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Abstract—This paper introduces AGORA, an innovative ap-
proach that leverages Large Language Models to automate the
definition of acceptance test cases from use cases. AGORA
consists of two phases that exploit prompt engineering to 1)
identify test cases for specific use cases and 2) generate detailed
acceptance tests cases. AGORA was evaluated through a con-
trolled experiment involving industry professionals, comparing
the effectiveness and efficiency of the proposed approach with the
manual method. The results showed that AGORA can generate
acceptance test cases with a quality comparable to that obtained
manually but improving the process efficiency by over 90% in a
fraction of the time. Furthermore, user feedback indicated high
satisfaction with using the proposed approach. These findings
underscore the potential of AGORA as a tool to enhance the
efficiency and quality of the software testing process.

Index Terms—User Acceptance Testing; Large Language Mod-
els; Automated Software Engineering.

I. INTRODUCTION

User Acceptance Testing (UAT) is a critical phase in the
software development lifecycle [4], as it verifies that the
final product adheres to the requirements and expectations of
stakeholders. Use cases describing the interactions between the
user and the system are commonly used to produce UATs.

Recently, the advent of Large Language Models (LLM) [14]
has opened new perspectives in automating natural language-
related tasks, including generating UATs. Nonetheless, the
use of LLMs in this field is not without challenges. Issues
arise from the non-determinism of LLMs, the context size
limit, and the need to produce acceptance tests written in
a standard format [21] that cover all event flows of the
use case. This paper presents an LLM-based approach for
UAT, named AGORA, which aims to overcome these chal-
lenges through prompt engineering and hyperparameter tuning.
AGORA consists of two main phases: 1) Listing test cases and
2) Writing the UAT details. Both phases leverage LLMs to
analyze use cases and produce UATs. The first phase focuses
on identifying test cases, while the second phase is dedicated
to the detailed generation of each test case. We developed a
Web Tool, implementing AGORA, and used it to validate the
approach conducting a controlled experiment with an Italian
IT company. The study involved seven professionals. One
served as an oracle, while the other six were randomly divided
into two groups to produce the UATs: an experimental group
using AGORA and a control group performing manually. Both
groups were assigned the same use cases. The oracle assessed
the quality of the produced UATs at the final stage, unaware

of the group that produced them. The results highlighted that
AGORA produces UATs as effectively as manual techniques
but much faster. User feedback also reflects great satisfaction
with AGORA. All this underscores the potential of the ap-
proach to enhance software testing efficiency and overcome
the hurdles of manual UAT creation.

Structure of the paper. The remainder of the paper is
organized as follows. Section II provides background and
motivation of our work. Section III presents the AGORA
approach, while the empirical experiment employed to validate
it is described in Section IV. Section V report the results, while
the main findings and the threats to the validity discussion are
provided in Section VI. Section VII covers the related work.
Conclusions and future work conclude the paper.

II. BACKGROUND

This section introduces the essential information on LLMs
and the motivation behind our study.

A. Large Language Models

An LLM is a sophisticated deep neural network trained
on vast textual datasets, such as books, source code, and
web pages. This training enables the model to learn com-
plex linguistic structures and relationships, making it capable
of generating coherent, grammatically correct, and human-
like text [6, 10, 21]. LLMs are used in applications like
automatic translation, text summarization, content generation,
and question answering [3], impacting numerous sectors.
Several ”emergent abilities” have been discovered in LLMs
[21], including ”in-context learning,” ”following instructions,”
and ”step-by-step reasoning.” ”In-context learning,” introduced
by GPT-3, allows the model to generate expected outputs
from provided instructions or task demonstrations without
further training. ”Following instructions” enables LLMs to
follow directions for new tasks without explicit examples
[19]. ”Step-by-step reasoning” allows LLMs to solve complex
tasks involving multiple reasoning steps, such as arithmetic or
common-sense tasks. These characteristics suggest LLMs can
be used to interpret and analyze use cases to produce UATs
automatically. Notable LLMs include OpenAI’s GPT [3] and
Meta’s LLaMA [16]. This study used GPT-4 [13], but the
AGORA approach is flexible enough to use different LLMs.
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B. Motivation of our work

LLMs have several limitations despite their remarkable
features. They cannot make logical inferences beyond their
training data, leading to nonsensical or incorrect outputs,
especially with unclear or ambiguous prompts [2]. LLMs
are also sensitive to input formulation [11]; slight variations
can cause significantly different outputs, complicating reliable
control [11]. Additionally, the amount of information LLMs
can process simultaneously is limited and varies by model.
For instance, GPT-4 can handle up to 8,192 tokens in a
single interaction [13]. Consequently, using LLMs to analyze
use case models and generate UATs can lead to incorrect
results. To better understand these aspects, let us look at some
examples.

Prompt no. 1: Generating UATs from a Use Case

Provide the user acceptance tests for the following use case:
US-1.02: Add a Measurement
Description: The user adds a spectral index measurement to histor-
ical agricultural land data.
Actors: Farmer
Main Scenario

1) The user clicks on ”New Measurement”
2) The system displays a form to select the spectral index
3) The user selects the desired spectral index
4) The system displays the parameters related to the given index
5) The user fills out the form
6) The user presses the ”Save” button
7) The system adds the new measurement for the selected index
8) The system displays the message ”Save successful”
9) The system displays the updated list of measurements

Alternative Flows Alternative Flow No. 01

4a At step 4, the user presses the ”Cancel” button
5a The system closes the form

Exceptions Exception Flow No. 01

7a At step 7, the save fails
8a The system displays the message ”Save failed error 564”

Fig. 1: A simple prompt to produce UATs.

An input prompt like the one in Figure 1 generates the
output in Figure 2, which lacks features such as ID, descrip-
tion, precondition, actors, event flow coverage, steps, inputs,
and expected results. Re-executing the same prompt yields the
output in Figure 3, which includes ”Title” and ”Objective” and
captures the alternative flow but not the error flow, highlighting
the approach’s non-determinism and lack of unique test format
or predictable flow coverage. In verbose scenarios, such as a
12,460-character use case with 19 event flows, the output is
truncated when the LLM’s token limit is reached. Complete
examples are available in our online repository [17].

III. THE AGORA METHOD

AGORA is an approach that unfolds in two primary phases
(see Figure 4): 1) Listing test cases and 2) Writing the test

LLM output for prompt no. 1

Title: Verify Successful Addition of a Spectral Index Measurement
Test Steps:

1) Click on the ”New Measurement” button.
2) Verify that the system displays a form to select the spectral

index.
3) Select a desired spectral index from the available options.
4) Verify that the system displays the parameters related to the

given index.
5) Fill out the form with the necessary measurement details.
6) Click the ”Save” button.
7) Verify that the system saves the new measurement for the se-

lected index.
8) Verify that the system displays the message ”Save successful”.
9) Verify that the system displays the updated list of measurements,

including the newly added measurement.

Fig. 2: LLM response for the prompt provided in Figure 1.

Second LLM output for prompt no. 1

Title: Add a New Spectral Index Measurement
Objective: Verify that the user can successfully add a spectral index
measurement to the historical measurements of agricultural land.
Steps:
1) Navigate to the ”New Measurement” section.
2) Select a spectral index from the provided options.
3) Fill out the form with the required parameters.
4) Click the ”Save” button.

Test Case 2: Cancel Adding Measurement
Objective: Verify that the user can cancel the process of adding a
new measurement.
Steps:

1) Navigate to the ”New Measurement” section.
2) Select a spectral index and start filling out the form.
3) Click the ”Cancel” button.

Fig. 3: Second LLM response for the prompt provided in
Figure 1.

case details. Both phases leverage LLMs to analyze use cases
and produce UAT.

Fig. 4: AGORA Process.
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In the first phase, AGORA employs an LLM to examine use
cases, pinpointing testable flows through sophisticated seman-
tic analysis to grasp context and intent. It outputs a JSON-
formatted structured list of test cases detailing identifiers,
descriptions, flow types (main, alternative, exception), inter-
use case relationships, and explicit presence within the use
case. The second phase of AGORA takes the list of identified
test cases. It proceeds with the detailed generation of each
test case, including the preconditions, involved actors, and the
sequence of test steps with specific inputs and expected results.
This phase is crucial to ensure the test cases are complete,
accurate, and ready to be executed. We utilized GPT-4 to
implement our approach, although AGORA is compatible with
other models. Additionally, we created a user-friendly web
application to streamline test case generation and facilitate
AGORA’s empirical evaluation, catering to users without deep
expertise in language models or software testing.

A. Phase 1: Listing test cases
The first phase of the AGORA approach is crucial for

outlining the functional perimeter of the UAT. This phase
directly addresses the challenges posed by the context limits
and the non-determinism of GPT-4. The context limitation
implies that GPT-4 can process a limited number of tokens
(8192, with a maximum of 4096 for the output)1. In the
presence of long or complex inputs, exceeding this limit
would lead to incomplete and insufficiently detailed responses.
Moreover, the model’s non-determinism can lead to variable
responses even with the same input. All this could fail to
ensure systematic and complete functional coverage. Finally,
there is a risk that the model may generate test cases that
do not match the anticipated scenarios, wasting resources
and time. In Section II-B, some examples show the issues
previously described.

A well-designed prompt has mitigated the described issues.
We exploited the following guidelines:
1) Generate a test case for the main flow and each alternative

or exception flow in the use case.
2) Structure test cases in JSON format, following a given

example.
3) Exclude inexplicitly stated scenarios in the use case.
4) Avoid additional information or formatting not requested.

These guidelines optimize GPT-4’s capabilities for effective
test case generation. The prompt standardizes GPT-4’s output
into a JSON format, listing test cases with unique identifiers,
descriptions, flow types, UAT indicators, and explicit presence
in the original use case. This format is easily interpretable,
aiding subsequent processing and integration. Figure 5 shows
the prompt used in the first phase, and Figure 6 displays an
example output.

The iterative prompt strategy involved evaluating LLM an-
swers at each step to ensure they met the original requirements,
refining them with subsequent prompts to fine-tune the results.
This process ensures quality and accuracy before moving to
the next phase.

1OpenAI Documentation. https://platform.openai.com/docs/api-reference

Prompt List Tests

Act as an experienced software engineer in test engineering. Pro-
duce an acceptance test using the provided use case, following these
guidelines:
** Guidelines **:

1) Generate a single test case for the main flow of the provided use
case.

2) Generate a single test case for each alternative flow or exception
explicitly reported in the use case.

3) Provide the test case in JSON format, following the structure of
the provided example.

4) If alternative or error scenarios are not explicitly specified in
the provided use case, provide only the test case for the main
flow.

5) Do not include additional information or markdown formatting
in your response JSON.

Here is an example of how to structure the JSON:
{”Tests”: [{”Id”: ”Acceptance Test ID, in the format TA-three-
digit progression”, ”Description”: ”brief but explanatory descrip-
tion of the test case, for example Personal Data Entry”, ”SC”: ”P if
main flow, FA if alternative flow, FE if exception flow”, ”SS”: ”S if
the flow simply includes another use case and does not add further
specific steps, N otherwise”, ”ES”: ”S if the flow is explicitly
present in the use case or if it is the main scenario, N otherwise”,
”UC”: ”use case ID”}]}
Answer only with the requested JSON without markdown and
without adding other information.

Fig. 5: Test list prompt.

Example result for the test list prompt.

{”Tests”: [{”Id”: ”TA-001”, ”Description”: ”Access the ’Set-
tings’ section in the ’Configuration’ interface”, ”SC”: ”P”, ”SS”:
”N”, ”ES”: ”S”, ”UC”: ”US0.001”}, {”Id”: ”TA-002”, ”De-
scription”: ”Initiate ’Configure the parameters of the Settings
section’ after filling in the blank fields”, ”SC”: ”FA”, ”SS”: ”S”,
”ES”: ”N”, ”UC”: ”US0.001”}}}

Fig. 6: Result of the test list prompt.

B. Phase 2: Writing the test case details

The second phase of the AGORA generates detailed UAT,
ensuring each test case is complete, correct, clear, and ready
for execution. It aims to create unambiguous test cases that
are aligned with use case scenarios and structured in a JSON
format for easy understanding and implementation. The format
includes:
• Precondition: Specifies the initial conditions under which

the test should be executed, ensuring that the context is
appropriate for the test flow.

• Actors: Lists the involved actors, ensuring that all roles
necessary for the test are identified and understood.
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• Steps: Details the test steps, including inputs and expected
results, to provide step-by-step guidance for test execution.
Using specific prompts, GPT-4 completes test case details

for each acceptance test ID, ensuring test steps are accurate
and reflect the use case. This phase can be parallelized, as
each test case is independent, thus optimizing efficiency and
speed.

Prompt List Tests

I am providing you with a use case and the identified acceptance
test IDs. Act as a software engineer experienced in test engineering
to complete the acceptance test related to the use case. Respond
with a well-formed JSON as in the following example.
Example:
{”Precondition”: ”if SC=’P’ precondition of the use case, other-
wise insert the steps of the main flow to be executed”, ”Actors”:
”list of actors of the use case”, ”Test”: [{”Step”: ”increasing
numbering of the step performed”, ”Input”: ”input”, ”Result”:
”expected result of the step”}]}
Answer only with the JSON I requested, without adding any other
information.
**** Start Use Case
{use case}
**** End Use Case
{uat list from phase1}
Provide the user acceptance test with ID = {ID UAT}

Fig. 7: Prompt for test case details.

An iterative prompt engineering approach, similar to Phase
1, was used with progressive refinements. The final Phase 2
prompt is shown in Figure 7, and an example output is in
Figure 8.

UAT detail example

{”Precondition”: ”At least one measurement exists in the
database”, ”Actors”: [”GP”, ”Relative”], ”Test”: [
{”Step”: 1, ”Input”: ”The actor accesses the ’Measurements’
section”, ”Result”: ”The system displays an interface where it is
possible to view for each parameter the measurements related to
the last update”}, {”Step”: 2, ”Input”: ”The actor uses the graph
viewing feature related to one of the detected parameters”, ”Re-
sult”: ”The system opens a popup with the available graphs for the
selected parameter”}, {”Step”: 3, ”Input”: ”The actor navigates
the interface”, ”Result”: ”The system allows the navigation of the
graphs and the display of the measurements in graphic form”}] }

Fig. 8: Result for producing the UAT details.

C. Optimization of Determinism

Determinism in the context of this work refers to the ability
of the LLM to provide consistent and predictable results in

response to similar or identical inputs. This aspect is crucial
for UAT. For optimizing determinism, it is necessary to operate
in multiple directions. First and foremost, it is essential to
carefully select and configure the hyperparameters of GPT-4
that influence the generation of responses, in particular:
• Temperature: It regulates the model’s predictability and

originality, with values from 0 to 1. A temperature near
1 increases randomness and diversity, while a near 0 makes
the output more deterministic and predictable.

• Top p: It refines text generation in LLMs by selecting
words with high cumulative probability, balancing creativity
and consistency.

• Best of: It generates multiple server-side completions, se-
lecting the ’best’ response based on the lowest logarithmic
probability per token.

• Frequency penalty: It controls the model’s tendency to
repeat predictions by decreasing the likelihood of previously
generated words based on their frequency in the prediction.

• Presence penalty: It promotes originality by reducing word
repetition, unlike the frequency penalty, which ignores prior
term usage.
Therefore, according to OpenAI documentation, we set the

temperature, presence penalty, and frequency penalty to 0,
while best and top p to 1, making the model’s responses
more deterministic. Secondly, prompts must be carefully de-
signed with clear, detailed instructions to guide GPT-4 in
generating specific and relevant outputs, reducing ambiguity
and increasing consistency. Examples of desired outputs and
structured templates were provided to stabilize responses,
following the ”show, do not tell” approach [7]. Finally, after
each output generation, results were analyzed for consistency
and adherence to requirements, identifying non-determinism
patterns and adjusting prompts as needed.

D. AGORA Tool
We developed a Web tool using the Streamlit Python

framework 2 and GPT-4 API 3. The tool analyzes GPT-
4 responses and displays UATs on a web page. The tool
features an intuitive interface for entering use case scenarios
and generating corresponding UATs, manipulating the JSON
format produced by GPT-4 into a user-friendly display.

E. Replication Package
The replication package of our study is publicly available in

the online GitHub repository [17] and includes the following:
i) the source code of the AGORA tool, ii) the use case model
used for the empirical experiment, iii) the UATs produced by
the control and experimental groups, and iv) the results of the
experiment. The use of the AGORA tool is licensed under an
International Creative Commons Attribution 4.0 license.

IV. EMPIRICAL EXPERIMENT

This section details our empirical experiment to evaluate the
proposed approach, covering the research question, hypothe-
ses, experiment context, variables, design, and analysis plan.

2Streamlit Framework. https://streamlit.io/
3OpenAI Documentation. https://platform.openai.com/docs/api-reference
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A. Research question and hypothesis

AGORA aims to help test engineers produce high-quality
UATs faster than the manual approach. Thus, we propose to
answer the following research question:

Can AGORA support software engineers by automating
the production of UATs from use cases?

The research question has been outlined through the formula-
tion of the following hypotheses:
• H1: AGORA produces qualitatively better UATs than the

manual approach.
• H2: AGORA speeds up UAT production from use cases.

B. Context of the Experiment

To address the research question and assess the proposed
approach, we conducted a controlled experiment with six
professionals from an Italian IT company, Kiranet, and a
professional consultant. Kiranet, established in 2002 with
over 50 employees, regularly uses UML in its software de-
velopment process. The company’s project manager selected
test engineers with a good understanding of UML and UAT
and similar experience levels. The consultant has over 25
years of software engineering experience. The experiment used
ten use cases (available online in the repository [17]) from
a telemedicine microservice, FIDTCT, provided by Kiranet,
varying in complexity, quality, and linguistic styles.

C. Variable Selection

The following dependent variables have been identified for
the experiment:
Quality: High-quality UATs must meet the following criteria:
• Completeness: It ensures UATs cover all the use case flows,

with a test case for every non-trivial flow.
• Clarity and Understandability: It ensures test cases are clear

and unambiguous and the steps to be executed are correct.
• Correctness: It ensures test cases are formally and semanti-

cally correct, verifying that actors, preconditions, postcon-
ditions, inputs, and outputs are accurate and consistent with
the use case requirements.
TABLE I report the criteria, elements and evaluation for-

mulas for Quality variable.
Time: This variable measures the time required to produce the
UATs for each use case.
The independent variable is the approach used, which refers
to using AGORA or the manual approach.

D. Experiment Design

We chose the consultant as the oracle and randomly as-
signed test engineers to the experimental or control groups,
keeping their assignments confidential. Both groups were
tasked with producing UATs for given use cases; the ex-
perimental group used AGORA, while the control group did
it manually. Participants were informed about data confiden-
tiality and their right to leave the experiment at any time.
The experimental group received one-hour training on using

Criterion Elements to asses Evaluation

Completeness
(COM)

• Number of tested flows (FT)
• Number of use case flows (NF) COM = FT/NF

Clarity and
Understand-
ability (CeC)

CheckList:
• Language (CC1): Is the test case language

simple and clear?
• Instructions (CC2): Are the instructions

clear and easy to follow?
• Consistency (CC3): Are consistent terms

used throughout the test case?
• Ambiguity (CC4): Does the test case avoid

ambiguities?

Checklist items are as-
signed a value of 0 if the
criterion is not met and a
value of 1 if the criterion
is met.

CeC =∑︁CC4
EC=CC1 EC/NE

Correctness
(COR)

CheckList:
• Actors (CO1): Do the test cases accurately

identify the actors and their interactions with
the system?

• Precondition (CO2: Is the test case’s pre-
condition consistent with the anticipated use
case?

• Postcondition (CO3): Is the postcondition
verified to ensure the system’s expected state
post-test execution?

• Input (CO4) Are all input actions from the
use case correctly reported in the test case?

• Output (CO5): Are all expected outputs cor-
rectly reported in the test case for the given
inputs?

• Validity concerning requirements (CO6):
Does each test case accurately reflect the use
case requirements?

• Scenarios (CO7): Have the essential sce-
narios been tested for correct requirements
validation?

Checklist items are as-
signed a value of 0 if the
criterion is not met and a
value of 1 if the criterion
is met.

COR =∑︁CO7
EC=CO1 EC/NE

QUALITY VALUE: Mean(COM,CeC,COR)

TABLE I: Quality evaluation.

AGORA to generate UATs from use cases. Both groups were
given a Word template for writing UATs and shown how to
track execution times before working independently.

Question Strongly
Agree Agree Undecided Disagree Strongly

Disagree
AGORA is easy to use

AGORA is useful for writing UATs

I would use AGORA for writing UATs

I would like to try similar tools for other
software engineering tasks.

TABLE II: Questionnaire on the experience with AGORA

The test cases produced by the two groups were anony-
mously evaluated by the oracle, based on the criteria indicated
in Section IV-C, using the form shown in Figure 9 to record
the scores for the various criteria.

At the end of the experiment, we asked the experimental
group to complete a satisfaction questionnaire (shown in Table
II) about the AGORA tool, using a Likert scale from 1
(Strongly Disagree) to 5 (Strongly Agree).

Fig. 9: Form filled out by the oracle for each use case.
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E. Analysis Plan

To verify hypotheses H1 and H2, we decided upon the
following statistical analysis methods:
• Hypothesis H1 (Quality of Acceptance Tests): To analyze

the quality of UATs from the experimental and control
groups, we will calculate descriptive statistics (mean, me-
dian, standard deviation) for scores assigned by the oracle on
completeness, correctness, and clarity. The Mann-Whitney
U test will compare the mean quality percentages between
the groups at a 0.05 significance level to determine if there
are statistically significant differences. The null hypothesis
states no difference in average quality scores between the
groups, while the alternative hypothesis suggests a signifi-
cant difference.

• Hypothesis H2 (Production Time of Acceptance Tests):
We planned to calculate descriptive statistics (mean, median,
standard deviation) for the time taken by the experimental
and control groups to produce UATs. We will use the Mann-
Whitney U test with a significance level of 0.05 to compare
the average times. This test assesses whether there is a
significant difference in the time taken between the AGORA
and control groups. The null hypothesis is that there is
no difference, while the alternative hypothesis is that the
AGORA group took significantly less time.
Finally, we planned to calculate the average scores for

each questionnaire question II to assess user satisfaction with
AGORA. The questionnaire collects qualitative feedback on
users’ experiences, offering insights for future improvements.

V. ANALYSIS OF THE RESULTS

This section presents the empirical experiment results. We
analyzed the collected data (available online in the repository
[17]) to assess hypotheses H1 and H2, focusing on UAT
quality and production time.

A. Quality of Acceptance Test Cases (Hypothesis H1)

The oracle evaluated the quality of UATs based on the crite-
ria of completeness, clarity, understandability, and correctness
as described in Section IV-C. Table III presents the results
obtained for the AGORA group, while Table IV shows those
for the control group. We evaluated completeness based on
use case flow coverage, with both groups achieving 100%.
Clarity and understandability were assessed using the criteria
in Section IV-C, with both groups averaging 83%. Correctness,
based on actors, preconditions, postconditions, inputs, outputs,
and requirement validity, was 80% for both the control and
AGORA groups.

Use Case Completeness Clarity and Understandabil-
ity

Correctness Average Time(s)

1 100% 100% 71% 90% 31.96

2 100% 100% 71% 90% 22.83

3 100% 75% 71% 82% 30.42

4 100% 75% 86% 87% 33.00

5 100% 100% 100% 100% 31.46

6 100% 100% 86% 95% 22.78

7 100% 75% 86% 87% 23.16

8 100% 50% 71% 74% 28.79

9 100% 50% 71% 74% 35.56

10 100% 100% 86% 95% 32.19

Average 100% 83% 80% 88% 29.22

TABLE III: Experimental group UAT results

Use Case Completeness Clarity and Understandabil-
ity

Correctness Average Time(s)

1 100% 100% 67% 89% 324.00

2 100% 100% 67% 89% 718.33

3 100% 75% 62% 79% 217.33

4 100% 75% 81% 85% 607.33

5 100% 100% 95% 98% 446.33

6 100% 100% 86% 95% 254.00

7 100% 75% 81% 85% 233.00

8 100% 50% 81% 77% 557.33

9 100% 50% 81% 77% 281.33

10 100% 100% 95% 98% 260.33

Average 100% 83% 80% 87% 389.93

TABLE IV: Control group UAT results

Nevertheless, the AGORA group scored better in 6 use
cases (i.e., 1-5 and 7), performing worse only in 3 out of 10
cases (i.e., 8-10). The overall average quality for the control
group was 87%, while for the AGORA group, it was 88%.
Finally, the standard deviation for quality for the control group
was 0.08, while for the AGORA group, it was 0.09. Then,
we analyzed the results using the Mann-Whitney U test to
compare the average quality scores between the control and
AGORA groups. The test accounted for ties in the data,
applying a correction. The p-value of 0.9093 indicates no
statistically significant difference between the two groups in
test case quality.In other words, there is not enough evidence
to reject the null hypothesis, which asserts that there is no
difference between the groups. The very high p-value, 90.93%,
indicates that if we were to reject the null hypothesis, there
would be a high probability of making a Type I error, that is,
rejecting a true null hypothesis. Furthermore, the test statistic
Z obtained is -0.1139, well within the acceptance range for a
95% confidence level (between -1.96 and 1.96). This result re-
inforces the idea that the groups have no significant difference.
Regarding the effect size, the observed standardized effect
size, Z/

√︁
(n1 + n2), is 0.025, indicating a minor difference

between groups. The common language effect size, U1/(n1n2),
is 0.48, showing a 48% chance that a test case from the
AGORA group is of higher quality than one from the control
group, suggesting no practical difference.

B. Acceptance Test Case Production Time (Hypothesis H2)

The time to produce UATs was measured in seconds. The
control group took 3,899.33 seconds total (389.93 seconds per
use case), while the AGORA group took 292.16 seconds total
(29.22 seconds per use case). The medians were 30.94 seconds
for AGORA and 302.67 seconds for the control group, with
standard deviations of 4.67 and 180.17, respectively.We used
the Mann-Whitney U test to compare the average times of the
control and AGORA groups, and we found a statistically sig-
nificant difference. Indeed, the p-value obtained from the test
is extremely low at 0.00001083, indicating a 0.0011% chance
of a Type I error. This result strongly supports the alternative
hypothesis of a significant difference in the time taken by the
two groups to produce test cases. The test statistic, Z, is 4.4,
outside the 95% acceptance range (-1.96 to 1.96), confirming
the significance of the observed difference. Additionally, the
U value of 100 is outside the 95% acceptance range (24 to
76), further reinforcing the significance of the differences.
Regarding the effect size, the observed standardized value,
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Z/
√︁
(n1 + n2), is significant (0.84), indicating a considerable

difference between the control and AGORA groups. Addi-
tionally, the common language effect size, U1/(n1n2), is 1,
suggesting a very low probability that a random control group
value exceeds a random AGORA group value.

C. User Feedback on the Use of AGORA

The questionnaire results II are shown in Table V. Partici-
pants rated AGORA highly, with averages of 4.3 for ease of
use and 4.0 for usefulness, future use, and interest in similar
tools. Responses showed minimal deviation (0 to 0.58) and a
median of 4 for all questions, indicating consensus.

Question Average Median Std. Dev.

AGORA is easy to use 4.3 4.0 0.58

AGORA is useful for writing acceptance tests 4.0 4.0 0.00

I would use AGORA for writing acceptance tests 4.0 4.0 0.00

I would like to try similar tools for other software engineering tasks 4.0 4.0 0.0

TABLE V: Feedback on the experience with AGORA

VI. DISCUSSION, IMPLICATIONS, AND FUTURE WORK

This section discusses the results reported in Section V, their
implications, and the limitations that may have influenced our
findings and mitigation strategies.

A. Discussion

Hypothesis H1 suggested that AGORA could produce better
UATs than the manual approach, but the experimental results
did not support this statistically. AGORA and the control group
showed comparable quality levels. AGORA generally scored
better in correctness (6 out of 10 use cases) but was less
effective in inferring input and output data in 3 use cases
(8-10). This result could be due to insufficiently detailed
use cases, limiting AGORA’s ability to infer necessary data
using GPT-4. For example, in use case no. 3, it generically
mentions ”details” and ”fields” without specifying what is
being searched for and displayed:

Use Case no.3

Main scenario
1) The actor clicks ”view detail” for a given threshold.
2) The system searches for the threshold details.
3) The system displays the threshold details in a page

with editable fields.

The control group could not precisely define input and
output data for the same use case, only reporting test steps.
However, test engineers correctly identified input data in other
cases (use cases 8-10), unlike AGORA. This result suggests
that the quality of automatically generated test cases depends
on the detail of the starting use cases. The lack of significant
difference might also be due to software engineers’ familiarity
with the use cases and application domain, allowing them to
fill in missing information. Despite these results, AGORA is a
promising tool for refining generated UATs. Automating test
case generation can identify gaps in use cases and encourage

adding missing details, improving overall quality. For hypoth-
esis H2, results showed AGORA significantly reduced the time
to produce UATs, confirming the effectiveness of automation.
This efficiency can positively impact the software development
lifecycle by reducing release times and allowing engineers
to focus on complex tasks. Feedback from a questionnaire
indicated high user satisfaction with AGORA, valuing its ease
of use and time savings despite the quality of automatically
generated test cases not surpass manual ones.We can, there-
fore, answer the research question as follows:

AGORA automates the production of acceptance test
cases from use cases, enhancing efficiency, but the qual-
ity of the tests depends on the completeness and detail
of the use cases.

B. Threats to Validity

This section examines potential limitations that could have
biased our results and mitigation strategies.

A threat to internal validity includes participants’ bias and
the Hawthorne effect, where awareness of being in an experi-
ment alters responses. To mitigate this, we hid the hypothesis,
ensured anonymity, divided participants into two groups, and
shortened the study duration. Another internal validity threat
is including more experienced individuals in the experimental
group. We asked the IT company to provide participants with
similar UML and test management experience. Additionally,
we mitigated oracle bias by selecting a consultant with signif-
icant software engineering experience. Future research could
involve more experts as oracles to compare evaluations of
produced UATs. External validity threats include the selection
of use cases. We chose use cases of varying complexity and
linguistic style, but future research should include more use
cases from different domains to improve generalizability. A
threat to the validity of conclusions is the choice of statistical
methods. We used the Mann-Whitney U test, a non-parametric
test suitable for small, non-normally distributed samples, and
verified its assumptions before application. We also used a
correction for ties when necessary. Additionally, we addressed
the non-determinism of the LLM by fine-tuning GPT-4’s
hyperparameters and giving clear formatting instructions, lim-
iting the LLM’s creativity for consistent responses.

VII. RELATED WORK

Automatically producing UAT is challenging, with various
proposed approaches (see Table VI). Many authors suggest
using NLP, often limited to specific domains or predetermined
input formats. Nebut et al. [12] propose automating system
test scenario generation from UML-based use cases with con-
tracts, but their manual-intensive approach may struggle with
scalability in complex systems. Carvalho et al. [5] develop
NAT2TEST, generating test cases from Controlled Natural
Language requirements for Data-Flow Reactive Systems using
formal models like Software Cost Reduction, and suggest
future enhancements for performance optimization and hybrid
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system support. Yue et al. [20] introduce Restricted Test
Case Modeling to convert natural language test cases into
executable tests using a tool, aToucan4Test, validated with two
industrial case studies. However, the study imposes restrictions
on requirements and lacks performance analysis and broader
generalizability. Goffi et al. [9] develop Toradocu, leveraging
Javadoc comments and NLP to generate test oracles and
conditional expressions for Java programs, enhancing defect
detection. The prototype has limitations with complex con-
ditions and focuses on @throws tags. Silva et al. [15] use
Colored Petri Nets in NAT2TEST to generate test cases from
natural language requirements, addressing state explosion but
not completeness and consistency. Allala et al. [1] integrate
Model-Driven Engineering with NLP to convert user require-
ments into test cases, potentially reducing manual generation.
The research is in its initial phase with limited validation.
Fischbach et al. [8] use NLP in SPECMATE to automate 56%
of test case generation from agile acceptance criteria, rely-
ing on language patterns and lacking domain independence.
Fischbach et al. [8] automate test case generation from agile
acceptance criteria using NLP in SPECMATE, automating
56% of test cases. The method depends on language patterns
and is not domain-independent.

Study Main Features Limitations

[12] Formalizes use case descriptions
and generates test cases.

Requires preconditions and post-
conditions in a specific format.

[5] Uses Data-Flow Reactive Systems
(DFRS) requirements.

Limited to requirements in con-
trolled natural language.

[20] Generates test cases from an
RTCM language.

Limited to the writing style of test
cases imposed by RTCM.

[9] Uses Javadoc comments to com-
plete test cases.

Comments must follow a specific
pattern.

[15] Explores test case generation using
Petri Net simulation.

Interpretation of Colored Petri Nets
can vary.

[1] Generates test cases from use cases
or user stories.

Requires a specified format for use
cases or user stories.

[8] Uses recursive dependency match-
ing to formulate test cases.

Requires advanced knowledge of
dependency matching.

[18] Requirements compatible with
RUCM specifications.

Limited to the use of RUCM spec-
ifications.

TABLE VI: Summary table of related works

AGORA stands out from related works by accepting re-
quirements in free natural language, eliminating rigid writing
patterns, and allowing natural documentation. Its versatility
suits diverse applications, simplifying UAT generation and
reducing production time. AGORA eases the cognitive load on
engineers and testers, avoiding the need to learn new languages
or modify workflows, thus enhancing efficiency. Integration
into existing workflows is seamless, requiring no significant
changes in software development processes.

VIII. CONCLUSION

In this study, we introduced AGORA, a novel approach for
automatically generating UATs from requirements in natural
language. Leveraging LLMs, AGORA interprets unstructured
requirements and generates accurate UATs, optimizing time
and resources, reducing human errors, and increasing testing

efficiency. Initial findings show that AGORA produces UATs
of similar quality to those created by experts and significantly
improves test case generation efficiency. Moreover, AGORA
also exhibits a marked increase in test case generation effi-
ciency. The approach can be easily integrated into existing
software development processes, offering a considerable com-
petitive advantage and facilitating adoption in the Industry.
To improve AGORA, we will enhance prompts or fine-tune
the LLM for ambiguities and missing information, integrate a
feedback system for refining test cases, and develop guidelines
for optimized use cases. Enhancing user collaboration through
better interfaces is also a key objective.
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