
An Empirical Study on the Relation between
Programming Languages and the Emergence

of Community Smells
Giusy Annunziata,∗ Carmine Ferrara,∗ Stefano Lambiase,∗ Fabio Palomba∗

Gemma Catolino,∗ Filomena Ferrucci,∗ Andrea De Lucia∗
∗Software Engineering (SeSa) Lab – University of Salerno, Salerno, Italy

Abstract—To provide a measurable representation of social
issues in software teams, the research community defined a
set of anti-patterns that may lead to the emergence of both
social and technical debt, i.e., “community smells”. Researchers
have investigated community smells from different perspectives;
in particular, they have analyzed how product-related aspects
of software development, such as architecture and introducing
a new language, could influence community smells. However,
how technical project characteristics may be in relation to
the emergence of community smells is still unknown. Different
from those works, we aim to investigate how adopting specific
programming languages might influence the socio-technical align-
ment and congruence of the development community, possibly
inducing their overall ability to communicate and collaborate,
leading to the emergence of social anti-patterns, i.e., community
smells. We studied the relationship between the most used
programming languages and the community smells in 100 open-
source projects on GITHUB. Key results of the study show a low
statistical correlation for specific community smells like Prima
Donna Effects, Solution Defiance, and Organizational Skirmish,
highlighting the fact that for some programming languages, its
adoption could not be an indicator of the presence or absence of
community smells.

Index Terms—Software Organizational Structures; Program-
ming Languages; Community Smells; Empirical Studies.

I. INTRODUCTION

Software development represents de facto a socially inten-
sive activity where technical and social factors are intertwined;
this encompasses the attention on software products and the
relationship among the project stakeholders. Since decades
ago, Brooks Jr [5] highlighted the importance of social and
human factors as significant characteristics for ensuring soft-
ware projects’ success; other works [4, 20] were more specific
promoting people’s management and social interactions as
vital aspects instead.

Researchers went beyond studying social aspects, deepening
the relationship between them and the technical factors of a
software product. In this context, the theory of socio-technical
congruence stands out, as it focuses on understanding how
well the organizational structure of a group aligns with the
software architecture of the product they are creating [35, 40,
42]. Always related to socio-technical aspects, the research
community focused on providing a measurable representation
of them, defined community smells, i.e., social anti-patterns
that characterize collaboration and communication in software

communities and can lead to social debts [36, 38]. Further-
more, Tamburri et al.[37] observed that development choices,
e.g., adopting a new language, are indirectly connected to so-
cial debt. Later, Wang and Hahn[47] verified that development
style impacts the collaborative aspects of an open-source team.

Previous research has shown a strong correlation between
software development’s technical and social aspects. Ignoring
the social aspect when studying the technical side could result
in misleading conclusions. Although the research community
effort in investigating phenomena such as socio-technical is in-
creasing, it is still unknown the relation between the technical
development aspects and the emergence of community smell.
Starting from this consideration and aiming to fill the gap,
we used statistical analysis to verify the correlation between
adopting a specific programming language and the emergence
of community smells in open-source development teams.

We conjecture that the features implemented by pro-
gramming languages—e.g., inheritance and delegation mech-
anisms—might influence the socio-technical alignment and
congruence of the development community, possibly induc-
ing their overall ability to communicate and collaborate and
leading to the presence/absence of community smells.

To verify our conjecture, we operationalized community
smells on a set of 100 GITHUB open source projects, discrimi-
nated for their most used programming language. We extracted
information on 32 socio-technical metrics and the presence of
10 different smells, ranging from Organizational Skirmish to
Toxic Communication described in Table I), computing using
CADOCS [45]. Then, we built a statistical model to analyze
the relationship between the most used programming language
and the presence of community smells.

The key results of the work highlight that a correlation exists
between the use of some programming languages and the
presence of community smells. For example, Python and PHP
languages seem to be correlated with the community smell
Prima Donnas Effects, i.e., a situation in which a team member
exposes constant disagreement and uncooperativeness [30].
Project managers could use those results to be aware of
potential social anti-patterns and implement mitigation and
contingency strategies to better perform risk management since
the initial phases of the project.

II. BACKGROUND AND RELATED WORK

In this work, we put our attention on the community
smells [38], i.e., anti-patterns in software development com-
munities’ communication and collaboration processes, often
precursors of social debt [37]. An example of such smells is
the Radio Silence Effect that represents the situation in which a
stakeholder interposes themselves into every formal interaction
across more sub-communities with little flexibility to introduce
other channels [38].

Regarding studies investigating factors influencing and im-
pacting community smells, Catolino et al. [8] studied how
team composition correlates with the emergence of community
smells, finding that gender diversity might reduce their pres-
ence. Later they also considered which factors correlate their
variability [9], finding that socio-technical factors related to
tenure and centrality of a developer can increase the presence
of community smells. Finally, Lambiase et al. [20] conducted
a quantitative investigation on the subject, identifying cultural
and geographical dispersion—i.e., how much a community is
diverse in terms of its members’ cultural attitudes and geo-
graphical collocation—as potential factors for the emergence
and mitigation of community smells.

Starting from the previous literature on the matter, we con-
ducted a novel study concerning how technical factors are cor-
related to the emergence of community smells. In particular,
we started from the work of Valetto et al. [42] that showed that
product-related software development aspects might largely
influence a community’s communicative and collaborative
aspects. Moreover, Syeed and Hammouda [35] showed that the
architectural design and interdependency among the modules
of the software are directly related to the communication and
collaboration patterns of the developer community of specific
open source projects, i.e., socio-technical congruence. Next,
Tamburri et al. [37] observed that technical choices, like the
introduction of a new programming language, can indirectly
impact social aspects in a development context. Later, Wang
and Hahn [47] went deepening demonstrating that specific
product factors, i.e., metrics inherent to programming style
and language, are related to the collaborative aspects of a
team in open-source development projects, but, to date, no
one formally verified these kinds of correlation.

III. RESEARCH STUDY DESIGN

The goal of this study is to analyze whether the adoption of
a particular programming language—and what it implicitly en-
tails, e.g., different styles or skills—influences the presence of
social anti-patterns during software development. The propose
is to provide new insights to allow practitioners to increase
awareness of possible issues within their software development
community. The perspective is of project managers interested
in monitoring product software factors, possibly discovering
any helpful indicator of risky factors like community smells.
The objective of the study is driven by some consideration.
In particular, from the fact that the technical aspects and
choices of software development—i.e., architectural design,

metrics inherent to programming style and languages, etc.—
may largely influence the communicative and collaborative
aspects [35, 37, 42, 47]. As such, we define the following
working hypothesis:
H0 There is no statistical correlation between the adoption

of a specific programming language and the presence of
community smells.

H1 There is a statistical correlation between the adoption
of a specific programming language and the presence of
community smells.

Starting from those hypothesis, we conjectured the follow-
ing research question:

Research Question. To what extent does the used pro-
gramming language relate to social anti-patterns?

We address this research question by investigating the
correlation between the programming languages used in 100
GITHUB open source projects and the emergence of social
anti-pattern operationalized by using community smells [38].
The rationale behind this choice relied on previous literature
Wang and Hahn [47] that analyzed the impact of programming
style and programming language inconsistencies on open-
source software collaboration, demonstrating that they could
impact a software development community’s communication
and collaboration network. Besides their analysis, our intention
was to deepen the relationship between software product
factors and social metrics by quantitatively verifying if the
used programming language is related to the presence of social
anti-patterns in a development community, represented using
community smells. Figure 1 shows an overview of the study.
In particular, we perform the following steps.

Step1 - Creating a Dataset

Create a dataset containing open-source projects devel-
oped using different programming languages where it
is possible to detect community smells and other socio-
technical characteristics.

We constructed a dataset consisting of 100 open-source
repositories, taking into account information on (1) the pro-
gramming language used, (2) factors previously found for in-
dicating community smells presence [36], and (3) the presence
or absence of specific community smells.

Step2 - Building a Statistical Model

Study statistical relationship between the programming
languages used and the presence of community smells.

For each community smell considered in our study, we
built a statistical model to check whether the choice of the

Methods & Activities Output Artifacts

Objective

1
Create a dataset containing open-source repositories for different programming

languages and for which is possible to compute community smells

Study the relation between programming languages and community smells

ST
EP

 1
ST

EP
 2

Time

Statistical Analysis

Community Smells DetectionProject Selection
Dataset

Analysis Reports
Multicollinarity Test

Objective

2

Logistic Regressuion
Model Construction

Data Cleaning

Fig. 1. Overview of our research study design.

TABLE I
COMMUNITY SMELLS.

Community Smells Definition
Organizational Skirmish (OS): Teams composed of members with different
levels of competence lead to a drop in productivity, impacting time and costs.
Black Cloud Effect (BC): A lack of structured communications or coopera-
tive governance can lead to information overload.
Radio Silence (RS): The use of formal communication between multiple sub-
communities penalizes flexibility and causes loss of time.
Prima Donnas Effect (PD): Team members that expose condescending
behavior, superiority, constant disagreement, and uncooperativeness.
Sharing Villainy (SV): Failure to exchange information can lead team
members to share incorrect, obsolete, and unconfirmed information.
Organizational Silo Effect (OSE): Siloed community that do not communi-
cate with each other except through one or two of their respective members.
Solution Defiance (SD): Having a community with different backgrounds of
experience and culture can lead to subgroups with conflicting opinions.
Truck Factor Smell (TFS): Developer turnover may cause a significant loss
of knowledge as it is concentrated in a minority of developers.
Unhealthy Interaction (UI): Slow, light, and short conversations and discus-
sions caused by long delays in stakeholder communication.
Toxic Communication (TC): Developers may negatively interact with their
colleagues, leading to frustration, stress, and project abandonment.

programming language used correlates significantly with the
presence or not of a community smell.

We provide the online appendix [1] containing the data and
scripts used and the results obtained.

To conduct our analysis, we employed the guidelines by
Wohlin et al. [50] and we followed the ACM/SIGSOFT
Empirical Standards. Specifically, we employed the “General
Standard” and “Data Science” definitions and guidelines.1

A. Step1 - Building a dataset

To conduct our study, we created a dataset by consulting
the existing databank offered by GOOGLEBIGQUERY,2. It is

1ACM/SIGSOFT Empirical Standards: https://github.com/acmsigsoft/
EmpiricalStandards

2https://cloud.google.com/bigquery?hl=en

a Restful Web Service that allows interactive analysis of a
large database that works with Google Storage. Moreover, it
also contains the GITHUB ARCHIVE,3 i.e., the entire public
repository of GITHUB that is automatically updated every
hour. The execution of the queries on GOOGLEBIGQUERY
and the creation of the dataset occurred between January and
February 2022. As a first step, we focused on understanding
the rationale behind extracting projects with different program-
ming languages. Utilizing a query, we obtained a list of the
most commonly used programming languages. Using a query,
we labeled each project with the most present programming
language among those used to develop it. After pulling the
projects, we detected community smells using the already
validated CADOCS [45] tool. CADOCS leverages a Slack
interface to parse GitHub repositories whose links are passed
as parameters and CADOCS extracts information about the
presence of ten different community smells—presented in Ta-
ble I—and additional metrics, e.g., # commits, for constructing
our statistical models. Further details are provided in the
following section.

Selection Criteria: To create the dataset, we focused on the
10 most popular programming languages4.We selected the first
10 projects with the most different characteristics according to
(1) Programming paradigm, (2) Compilation class, (3) Typing
class, and (4) Memory class, according to Ray et al. [31]. For
each of the 10 most used programming languages selected, we
built a dataset containing the name, the link, and the number
of contributions of several GITHUB projects. We selected
10 projects from each dataset, thus obtaining a complete
dataset composed of 100 projects, 10 for each language, with
the number of contributors between 30 and 50, ranges that
guarantee a sub-optimal compromise between construct and

3https://www.gharchive.org
4Spectrum-Report Top Programming Languages 2022:https://spectrum.ieee.

org/top-programming-languages-2022

https://github.com/acmsigsoft/EmpiricalStandards
https://github.com/acmsigsoft/EmpiricalStandards
https://cloud.google.com/bigquery?hl=en
https://www.gharchive.org
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022

external validity of the projects. We identified the number of
contributors as the primary criterion for selecting projects. Our
investigation revealed that projects with 30 to 50 contributors
adequately represent the diversity within each programming
language. Consequently, we chose to focus solely on projects
falling within this range of contributors. Furthermore, we
performed a content analysis session [22] to label all 100
projects, aiming to categorize them based on their descriptions
and features as provided by the authors. The first and second
authors conducted the labeling process and agreed to assign
each project a single value.

B. Step2 - Building a Statistical Model

After data extraction, we constructed a statistical logistic
model, for each community smell considered by CADOCS—
Table I—to understand the relationship between a particular
programming language and the presence of the specific smell.
considering that the presence of community smells can assume
Boolean value, we applied a logistic regression [41].

1) Independent Variable: We considered the development
community’s most used programming language as the in-
dependent variable. Moreover, since the relative variable is
expressed in the dataset as categorical, we replaced it with a
dummy variable before creating the regression models [3].

2) Response Variable: Since our goal was to understand
the relation among the adoption of different programming
languages and presence/absence of a specific community smell,
we encoded this factor as the Response Variable. According to
CADOCS [45] tool’s output data representation, our response
variable assumed value 1 when a specific community smell is
present in a development project, 0 otherwise.

3) Control Variables: To well design a statistical model, a
practice to consider is adding other variables that might affect
the phenomenon analyzed beyond the independent variables.
For this reason, we included a set of control variables that
previous studies [8, 9, 17, 20, 28, 43] demonstrated to have
a correlation with community smells:

1) Number of commits—the number of commits executed
on a project repository. In most cases, a high number
of commits is a symptom of the high productivity of
the project team. But often, multiple committers work on
the same portions of code, thus affecting the number of
community smells [30];

2) Project Contributors—the number of different contrib-
utors that performed at least one commit on the project
repository. Catolino et al. [8] demonstrated that this factor
could influence the presence of community smells;

3) Active days—The number of active days of the project
repository, i.e., the number of days the project has been ac-
tive and at least one contributor works on the project [30];

TABLE II
COMMUNITY SMELL DETECTED BY CADOCS [45]

Language OS BC PD SV OSE SD RS TFS UI TC

C 3 7 9 8 6 8 1 3 4 2

C# 3 3 6 8 2 7 3 5 5 5

C++ 4 4 9 8 4 7 1 5 2 5

Go 3 10 9 6 7 9 4 2 4 0

Java 6 7 10 5 4 9 1 4 5 2

JavaScript 4 8 10 8 4 9 3 5 6 3

PHP 4 7 10 3 6 10 2 5 4 1

Python 2 6 10 10 5 7 3 3 6 3

Scala 2 6 10 10 5 7 3 3 6 3

TypeScript 3 7 8 6 4 10 4 7 5 4

Total 34 65 91 72 47 83 25 42 47 28

The occurrences of community smells for each language are made on 10 projects.

Total occurrences of community smells are made on 100 projects.

4) Bus Factor Number—a specific number that estimates
the minimum number of team members in a project that
suddenly abandon the project before it fails due to lack of
experienced personnel [49].

4) Statistical Model Construction: For the model construc-
tion, we relied on the functions ols available in the Python
package Stats Model [32]. Based on guidelines and similar
studies [16, 19], we faced the problems of data normality
and multicollinearity [27] that can affect the reliability of
the results. For this reason, we performed the well-known
SHAPIRO-WILK test to verify the normality of data [33]
and measured the PEARSON’S CORRELATION INDEX and the
VARIANCE INFLATION FACTOR (VIF) to verify the absence
of multicollinearity between the independent variables.5 More-
over, to strengthen the reliability of our results, we evaluated
the effect sizes of the model coefficients performing the
ANOVA statistical test [14], provided in Python in package
Stats Model [32]. According to ANOVA, we considered
variables statistically significant if the p-value is less than 0.05.

Finally, we built a baseline statistical model containing
only the control variables to analyze the models’ reliabil-
ity in predicting results. We evaluated the models with the
corresponding baselines through the AIC (AKAIKE INFOR-
MATION CRITERION) and BIC (BAYESIAN INFORMATION
CRITERION) [2, 6] estimators, that are widely used as quality
prediction criteria of statistical models [7]. Comparing AIC
and BIC for each community smell prediction model and
the relative baseline, we could identify the more statistically
reliable one considering the lower values of these indicators.

IV. ANALYSIS OF THE RESULTS

In this subsection, we discuss the main findings of our study.
We report details about: (1) dataset composition and (2) the
main statistics about logistic regression analysis.

5We relied on their implementation provided by the Python packages
SciPy [44] and Stats Model [32].

A. Step1—Dataset Construction

This section briefly describes the open-source dataset we
constructed to analyze the relationship between programming
languages and community smells.

As a first step, we obtained an initial collection of 34678
open-source projects from GOOGLEBIGQUERY. Then, we
used CADOCS to compute socio-technical metrics and de-
tect community smells on 10 projects for each programming
language we previously selected (we considered only projects
from 30 to 50 contributors to guarantee similarity, as explained
more detailed in Section III-A). The dataset was created in
January 2022, and CADOCS was executed in February 2022.
The data extracted from the projects spans from their inception
to February 2022. As last step, we analyzed the distribution of
community smells for each programming language taken into
consideration; Table II shows that there is a frequent presence
of the community smells Prima Donnas Effect in most of the
languages, but particularly in Python, Java, JavaScript, and
PHP. In our online appendix [1] are available specific reports
about the number of repositories detected by GOOGLEBIG-
QUERY for each selected programming language.

� Step1: summary of the results.

The main results of the first step of the study consists in
a dataset that reports information about the presence of
Community Smells in 100 GITHUB open-source projects
developed in 10 different programming languages. Par-
ticularly we identified a significant presence of the smell
Prima Donnas Effect in projects developed in Python,
Java, JavaScript, and PHP.

B. Step2—Statistical model

This section shows the findings achieved when assessing the
relationship between the chosen programming languages in a
GITHUB open-source project and the presence or the absence
of a specific community smell.

Table III reports the details regarding the statistical models
realized. For each community smell considered in our dataset,
the table reports the results achieved for the relative model
with both independent and control variables. In particular, the
language variable is represented as a dummy variable [3],
so the table reports details for each value that the original
qualitative one can assume.

Our results revealed that most of the community smells
seem not to be correlated with the programming languages.
Nevertheless, in inducing the community smell Prima Donnas
Effects, the ANOVA test shows a more statistically significant
correlation with the languages JavaScrivp, Java, PHP, and
Python (p−value < 0.01). Other results are a low statistically
significant correlation between the program languages C#
and the community smells Black Cloud, Organizational Silo
Effect, and Solution Defiance. Another proof of low statistical

significance of the independent variable, the values of AIC
and BIC are similar both with and without the programming
language variables as the community smells, inducing factor.

By analyzing our results, we may assume that the type of
projects analyzed could be one of the origins of the correlation
between our variables. State-of-the-art already demonstrated
that the programming language often depends on the type of
software that we want to develop [23]—e.g., support tool or
web application. This is an obvious fact, and as obvious as it is
that different types of projects need different development ap-
proaches; for example, managers tend to prefer a prototyping
lifecycle for support tools rather than a classical waterfall for
desktop applications. Such a different approach could be the
origin of collaboration and communication patterns resulting
in social debt, and community smells.

For all these reasons, we conducted an iteration of con-
tent analysis session [22] to label all the 100 projects; in
particular, the goal was to obtain clusters to categorize the
projects according to the description and features provided
by the authors. The first and second authors conducted such
labeling and agreed on a single value to be assigned to the
projects. These labeling values are given in the dataset in the
online appendix [1]. Most of the project in the database were
identifiable as Development Support—i.e., a tool or a plug-in
that supports developers in their activities. It may be possible
that since such tools have not been developed by organized
teams of practitioners but by research teams—potentially geo-
graphically distributed—the development process could suffer
from a lack of organization, leading to the emergence of
community smells. Indeed, further research on the relationship
between the type of project and team and the emergence of
community smells should be conducted to shed light on such
a correlation.

� Step2: summary of the results.

Our main findings show how the programming languages
are not always correlated to the presence or absence
of community smells in an open Source Development
Process. An exception occurs for languages like Python,
PHP, Java, and Javascript for Prima Donnas Effect and
for Python and C++ for Solution Defiance.

� Results

In conclusion, our findings suggest that specific pro-
gramming languages are correlated with the occurrence
of community smells, providing grounds to reject the
null hypothesis for those languages. However, this cor-
relation isn’t significant for all languages, indicating
insufficient evidence to reject the null hypothesis in
those cases.

TABLE III
RESULTS ACHIEVED BY THE LOGISTIC REGRESSION MODEL WITH ALL VARIABLES.

Factor OS BC RS PD SV OSE SD TFS UI TC
Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig.

(Intercept) -0.437 -0.582 -0.043 1.577 0.594 -0.702 -1.103 1.250 0.426 -0.112
Independent Variable: Programming Language (Shown as dummy variable)

Language: C -0.068 0.035 -0.189 0.027 0.120 0.186 0.053 -0.013 0.011 -0.095
Language: C# -0.138 -0.256 — -0.047 -0.138 0.101 -0.340 — -0.207 — 0.187 -0.009 0.121
Language: C++ 0.014 -0.173 -0.288 — 0.149 0.115 -0.162 -0.217 * 0.185 -0.344 — 0.122
Language: Go -0.039 0.207 0.197 0.177 — 0.007 0.166 -0.136 -0.013 0.041 -0.192
Language: Java 0.180 -0.001 -0.162 0.299 ** -0.149 -0.154 -0.114 0.167 0.084 -0.088
Language: JavaScript 0.019 0.099 0.058 0.254 ** 0.173 -0.110 -0.053 0.229 0.205 0.044
Language: PHP 0.058 -0.024 -0.027 0.278 ** -0.319 * 0.066 -0.004 0.264 0.002 -0.121
Language: Scala -0.118 -0.079 0.132 0.085 -0.022 -0.173 -0.051 0.488 ** 0.105 0.121
Language: Python -0.219 -0.132 0.049 0.293 ** 0.362 * -0.056 -0.330 ** 0.078 0.200 0.025
Language: TypeScript -0.127 -0.258 — 0.235 0.160 0.126 -0.126 -0.045 0.077 0.131 -0.050

Control Variables
of commits 5.733e-06 1.0e-04 *** 8.705e-05 ** 1.127e-05 4.403e-05 1.384e-05 -5.596e-05 * 4.786e-05 9.53e-05 * 8.061e-05 *
Project Contributors 0.035 — 0.015 -0.009 0.019 0.006 0.013 0.031 * -0.022 -0.0129 0.009
Active Days 3.821e-05 7.627e-05 — 5.388e-05 3.059e-05 -2.17e-05 2.243e-05 9.388e-06 4.262e-06 -5.994e-06 4.629e-05

Bus Factor Number -0.640 — 0.671 * 0.143 -0.224 -0.120 0.693 * 0.982 *** -0.535 0.395 -0.172
∗∗∗:p<0.001; ∗∗:p<0.01; ∗:p<0.05; −:p<0.1

V. DISCUSSION AND IMPLICATIONS

This Section discuss some implications for future research
based on our findings reported in Section IV.

The most related community smell by source code.
Analyzing the results of the study, it emerged that the most
frequent community smells among the analyzed projects are
Prima Donnas Effect and Solution Defiance. In particular—as
shown in Table II—, they appear in all projects developed
in Java, JavaScript, Python, PHP, and Scala and in 90% of
projects developed in C++ and Go. Interestingly, the two
community smells share, by definition, a common problem: the
need for more communication between all team members. In
particular, insufficiently structured communication in the case
of the Prima Donnas Effect and conflicting communication in
the case of Solution Defiance. This lack of communication
is probably accentuated between the team and the project
manager when the latter adopts specific programming lan-
guages such as those mentioned above. Therefore, it might
be interesting to investigate a possible correlation between
the community smells mentioned above by repeating the
study with a larger dataset mainly focused on these specific
programming languages.

Programming language vs. community smells. Among
the programming languages shown to have a correlation with
community smells, we found a subset of sector-specific lan-
guages such as Python and JavaScript. A potential interesting
context to explore could be the one of Machine Learning
Enabled [21] systems—software products characterized by
both a classical component and a machine learning one—and
the related quality and community aspects. Those specific
systems (i) strongly present the use of Python (or JavaScript)
as a programming language and (ii) the development team
usually is composed of different subgroups—e.g., data sci-
entists and software engineers—working togheter [26]. Such
heterogeneity could lead to the emergence of conflicts between
the various subgroups, potentially leading to social debt. Alter-

natively, the presence of socio-technical issues may be due to
specific development skills required in these areas. For these
reasons, in fields like Machine Learning, old development
patterns, and habits might be disrupted by newcomers [34].

The impact of socio-technical factors. Our study rein-
forces what has already been shown regarding socio-cultural
metrics [39]. In particular, our findings show that the number
of committers has high statistical significance in influenc-
ing the dependent variable. Furthermore, another statistically
significant control variable is the Bus Factor Number. Since
these two variables are directly correlated with the size of
the development team, it might be interesting to investigate
how prediction models based on this type of variable statisti-
cally impact the dependent variable based on projects with
teams of varying sizes. Considering this, our study could
be enhanced by including other socio-technical indicators,
i.e., socio-technical congruence, as control or independent
variables to statistically verify if programming languages, or
other development choices, could impact the emergence of
community smells.

VI. THREATS TO VALIDITY

This section illustrates the threats to the validity of the study
and the way we mitigated them. For their identification, we
relied on the well-known work by Wohlin et al. [51].

a) Threats to Construct Validity: Threats in this category
refer to the relationship between hypothesis and observations
and are mainly due to imprecision in performed measure-
ments [51]. The first threat is related to the dataset chosen
to conduct our study. To analyze well-structured resources, for
each programming language we mined a well-formed GITHUB
open-source projects repository provided by GOOGLEBIG-
QUERY, a well-structured database that was already used
in similar studies [10, 11]. Another possible threat to avoid
is related to the similarity between projects selected for
the following model construction phase, in particular, by a

preliminary analysis, we took into account the number of con-
tributors as the principal projects selection criterion, and we
observed that the range from 30 to 50 contributors guaranteed
a sub-optimal projects representativeness for each one of the
programming languages, so we decided to select only projects
in this range of contributors. Moreover, to compute community
smells and additional metrics, e.g., # commits, we relied on
CADOCS [45], which is a published and validated tool.

b) Threats to Conclusion Validity: Threats in this cat-
egory concern the ability to draw correct conclusions about
relations between treatments and outcomes [51]. To ensure
the normality of data distributions, we applied the well-known
SHAPIRO–WILK test [33]. We computed PEARSON’S COR-
RELATION INDEX and VIF to verify whether the independent
variable and control variables did not suffer from multi-
collinearity [27]. Moreover, we used the ANOVA test [14] to
check the significance of the results. In addition, we consider
the threat on the risk of omitting additional factors that may in-
fluence the emergence of community smells. To mitigate it, we
reviewed the past literature [15, 18, 24, 25, 46] and identified
a set of socio-technical control factors demonstrated impactful
in indicating community smells, e.g., truck factor [48].

c) Threats to External Validity: Threats in this category
are concerned with the generalizability of the results [51]. We
built a large dataset containing information about open-source
projects on GITHUB, with many contributors. Moreover, we
performed a preliminary investigation to identify the most
used programming language on the platform, as indicated
in Section III-A. Considering that we analyzed 100 Open
Souce projects, the generalizability of our study might be
considered satisfactory. Nevertheless, we plan to improve our
study by (1) increasing our dataset with different sources from
GITHUB, and (2) performing some qualitative studies—e.g.,
focus groups, surveys, and interviews [29]. Another possible
threat regards the number of contributors per project; the
maximum of 50 contributors could not represent an optimal
choice in terms of external validity, but we preferred to
guarantee consistency in terms of the statistical model, as
previously explained.

d) Threats to Internal Validity: Threats in this category
are concerned with factors that might have influenced the
obtained results [51]. To ensure that other casual and not
considered factors influenced the outcome of our study, we
implemented a logistic regression taking into account various
control variables. Moreover, we evaluated the model using
different baselines to study if the dependent variables effec-
tively contribute to the statistical model. Another potential
threat arises from projects that utilize multiple widely used
programming languages. To address this, we considered only
the language with the highest usage percentage within each
project. We made this decision based on the recognition
of one specific language as the project’s core language, as

acknowledged by the development community.

VII. CONCLUSIONS

This paper investigates the relationship between the pro-
gramming language and the emergence of social anti-patterns.
Specifically, using statistical analysis, our work aimed to verify
whether the choice and use of a particular programming lan-
guage are correlated with the presence of community smells.

We built a dataset comprising 100 GITHUB projects im-
plemented in 10 different languages. Then, we used the
CADOCS tool [45] to extract control metrics and to detect
community smells. Our results shed light on the fact that the
choice of programming language may not consistently serve
as a reliable indicator of the presence or absence of these
undesirable patterns. However, one noteworthy exception is
the Prima Donnas effect, which exhibits a strong statistical
correlation with certain programming languages, e.g., PHP.

Building upon the outcomes and discussions presented in
Section V, we find it worthwhile to pursue further investiga-
tions, including:

1) Replicating our research with a larger dataset and placing
a more focused lens on the specific software categories
under examination.

2) Keen to explore how the manifestation of community-
related issues evolves within projects characterized by
hybrid programming paradigms, as exemplified by “ML-
Enabled Systems” [21].

3) Conducting a series of qualitative studies—e.g., focus
groups and surveys—to strengthen our results using a
mixed-method research approach [12, 13].

Leaders and project managers can use our results to be
aware of potential social anti-patterns and implement—since
the initial phases of the project—mitigation and contingency
strategies to better perform risk management activities.

REFERENCES
[1] “An empirical study on the influence of programming languages on the

emergence of community smells — online appendix,” 2023. [Online].
Available: https://figshare.com/s/297fced044333134c1b7

[2] H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” in Selected papers of hirotugu akaike. Springer,
1998, pp. 199–213.

[3] P. Balestra, Dummy Variables. London: Palgrave Macmillan UK, 1990,
pp. 70–74.

[4] G. Borchers, “The software engineering impacts of cultural factors
on multi-cultural software development teams,” in 25th International
Conference on Software Engineering, 2003. Proceedings. IEEE, 2003,
pp. 540–545.

[5] F. P. Brooks Jr, The mythical man-month: essays on software engineer-
ing. Pearson Education, 1995.

[6] K. P. Burnham and D. R. Anderson, “Multimodel inference: understand-
ing aic and bic in model selection,” Sociological methods & research,
vol. 33, no. 2, pp. 261–304, 2004.

[7] ——, “Multimodel inference: understanding aic and bic in model
selection,” Sociological methods & research, vol. 33, no. 2, pp. 261–
304, 2004.

[8] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and F. Ferrucci,
“Gender diversity and women in software teams: How do they affect
community smells?” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Society (ICSE-SEIS).
IEEE, 2019, pp. 11–20.

[9] G. Catolino, F. Palomba, D. A. Tamburri, and A. Serebrenik, “Under-
standing community smells variability: A statistical approach,” in 2021

https://figshare.com/s/297fced044333134c1b7

IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS). IEEE, 2021, pp. 77–
86.

[10] F. Chatziasimidis and I. Stamelos, “Data collection and analysis of
github repositories and users,” in 2015 6th International Conference on
Information, Intelligence, Systems and Applications (IISA), 2015, pp.
1–6.

[11] ——, “Data collection and analysis of github repositories and users,” in
2015 6th International Conference on Information, Intelligence, Systems
and Applications (IISA), 2015, pp. 1–6.

[12] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
procedures for developing grounded theory. Sage publications, 2014.

[13] J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.

[14] A. Cuevas, M. Febrero, and R. Fraiman, “An anova test for functional
data,” Computational statistics & data analysis, vol. 47, no. 1, pp. 111–
122, 2004.

[15] S. R. de Lemos Meira, E. A. Barros, G. S. de Aquino, and M. J. C.
Silva, “A review of productivity factors and strategies on software devel-
opment,” in 2010 fifth international conference on software engineering
advances. IEEE, 2010, pp. 196–204.

[16] N. E. Fenton and M. Neil, “Software metrics: roadmap,” in Proceedings
of the Conference on the Future of Software Engineering, 2000, pp.
357–370.

[17] D. Graziotin, X. Wang, and P. Abrahamsson, “Do feelings matter? on
the correlation of affects and the self-assessed productivity in software
engineering,” Journal of Software: Evolution and Process, vol. 27, no. 7,
pp. 467–487, 2015.

[18] A. Hernández-López, R. Colomo-Palacios, and Á. Garcı́a-Crespo, “Soft-
ware engineering job productivity—a systematic review,” International
Journal of Software Engineering and Knowledge Engineering, vol. 23,
no. 03, pp. 387–406, 2013.

[19] S. Lambiase, G. Catolino, F. Pecorelli, D. A. Tamburri, F. Palomba, W.-
J. Van Den Heuvel, and F. Ferrucci, ““there and back again?” on the
influence of software community dispersion over productivity,” in 2022
48th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2022, pp. 177–184.

[20] S. Lambiase, G. Catolino, D. A. Tamburri, A. Serebrenik, F. Palomba,
and F. Ferrucci, “Good fences make good neighbours? on the impact
of cultural and geographical dispersion on community smells,” in
Proceedings of the 2022 ACM/IEEE 44th International Conference on
Software Engineering: Software Engineering in Society, ser. ICSE-SEIS
’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 67–78.

[21] G. A. Lewis, S. Bellomo, and I. Ozkaya, “Characterizing and detecting
mismatch in machine-learning-enabled systems,” in 2021 IEEE/ACM 1st
Workshop on AI Engineering - Software Engineering for AI (WAIN),
2021, pp. 133–140.

[22] W. Lidwell, K. Holden, and J. Butler, Universal principles of design,
revised and updated: 125 ways to enhance usability, influence percep-
tion, increase appeal, make better design decisions, and teach through
design. Rockport Pub, 2010.

[23] P. Mayer and A. Bauer, “An empirical analysis of the utilization of
multiple programming languages in open source projects,” in Proceed-
ings of the 19th International Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’15. New York, NY, USA:
Association for Computing Machinery, 2015.

[24] P. Mohagheghi and R. Conradi, “Quality, productivity and economic
benefits of software reuse: a review of industrial studies,” Empirical
Software Engineering, vol. 12, no. 5, pp. 471–516, 2007.

[25] E. Murphy-Hill, C. Jaspan, C. Sadowski, D. Shepherd, M. Phillips,
C. Winter, A. Knight, E. Smith, and M. Jorde, “What predicts software
developers’ productivity?” IEEE Transactions on Software Engineering,
vol. 47, no. 3, pp. 582–594, 2019.

[26] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration chal-
lenges in building ml-enabled systems: Communication, documentation,
engineering, and process,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 413–425.

[27] R. M. O’brien, “A caution regarding rules of thumb for variance inflation
factors,” Quality & quantity, vol. 41, no. 5, pp. 673–690, 2007.

[28] F. Palomba and D. A. Tamburri, “Predicting the emergence of commu-
nity smells using socio-technical metrics: a machine-learning approach,”
Journal of Systems and Software, vol. 171, p. 110847, 2021.

[29] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia, “Crowdsourcing user reviews to
support the evolution of mobile apps,” Journal of Systems and Software,
vol. 137, pp. 143–162, 2018.

[30] F. Palomba, D. Andrew Tamburri, F. Arcelli Fontana, R. Oliveto,
A. Zaidman, and A. Serebrenik, “Beyond technical aspects: How do
community smells influence the intensity of code smells?” IEEE Trans-
actions on Software Engineering, vol. 47, no. 1, pp. 108–129, 2021.

[31] B. Ray, D. Posnett, P. Devanbu, and V. Filkov, “A large-scale study of
programming languages and code quality in github,” Commun. ACM,
vol. 60, no. 10, p. 91–100, sep 2017.

[32] S. Seabold and J. Perktold, “statsmodels: Econometric and statistical
modeling with python,” in 9th Python in Science Conference, 2010.

[33] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[34] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again: Why
is it difficult for developers to learn another programming language?”
Commun. ACM, vol. 65, no. 3, p. 91–99, feb 2022.

[35] M. M. M. Syeed and I. Hammouda, “Socio-technical congruence in oss
projects: Exploring conway’s law in freebsd,” in Open Source Software:
Quality Verification, E. Petrinja, G. Succi, N. El Ioini, and A. Sillitti,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 109–
126.

[36] D. A. Tamburri, P. Lago, and H. v. Vliet, “Organizational social
structures for software engineering,” ACM Computing Surveys (CSUR),
vol. 46, no. 1, pp. 1–35, 2013.

[37] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt
in software engineering: Insights from industry,” Journal of Internet
Services and Applications, 2015.

[38] D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role in
community shepherding,” IEEE Software, vol. 33, no. 6, pp. 70–79,
2016.

[39] D. A. Tamburri, F. Palomba, and R. Kazman, “Exploring community
smells in open-source: An automated approach,” IEEE Transactions on
Software Engineering, vol. 47, no. 3, pp. 630–652, 2019.

[40] E. Trainer, S. Quirk, C. de Souza, and D. Redmiles, “Bridging the gap
between technical and social dependencies with ariadne,” in Proceedings
of the 2005 OOPSLA workshop on Eclipse technology eXchange, 2005,
pp. 26–30.

[41] G. Tripepi, K. Jager, F. Dekker, and C. Zoccali, “Linear and logistic
regression analysis,” Kidney international, vol. 73, no. 7, pp. 806–810,
2008.

[42] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman, and
C. Williams, “Using software repositories to investigate socio-technical
congruence in development projects,” in Fourth International Workshop
on Mining Software Repositories (MSR’07: ICSE Workshops 2007).
IEEE, 2007, pp. 25–25.

[43] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik,
P. Devanbu, and V. Filkov, “Gender and tenure diversity in github teams,”
in Proceedings of the 33rd annual ACM conference on human factors
in computing systems, 2015, pp. 3789–3798.

[44] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,
“Scipy 1.0: fundamental algorithms for scientific computing in python,”
Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[45] G. Voria, V. Pentangelo, A. D. Porta, S. Lambiase, G. Catolino,
F. Palomba, and F. Ferrucci, “Community smell detection and refactoring
in slack: The cadocs project,” in 2022 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2022, pp. 469–473.

[46] S. Wagner and M. Ruhe, “A systematic review of productivity factors
in software development,” arXiv preprint arXiv:1801.06475, 2018.

[47] Z. Wang and J. Hahn, “The effects of programming style on open source
collaboration,” 2017.

[48] L. Williams and R. R. Kessler, Pair programming illuminated. Addison-
Wesley Professional, 2003.

[49] ——, Pair programming illuminated. Addison-Wesley Professional,
2003.

[50] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research methods
in software engineering,” in Empirical methods and studies in software
engineering. Springer, 2003, pp. 7–23.

[51] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

	Introduction
	Background and Related Work
	Research Study Design
	Step1 - Building a dataset
	Step2 - Building a Statistical Model
	Independent Variable
	Response Variable
	Control Variables
	Statistical Model Construction

	Analysis of the Results
	Step1—Dataset Construction
	Step2—Statistical model

	Discussion and Implications
	Threats to Validity
	Conclusions

