5 ON THE PREVALENCE AND IMPACT OF
DATA SMELLS ON DATA QUALITY

We conducted several steps to answer RQ2 and RQ3. First, we

collected datasets that allowed us to address our objectives. Sub-

sequently, we selected one of the tools retrieved by the systematic

literature review to identify data smells and assess their prevalence.

Afterwards, we selected a set of data quality metrics measurable to

understand the quality properties of the data and perform correla-

tion analysis between the presence of the data smells and the data

quality metrics retrieved.

5.1 Data Collection
The first step of this phase was data collection to gather a set of

datasets studied in the literature in the form and structure of tabular

data to be analyzable by the detection tools. We based our research

on the data studied by Le Quy et al. [23] that overviews several

real-world, tabular datasets used for fairness-aware machine learn-

ing and analyzes the correlation between the different attributes,

particularly protected attributes, and the class attribute, using a

Bayesian network. We added the datasets reported by Hirzel et

al. [20] to enhance this initial set.

The datasets are divided by their application domain into differ-

ent categories, namely: financial datasets, criminological datasets,

healthcare and social datasets, educational datasets, and miscella-

neous datasets; from all the datasets reported in the papers, we

extracted those related to classification tasks, for a total number of

19 datasets.

For each dataset, we provided a description and a set of metadata,

including name, path, protected attribute, privileged classes, and

favorable labels, to use in the data analysis phase.

5.2 Data Smell and Data Quality Metrics
Collection

The second step of this phase consisted of analyzing the collected

datasets. To carry out this phase, we built a tool wrapping the data

quality tool DSD
2
and implemented a module to compute metrics

about data quality.

5.2.1 DataQuality Metrics. This module implements the classes

to compute the quality metrics of our datasets. We decided to rely

on the metrics described by Elouataoui et al. [11]; since they intro-

duced a set of metrics to assess the quality in the context of big data

processes, we decided to take into account only a subset of met-

rics, excluding all the time-related metrics and the process-related

metrics.

The final set includes the following metrics:

• Completeness (Com): In big data environments, the col-

lected raw data are usually incomplete and lack contextual

information. Thus, data completeness is one of the most

crucial criteria when assessing data quality [11]. It can be

defined as:

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑛𝑜𝑛_𝑒𝑚𝑝𝑡𝑦_𝑣𝑎𝑙𝑢𝑒𝑠

𝑇𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒𝑠
× 100 (1)

2
https://github.com/mkerschbaumer/rb-data-smell-detection

• Uniqueness (Uni): Large-scale datasets are usually redun-

dant since the data are gathered frommultiple sources; there-

fore, the same information can be recorded more than once

in a different format [11]. It can be defined as:

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑜𝑤𝑠

𝑇𝑜𝑡𝑎𝑙_𝑟𝑜𝑤𝑠
× 100 (2)

• Consistency (Con): Consistent data should be defined as

data presented in the same structure and types and coherent

with data schemas and standards [11]. It can be defined as:

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑣𝑎𝑙𝑢𝑒𝑠_𝑤𝑖𝑡ℎ_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑡𝑦𝑝𝑒𝑠

𝑇𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒𝑠
× 100 (3)

• Readability (Read): Data validity is not limited to data

format but also refers to data semantics. Indeed, raw data

may contain misspelled words or even nonsense words, es-

pecially when the database is overwhelmed by human data

entries [11]. It can be defined as:

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑛𝑜𝑛_𝑚𝑖𝑠𝑝𝑒𝑙𝑙𝑒𝑑_𝑣𝑎𝑙𝑢𝑒𝑠

𝑇𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒𝑠
× 100 (4)

5.3 Data Analysis to Address RQ2

To address RQ2, we run our wrapper of the DSD tool against the

collected datasets. More specifically, the tool reports the presence of

each of the considered data smells on each dataset, hence allowing

us to assess the prevalence of data smells.

5.4 Data Analysis to Address RQ3

To address 𝑅𝑄3, we performed a statistical analysis based on hy-

pothesis testing to test the effect of data smells on the data quality

metrics. We defined two sets relative to the data smells analyzed

(𝐷𝑆) and the data quality metrics retrieved (𝐷𝑄).

𝐷𝑆 = {𝐸𝑉 ,𝑀𝑉 ,𝐶𝐴, 𝑆𝑆, 𝐹𝑆} (5)

𝐷𝑄 = {𝐶𝑜𝑚,𝑈𝑛𝑖,𝐶𝑜𝑛, 𝑅𝑒𝑎𝑑} (6)

Then, we formulated the null hypotheses as follows, considering

each combination of data smells and data quality metrics:

𝐻0 (𝑑𝑠, 𝑑𝑞): There is no statistically significant rela-

tionship between the data smell 𝑑𝑠 ∈ 𝐷𝑆 and the data

quality metric 𝑑𝑞 ∈ 𝐷𝑄 .

When a null hypothesis can be rejected with high confidence, the

alternative hypothesis could be acceptable, admitting the negative

effect that the data smells have on the data quality metrics:

𝐻𝑎 (𝑑𝑠, 𝑑𝑞): There is a statistically significant relation-

ship between the data smell 𝑑𝑠 ∈ 𝐷𝑆 and the data

quality metric 𝑑𝑞 ∈ 𝐷𝑄 .

After selecting the tool to retrieve data smells and define the

relative null hypotheses, we designed the statistical analysis to

investigate the correlation between data smells and data quality.

In detail, we defined 𝑥
ds

as the independent variable representative
of the number of occurrences of the data smell 𝑑𝑠 ∈ 𝐷𝑆 and 𝑦

dq

as the relative dependent variable representing the value of the

data quality metric 𝑑𝑞 ∈ 𝐷𝑄 . We analyzed the association between

each independent variable and each single dependent variable to
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check for potential significant correlations. In particular, we applied

Spearman’s correlation rank coefficient [6]. The decision to use

Spearman’s correlation was based on our observation of the non-

normal distribution of each data smell.

Guided by the observed correlations, we decided to deepen our

understanding of the underlying relationships by employing a gen-

eralized linear model (GLM) [46]. Acknowledging that correlations

do not imply causation, a GLM allows us to explore the depen-

dencies between variables more nuanced, accommodating vari-

ous distributional assumptions and potential nonlinearities. Before

building the model, it is necessary to understand if multicollinearity

could be present among all the variables [53]

Table 1: Distribution of Data Smells

Data Smell Total Count

Extreme Value Smell (EV) 137

Missing Value Smell (MV) 110

Casing Smell (CA) 24

Suspect Sign Smell (SS) 20

Floating Point Number As String Smell (FS) 2

5.5 Analysis of the Results
5.5.1 Prevalence of Data Smells. Table 1 summarizes the results we

achieved. Considering the smells we analyzed, the most common is

the Extreme Value Smell with a total count of 143 smelly instances,

the second one is the Missing Value Smell with a total number of

119 instances, and the third is Casing Smell with 24 instances.
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Figure 2: Prevalence of Data Smells in the analyzed datasets

Figure 2 illustrates the number of features affected by smells for

each dataset. The datasets that do not have any instance of data

smell are not included in the plot to increase the interpretability.

Therefore, 14 out of 19 datasets present at least an attribute affected

by data smells, as illustrated. The most diffused data smell in the

several datasets is Extreme Value Smell, present in all the datasets af-

fected by at least one data smell. While the prevalence of data smell

is high, the distribution of the instances is not equally distributed

across all the datasets. One of the datasets analyzed (“speed dating”,

with Dataset ID 16) presents 104 instances of data smells, composed

of 60 instances of Missing Values, 41 instances of Extreme Value
Smell, and three instances of Casing Smells. Floating Point Number
As String Smell is present only in one of the datasets analyzed (heart
disease, with DatasetID 14).

 Answer to RQ2. To summarize the results, the most common

data smell detected is the Extreme Value Smell with a total number

of 137 smelly instances, and the second one is the Missing Value

Smell with 110 instances. Most datasets have at least one attribute

affected by data smells, resulting in 6 data smells found.

5.5.2 Correlation between Data Smells and Data Quality. We first

analyzed the correlation between each data smell and quality metric

to answer the last research question.

Table 2: Spearman Test Results

Variable Independent
Variable

Spearman
Statistic

P-value

Uniqueness EV 0.2038 ***
MV 0.2672 ***
CA 0.1667 ***
SS 0.1150 **
FS 0.0578

Consistency EV 0.1533 ***
MV -0.1833 ***
CA 0.0576

SS 0.0525

FS 0.2078 ***

Readability EV 0.3978 ***
MV 0.0213

CA -0.2038 ***
SS 0.1376 **
FS 0.1051 *

Completeness EV -0.1357 **
MV -0.9524 ***
CA -0.0746

SS -0.0002

FS 0.0311

Significance Levels: p<0.001 (***), p<0.01 (**), p<0.05 (*)

Table 2 reports all the results of the Spearman Correlation Rank

performed. Asterisks denote the significance levels, and the ab-

sence of asterisks denotes a high p-value, meaning a low statistical

significance.
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The strength and significance of these correlations vary across

measures. Extreme Value Smells,Missing Value Smells, Casing Smells,
and Suspect Sign Smells exhibit statistically significant correlations

with Uniqueness, suggesting a robust relationship. Regarding Con-
sistency, Extreme Value Smell, and Floating Point Number as String
Smell demonstrate a significant positive correlation, while Missing
Value Smell displays a significant negative correlation. Readability
shows strong associations with almost all the proposed smells, con-

firming a significant correlation with Extreme Value Smells. Finally,
Completeness is highly correlated to the Missing Value Smells, high-
lighting a strong negative correlation, followed by a statistically

significant but slight correlation with the Extreme Value Smell.
The observed variations in correlation strength and statistical

significance emphasize the nuanced relationships between these

smells and data quality aspects, contributing valuable insights to

our understanding of the factors influencing text characteristics.

Table 3: GLM Coefficient Statistics

Model Variable Coefficient (significance)

Uniqueness EV 9.17 × 10
−6

MV 2.65 × 10
−7

SS 6.23 × 10
−7

CA 8.67 × 10
−5

(***)

Completeness EV 4.03 × 10
−6

MV −0.0002 (***)

Consistency EV 4.90 × 10
−6

MV −1.02 × 10
−5

(***)

FS −6.29 × 10
−6

Readability EV 0.0001 (**)

SS 3.62 × 10
−5

CA −0.0001 (***)
FS −0.0025 (**)

Significance levels: p < 0.001 (***),p < 0.01 (**),p < 0.05 (*)

From the outcome of the Spearman correlation ranks, we built

the GLM model, selecting the independent variables that have a

statistically significant association with the relative dependent vari-

able. The results obtained from the applied Generalized Linear

Model (GLM), as presented in Table 3, offer valuable insights into

the significant relationships between data smells and data quality,

revealing several correlations.

For each data smell, the reported relative coefficient represents

the impact on the data quality metric, accompanied by the cor-

responding significance level. These correlation coefficients are

calculated based on different proportions of the dataset, indicating

how a unit increase in the specified data smell influences the as-

sociated quality attribute. It is important to note that even if the

model indicates a low impact for the presence of a single instance

of the data smell, the cumulative effect of multiple instances can

be substantial. Thus, understanding the potential effects of data

smells becomes crucial, especially in high quantities. The presence

ofMissing Value Smells exhibits a negative correlation, emphasizing

its slight but statistically significant effect on Completeness.
The model related to the Consistency exhibits a highly significant

negative correlation with Missing Value Smells but presents a very
low coefficient, indicating that even if the variable could have a

statistically significant effect, the effect of the data smells could be

critical for this data quality aspect if the number of occurrences

of Missing Value Smells is high. Differently, the effect of this data
smell on Completeness is higher with a very low p-value, leading

to a strong effect. Regarding Uniqueness of the data, Casing Smells
have a slight but statistically significant effect. More interestingly,

the presence of Extreme Value Smells is positively correlated to

Readability, leading to adding values that differ significantly from

the distribution increases the amount of information the data gives.

Floating Point Number as String Smells have a highly significant

effect on Readability of the data. Casing Smells also slightly affects

Readability, in which the relationship is extremely significant.

In summary, while the effect of a single instance of a data smell

may appear negligible to data quality, the noteworthy significance

levels associated with each correlation underscore the gravity of

having data smells in high quantities. The cumulative impact of

multiple instances becomes increasingly pronounced, emphasizing

the potential detrimental effects on data quality.

 Answer to RQ3. The analysis reveals nuanced relationships

between data smells and data quality metrics. While individual

data smells may exhibit a seemingly low impact, the significance

levels associated with each correlation signal the severity of having

these smells in high quantities.

6 THREATS TO VALIDITY
Threats to the External Validity. One primary concern this study

addresses is the potential bias introduced by selecting database

sources. To mitigate this threat, we adhered to the recommended

practices outlined by Wohlin et al. [50] by including major database

sources. Additionally, we conducted two iterative rounds of snow-

balling to ensure a comprehensive exploration of articles addressing

data quality issues.

While the study aimed to explore deeply data quality issues,

specifically focusing on identifying data smells, there was a crucial

decision to balance the scope. A more extensive exploration could

have introduced various other types of data issues unrelated to

the concept of smells. Although our broad investigation led to the

identification of new data smells and even novel categories of such

smells, it is acknowledged that certain data quality issues associated

with the concept of smells may remain undefined.

As for selecting the 19 datasets for studying the correlation

between data smells and data quality aspects, careful consideration

was given to address potential biases. The choice of these datasets

was guided by the need to use representative datasets commonly

used in AI applications and research. It is important to note that

while the chosen datasets provide a robust basis for examining

correlations, the inherent variability among datasets may influence

the generalizability of specific findings.
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Threats to the Conclusion Validity. The choice of instrumenta-

tion is critical to conclusion validity, particularly in detecting data

smells and measuring data quality aspects. Firstly, utilizing the tool

published by Foidl et al. [14] provides a foundation for identifying

and assessing data smells. By leveraging an established tool, the

study benefits from a standardized and structured approach to data

smell detection. Moreover, using metrics defined and validated by

Elouataoui et al. [11] adds another layer of rigor to the measure-

ment process. From the set of metrics defined, we deliberately chose

to focus exclusively on metrics tied to the structural elements of

the data. With this decision, we intentionally omitted metrics asso-

ciated with external factors, such as how the data are applied in the

context of an application. The study gains access to well-established

measurement tools by aligning with these metrics. While this study

does not explore other aspects in the context of the data quality, it

enhances the replicability of the research as a starting point.

7 DISCUSSION AND IMPLICATIONS
Lack of Data Quality Assurance Instruments. In the context of

monitoring data quality issues in AI-enabled systems, Breck et

al. [5] shows the absence of a standardized tool for this purpose.

Recognizing this gap, Foidl et al. [14] started addressing the problem

by introducing innovative tools designed to identify data smells.

This work represents a pioneering effort in the field, leading to the

opportunity to explore the effect of data smells on data quality, as

this study aimed. However, the tool proposed is still limited, being

able to detect only part of the smells that are defined. This limitation

implies still an open challenge for the research, improving the actual

state of automatic data smell detection and data quality monitoring.

Data Smells: Do They Really Smell Bad? According to our find-

ings, we may conclude that only some data smells influence data

quality aspects related to the data structure. However, it would

still be possible that the effects of data smells might be observed

in the long run, namely when considering evolutionary aspects of

data like data change-proneness, data engineering, and the data

governance processes. More interesting, the outcome of the gen-

eralized linear model for the relationship between data smells and

readability highlights a positive correlation between the presence

of Extreme Value Smell and Readability. In this case, extreme values

inside a distribution seem to correlate to the amount of informa-

tion a single attribute could give. This finding also underscores the

importance of considering data smells in the broader context of

data analysis, as they may not only indicate potential issues but

also reveal interesting patterns and relationships. As this positive

correlation aligns with the notion that extreme values might en-

hance the amount of information conveyed by a single attribute, it

invites deeper investigation into the mechanisms driving this rela-

tionship. Future research could delve into the practical implications

of this correlation, providing insights into how data practitioners

and analysts can leverage or manage extreme values to improve

the interpretability and utility of their datasets.

Structural Data Quality Metrics: Are They Enough? Regarding the

data quality metrics set, we selected the structural data quality met-

rics defined by Elouatauoi et al. [11]. This set of metrics allows the

understanding of the data quality based on the structural character-

istics related to the readability of the distributions, completeness,

consistency, and uniqueness. While these metrics are well-defined

and easy to use to evaluate the quality of a dataset, there could

be the need to extend the definition of actual data quality metrics.

The relationship and the analysis of data smells could help to this

goal. Considering the new smells identified, it could be possible to

define new metrics related to Multiple Value Smell, understanding
the number of values a single attribute’s value contains. Similarly,

defining Column Header Containing Value could lead to defining

new metrics related to the explainability of the value. To sum up,

while the structural metrics selected are robust and user-friendly,

considering the analysis of data smells introduces the prospect of

refining and expanding the metrics landscape. By incorporating

insights from data smells, we can develop new metrics that delve

deeper into the subtleties of data quality, enhancing our ability to

evaluate and ensure the integrity of datasets comprehensively.

8 CONCLUSION
This study outlines the state of the definition of data smells in AI-

enabled systems. First, we defined a new taxonomy with 12 new

data smells and three new categories to extend the catalog of data

smells. Then, we analyzed the presence of data smells to understand

their relationship with data quality. The outcomes highlight the

emerging severity of these types of data quality issues, that while

the effect could be irrelevant in small amounts, the impact of such

issues can be significant when introduced in high quantity. There-

fore, this research enriches the conceptualization of data smells and

emphasizes their tangible implications on data quality. The high

severity recognized in these issues serves as a call to increase the

awareness of researchers and practitioners and leverage the need

to institute robust strategies and best practices in data governance

and quality assurance. As AI plays a pivotal role in various domains,

understanding and addressing data smells becomes paramount for

ensuring AI-enabled systems’ reliability, trustworthiness, and effec-

tiveness. As implications of these results, it is necessary to define

new detection and refactoring strategies to support the practition-

ers in the data quality management process. On the one hand, such

detection strategies could empower practitioners to identify and

isolate specific instances of data smells, providing a more granular

understanding of their presence and facilitating targeted interven-

tions. On the other hand, defining new refactoring strategies to fix

data smells effectively could support practitioners in guaranteeing

high data quality and allow for investigating the effect of the over-

all AI-enabled systems, exploring the effect on dynamic metrics to

explore other aspects of data quality.
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