
A Framework for Using LLMs for Repository
Mining Studies in Empirical Software Engineering

Vincenzo De Martino∗, Joel Castaño†, Fabio Palomba∗, Xavier Franch†, Silverio Martı́nez-Fernández†
∗Software Engineering (SeSa) Lab, University of Salerno, Italy

{vdemartino, fpalomba}@unisa.it
†Universitat Politècnica de Catalunya, Spain

{joel.castano, xavier.franch, silverio.martinez}@upc.edu

Abstract—Context: The emergence of Large Language Mod-
els (LLMs) has significantly transformed Software Engineering
(SE) by providing innovative methods for analyzing software
repositories. Objectives: Our objective is to establish a practical
framework for future SE researchers needing to enhance the
data collection and dataset while conducting software repository
mining studies using LLMs. Method: This experience report
shares insights from two previous repository mining studies,
focusing on the methodologies used for creating, refining, and
validating prompts that enhance the output of LLMs, particularly
in the context of data collection in empirical studies. Results: Our
research packages a framework, coined Prompt Refinement and
Insights for Mining Empirical Software repositories (PRIMES),
consisting of a checklist that can improve LLM usage perfor-
mance, enhance output quality, and minimize errors through
iterative processes and comparisons among different LLMs. We
also emphasize the significance of reproducibility by implement-
ing mechanisms for tracking model results. Conclusion: Our
findings indicate that standardizing prompt engineering and
using PRIMES can enhance the reliability and reproducibility
of studies utilizing LLMs. Ultimately, this work calls for further
research to address challenges like hallucinations, model biases,
and cost-effectiveness in integrating LLMs into workflows.

Index Terms—Large Language Models; Mining Software
Repositories; Prompt Engineering; LLM Reproducibility.

I. INTRODUCTION

The use of Large Language Models (LLMs) has brought
about a breakthrough in software engineering (SE), enabling
more efficient and straightforward approaches to complex
tasks [1]–[3]. These models, trained on large datasets, have
demonstrated their ability to assist in various SE activities [4],
including code generation [5], documentation generation [6],
and software project analysis [7]. LLM-based technologies
provide software engineers with tools to automate tasks,
enhancing code quality and accelerating their workflows. How-
ever, despite their increasing adoption in SE activities, the pro-
cesses of prompt creation, improvement, and output validation
remain unclear, which can lead to erroneous evaluations and
results that do not meet stated goals [8]. The work presented
is a combination of lessons learned from previous work based
empirical software engineering (ESE) experiences, seeking to
address the challenges associated with the whole life cycle
of using the LLM. We provide an experiential description of
how to create, improve, and validate prompts through the use
of single and multiple LLMs, focusing in particular on the
analysis of software project repositories.

◎ Main Objective: This experience report aims to
provide researchers and practitioners with a practical
framework for using and advice on conducting mining
repository studies with LLMs on software repositories
such as GitHub and Hugging Face.

Context on our experiences. Our work is grounded in two
prior studies where we employed LLMs for mining software
repositories. In the first study [9], we analyzed 168 open-
source ML projects on GitHub to assess the adoption of
green architectural tactics for sustainable ML-enabled sys-
tems. We used LLM APIs to identify both documented and
undocumented green tactics in Python files. In the second
study [10], we conducted a longitudinal analysis of over
50,000 ML models on Hugging Face to understand how they
evolve. By classifying commits and releases using LLMs—
providing commit titles, edited files, and related information
to the model—we uncovered patterns in model maintenance
and development. These experiences highlighted the steps in
prompt creation, improvement, and output validation when
leveraging LLMs for software repository analysis.

PRIMES
FRAMEWORK

Initial Dataset LLM Enhanced
 Dataset

Framework Details
in Figure 2

Fig. 1. Enhancing a software repository using PRIMES for data collection

As depicted in Figure 1, our framework coined Prompt
Refinement and Insights for Mining Empirical Software repos-
itories (PRIMES), enables the transformation of an initial
dataset into an enhanced dataset using LLMs, automating data
collection and enrichment. This process streamlines the ex-
traction of information from software repositories, facilitating
more efficient empirical studies.

II. RELATED WORK

In the realm of SE, prior work has utilized LLMs for
mining studies, showcasing their potential to automate and
enhance various software development tasks. Silva et al. [11]
investigate the effectiveness of ChatGPT in detecting code
smells in Java projects using a GitHub dataset containing four
types of code smells classified by severity. The results show

Creation of Prompts for Piloting1 Prompt Pilot Test2 Evaluation among multiple LLMs Output Validation43

Oracle

Oracle Representative
Sample

LLMs Selection

Compare
Multiple LLMs

Simultaneously

Metrics

Identify Metrics on
Objectives

Benchmark

Find the Best Model

Tracking

Track the Steps to
Reproduce the Work

Format

Correct the Output
Errors

Hallucination

Fix the Hallucination
Problems

Automate the Process

Integrate Tools to
Automate the Process

Prompt
Refinement

Adjust Prompt

Statistical
Validation

Use Agreement
Coefficients

Objectives

Define Study
Objectives

Prompt Strategies

Choose Appropiate
Prompting
Techniques

Prompt Creation

Create
 Initial Prompt

Output
Specification
Define Desired
Output Format

Agreement
 Coefficient Meets

Criteria?

Sample Data Dual
Annotation

Annotate Sample
Data Manually & LLM

No

Yes

Fig. 2. A preliminary, practical framework PRIMES for LLMs in automated data collection in mining repository studies, based on our experiences [9], [10].

that detailed prompts, compared with generic prompts, signifi-
cantly improve F-measure and can detect multiple critical code
smells, suggesting the potential of LLMs to support software
quality improvement through targeted prompt engineering.
Shin et al. [12] empirically assess the effectiveness of GPT-4
using various prompting strategies, revealing that while con-
versational prompts enhance performance, fine-tuned models
often outperform LLMs in specific tasks. Their findings em-
phasize the importance of human feedback in refining prompts
and suggest that further exploration of prompt engineering
techniques is essential for optimizing LLM applications in
automated SE. Fan et al. [8] examined the broader range of
applications and open problems associated with LLMs in SE
activities, highlighting the need for techniques that mitigate
problems such as hallucinations and ensure the reliability
of generated solutions. Zhang et al. [13] use LLMs and
static analysis to find inconsistencies between Rust code and
comments. Their method identified 160 mismatches across
13 open-source projects, showcasing LLMs’ potential for
automating documentation verification.

For the sake of our knowledge, our work advances the
state of the art by creating the first, preliminary framework
that enables the application of LLMs in software repository
information extraction. This framework provides structured
methodologies for creating prompts through iterative refine-
ment and validation processes for the LLMs’ outputs.

III. USING LLMS FOR ESE: METHODOLOGICAL INSIGHTS

Figure 2 shows the proposed framework PRIMES, based
on experiences from [9], [10]. PRIMES has four stages,
mapping to the four subsections below and highlighted with
numbers from ① to ④. Each stage consists of several steps,
which are highlighted in italic in the text below, and map to
small boxes in dark blue in Figure 2. These steps can be seen
as a preliminary checklist when designing repository mining
studies using LLMs for automated data collection.

A. Creation of Prompts for Piloting (① in Figure 2)

Prompt engineering is an emerging field focused on creat-
ing and optimizing prompts to exploit LLMs across various
applications and research domains effectively [14]. It plays a

key role in understanding and extending LLM functionality,
enabling researchers and developers to design efficient tech-
niques for interacting with LLMs, adapting their performance
to specific needs, and integrating them seamlessly with other
tools. Beyond constructing prompts, prompt engineering in-
volves domain-specific skills and strategies, making it essential
for leveraging LLM potential.

Defining study objectives: Aligning the prompt with in-
tended research outcomes, such as extracting specific infor-
mation, improving data quality, or identifying SE practices, is
essential. Clear objectives enable the development of targeted,
context-specific prompts, ensuring consistent and goal-focused
model outputs. The prompt should incorporate specific key-
words, contextual details, and guiding questions to direct the
model effectively.

Select appropriate prompt strategy: LLMs follow instruc-
tions and generate context-dependent responses based on their
training. Prompting techniques optimize results [15], but their
effectiveness varies by LLM and task complexity [16]. Strate-
gic prompt selection enhances performance, reduces costs, and
supports sustainable LLM use in SE. Specifically: (a) one-shot
prompting: providing a single example to guide the model’s re-
sponse, useful when data are limited; (b) few-shot prompting:
supplying a few examples to help the model understand the
task [17], valuable for meeting specific requirements without
retraining; (c) chain-of-thought prompting: encouraging the
model to break down complex tasks into intermediate rea-
soning steps [18], improving performance in tasks requiring
logical reasoning or multi-step problem solving; and (d) struc-
tured prompting: formatting the prompt to impose constraints
or guide the model toward specific response formats, ensuring
consistency and facilitating information retrieval.

Another key aspect is structuring the output to facilitate
analysis. The prompt should guide the LLM in generating ac-
curate content organized in formats that support easy analysis,
such as bullet points, tables, or categorized sections. Proper
structuring reduces ambiguity, enhances clarity, and simplifies
data extraction and analysis, leading to more reliable insights.

Initial Prompt Development: Crafting an initial prompt
that clearly communicates the task to the LLM is crucial.
The prompt should include: (a) task description: a concise

explanation of what is expected from the LLM; (b) contextual
information: necessary background information or definitions
relevant to the task; and (c) output format specification:
instructions on how the LLM should structure its output (e.g.,
JSON, lists, tables). The goal is to provide sufficient guidance
to the LLM without overwhelming it with unnecessary details,
ensuring outputs align with empirical research objectives.

[Hint: Structured prompting and clear objectives are es-
sential for effective LLM use. Defining objectives aligns
prompts with research goals, while structured formats
enhance clarity, consistency, and analysis, simplifying
prompt development.

B. Prompt Pilot Test: Validation and Iterative Refinement of
the Prompt on a Single LLM (②)

This section describes a method for validating and improv-
ing prompts when using a single LLM.

Iterative Refinement Process: The process involves the
following steps:

1) Sample Data Dual Annotation: Select a sample of data
items. Annotate this data both using the LLM and man-
ually by a human annotator, independently of each other.

2) Statistical Validation: Perform statistical validation
by calculating agreement coefficients (e.g., Cohen’s
kappa [19]) to quantitatively assess the alignment be-
tween the LLM’s outputs and the expected results.

3) Criteria Assessment: Check if the agreement coefficient
meets a predefined criterion (e.g., Cohen’s kappa > 0.9).
If the agreement is acceptable, proceed to use the prompt;
if not, continue to the next step.

4) Prompt Refinement: If the agreement is below the accept-
able threshold, refine the prompt to address any identified
issues. Refinement strategies may include: (a) simplify-
ing language: using clear and straightforward language
to improve comprehension; (b) clarifying instructions:
rewriting parts of the prompt to eliminate ambiguity;
(c) providing examples: including examples to guide the
LLM towards the desired output; and (d), adjusting level
of detail: modifying the amount of context provided.

5) Repeat Process: Repeat the process starting from step
1 with the refined prompt until the statistical validation
meets the criteria.

During this assessment, we observed that incorrect outputs
were often due to prompt complexity, which resulted in
confusing responses. Using simple and clear prompts helps
prevent overwhelming the LLM and improves its ability to
generate accurate responses.

[Hint: For effective software repository analysis with
LLMs, simple and concise instructions should be used.
According to our experience, wrong outputs may be
due to prompt complexity, which results in confusing
outputs. Clear guidance helps the model understand the
task better, leading to more precise results.

� Example Application: In our previous study [10],
we applied this iterative refinement process to improve
a prompt that classified commits according to a mainte-
nance taxonomy adapted for machine learning projects.
We began by selecting a sample of commit messages
and their associated code changes. Both the LLM and
human annotators independently classified these com-
mits. Initially, the agreement measured by Cohen’s kappa
was below our acceptable threshold. We identified that
the prompt was too complex and lacked clarity. By
simplifying the language and providing specific examples
for each classification category within the prompt, we
enhanced the LLM’s understanding.

After refining the prompt, we repeated the validation
process, and the agreement coefficient increased to meet
our criterion (> 0.9), demonstrating that the prompt
effectively guided the LLM to produce reliable classifi-
cations. This iterative process continues until the LLM’s
outputs consistently meet the desired standards when
tested on the sample data.

C. Evaluation among multiple LLMs (③)

LLMs Selection: The development of new LLMs is steadily
increasing [20], and to assess the suitability of the best LLM
for a given ESE task, it is important to conduct a comparative
analysis between models. This provides insight into individ-
ual strengths and weaknesses, particularly in relation to the
specific task at hand. This comparison is essential because
these models were developed using different architectures and
training data, which may impact task performance. This com-
parison reveals the generalizability of prompts and assesses
which LLMs are best suited for specific research objectives.

Oracle creation: An essential step in evaluating LLM results
is the use of an oracle [9], which provides a reliable reference
for validating model performance against a known ground
truth. The oracle assesses the accuracy and reliability of LLM
outputs, reduces ambiguity, and supports iterative improve-
ment in prompting strategies. A well-defined oracle enhances
reproducibility, allowing consistent evaluations across studies
and applications. (a) Oracle construction: When constructing
an oracle, an initial assessment on a sufficiently large, repre-
sentative data subset is crucial to minimize bias and accurately
reflect the larger dataset [21]. A sample size calculator can help
estimate the required sample size for statistically significant
conclusions1. This approach allows for reliable and valid
results, thus improving the robustness of the validation process
and enabling more valid assessments of model performance.

(b) Expertise in oracle construction: Accurate classifica-
tion of data within oracle requires domain expertise. Those
constructing the oracle must have experience with the topic,
whether it is the implementation of the code or the domain-
specific tasks on which the LLM is evaluated. This initial
phase could focus on well-documented and well-understood
examples in the literature to maintain the oracle’s validity.

1For instance: https://www.qualtrics.com/blog/calculating-sample-size/

https://www.qualtrics.com/blog/calculating-sample-size/

Without sufficient expertise, the oracle may be inaccurate,
leading to incorrect evaluations of the model’s performance.

� Example Application: In our study [9], we used
multiple LLMs to evaluate their effectiveness in extrac-
tion studies, focusing on identifying green architectural
tactics. In particular, we compared two models: GPT-4o
from OpenAI [22] and Claude 3 Haiku from Anthropic
[23]. The following metrics were used to determine which
LLM was most appropriate to apply to the entire sample:

• Classification accuracy: The primary metric used
to evaluate the models was overall classification
accuracy, measured using the previously described
oracle. Accuracy offered a quantitative measure of
each model’s ability to classify.

• Interpretability of explanations: In addition to raw
accuracy, we also evaluated the quality of model
explanations. The depth of these explanations was
important for understanding and trusting model de-
cision making, making interpretability a key sec-
ondary metric.

• Cost of using LLMs: Given the large file size for
each ML project, the input and output cost of each
API call became an important metric. In our case,
we calculated the cost of analyzing large code bases
using the price based on one million tokens in input
and output of each LLM. This comparison is useful
in making an economic choice for analyzing a large
number of files, particularly in large-scale studies
where cost utilization is a critical factor.

The models show different capabilities in terms of both
their ability to identify tactics found in the literature
and their ability to identify new tactics. Specifically,
GPT-4o achieved a classification accuracy of 95.58%,
while Claude 3 Haiku achieved 97.91%. This helped us
determine which was the most accurate. Both models
effectively classify tactics from the literature with varying
accuracy but fail to identify new ones. The GPT-4o
model did not find any new green tactics, while Claude
3 Haiku managed to identify some additional sustainable
tactics from our original catalog, though it occasionally
repeated known ones. These considerations allowed us to
evaluate the performance of multiple LLMs, enabling us
to select the most appropriate model for our study based
on a combination of criteria. However, it is important to
note that future studies could consider additional metrics
depending on their specific research objectives.

Limiting the classification to known examples ensures that
the oracle is built on a solid foundation. In our approach
[9], we limited manual classification to green tactics already
documented in the literature [24], using well-defined criteria
and examples that facilitated accurate identification. All new
or undocumented tactics were set aside for later analysis when
the LLM could help us discover them. By building the oracle

through these processes, the prompt used for the LLM can be
refined iteratively, allowing for continuous improvement and
validation of model results.

Benchmark: Establishing a benchmark is crucial for fairly
evaluating a prompt’s performance across multiple LLMs. A
poorly designed benchmark can lead to overconfidence in the
LLM outputs, potentially creating unrealistic scenarios that fail
to reveal limitations.

Design a benchmark with tests to assess generalization,
including false positives to test accuracy and robustness,
and ensure task diversity to assess adaptability. This should
be guided by a comprehensive set of metrics to compare
performance and align assessments with specific goals.

Additionally, an important aspect is the execution of multi-
ple tasks simultaneously. Evaluating models involves assessing
their capacity to manage various tasks, as using a single
prompt for multiple tasks can lead to uneven performance
and incomplete results. Monitoring task-specific performance
reveals the models’ generalization capabilities, helping identify
strengths and areas for improvement in multitasking.

[Hint: To effectively use of LLMs for data collection,
it is crucial to establish a systematic process. Creat-
ing statistical samples and smaller preliminary studies
to compare multiple LLMs are essential to ensure (or
optimize) the use of the right LLM in the right way.

D. Output Validation (④)
The output validation is essential for ensuring the data

collection and analysis of LLM results, facilitating replication,
and enabling future studies to build upon the work.

Several handling issues may arise when evaluating model
outputs. When validation uncovers issues such as halluci-
nations, duplications, or formatting errors, these have to be
systematically addressed.

Correct Output Format: Correct the output format—whether
text, tables, or images—in the prompt is essential for managing
how outputs are saved and analyzed. Clear specifications help
structure model outputs, making it easier to derive insights for
quantitative and qualitative analyses. This structured approach
supports informed decision-making, especially for evaluating
patterns or conducting manual reviews.

(a) Detecting duplications: Duplications arise when the
LLM unnecessarily repeats information within or across out-
puts, leading to skewed analyses and incorrect conclusions.
Use text similarity algorithms or hash-based methods to
compare outputs and identify repeated content. Removing or
consolidating duplications ensures each data point is unique.

(b) Ensuring Correct Formatting: Consistent output format-
ting is essential for data processing and analysis. Formatting
errors can hinder parsing routines and introduce errors into
the analysis pipeline. Define the expected output structure
explicitly and use validation scripts to check each output
against this structure. Correcting these issues may involve
adjusting the prompt for stricter adherence to the format or
applying post-processing steps to standardize the outputs.

Checking for Hallucinations: Hallucinations occur when
the LLM generates content not present in the input data or
contradicts facts, introducing false information into the study.
To detect them, cross-reference the LLM’s outputs with the
original data to ensure all content is grounded in the provided
information. Automated scripts can flag outputs containing
unexpected terms or irrelevant concepts. Incorporating domain
knowledge and predefined constraints helps recognize and
eliminate hallucinated content.

Tracking Information: Tracking where specific information
appears is essential for reproducibility, allowing researchers
to validate findings and understand the context of generated
outputs. This is critical for building confidence in research
outcomes, especially when working with complex models
like LLMs and large datasets. Keeping detailed records of
model outputs aids in analyzing the source and verifying
the veracity of the information. For example, a script can
traverse repository files, save project locations, and collect
LLM outputs, generating a CSV file for each project that
captures file names and corresponding outputs.

Automating the Process: Automating the validation process
is critical to ensure the accuracy and integrity of LLM outputs.
This involves systematically identifying and addressing issues
such as hallucinations, duplications, and formatting errors that
can affect data quality and analysis. For instance, outputs
expected in structured formats like JSON can be automati-
cally validated using tools that parse data and report schema
deviations, ensuring they meet predefined requirements. An
effective approach is to use data testing frameworks like
“Great Expectations” [25], which facilitate automated and
repeatable data quality checks by defining expectations or
rules the data should satisfy. Automating the validation process
enhances efficiency and reduces human error. Tools like “Great
Expectations” enable the creation of validation suites that
can be executed programmatically, including checks for data
types, value ranges, pattern matching, and schema conformity.
Integrating an automated validation process into the workflow
allows early detection of issues and prompt feedback for
prompt adjustments or re-generation of outputs.

[Hint: Ensuring reproducibility is crucial to validate
research findings and build confidence in the results. It is
important to trace the origins of specific model results,
as inconsistencies and hallucinations in LLMs’ responses
can compromise reliability. Implementing tracking mech-
anisms and conducting validation checks can help main-
tain the integrity of the process.

IV. DISCUSSIONS AND OUTLOOK

This section examines the implications of using LLMs
to analyze software repositories. Our findings guide future
research directions.

Limitations and Challenges of Using LLMs in ESE:
Despite the promising potential of LLMs in software reposi-
tory mining, several limitations and challenges must be ac-
knowledged. LLMs can generate hallucinations—fabricated

or inaccurate information—that may lead to incorrect con-
clusions. They may also inherit biases from their training
data, impacting fairness. The black-box nature of these models
makes it difficult to interpret outputs and understand their
reasoning. Additionally, the stochastic nature of LLMs compli-
cates reproducibility, and practical issues like API limitations
and costs can hinder large-scale studies.

To address these challenges, we implemented mitigation
strategies, including rigorous validation procedures using
expert-based oracles to evaluate LLM outputs and reduce
inaccuracies. We assessed output reliability with statistical
measures like Cohen’s kappa and compared multiple LLMs
based on metrics such as classification accuracy, interpretabil-
ity, and cost-effectiveness to find the most suitable model.
We acknowledge that model biases and the black-box nature
of LLMs still require further research and attention. More-
over, challenges such as ensuring data privacy and addressing
ethical concerns when using proprietary LLMs necessitate
careful consideration. Another critical but often overlooked
challenge is the environmental cost impact of training and
deploying large-scale LLMs. Incorporating this dimension into
the assessment framework ensures that trade-offs are aligned
with sustainable AI principles. Additionally, integrating LLMs
effectively into existing SE workflows presents practical dif-
ficulties. Future research should explore these issues to fully
harness the potential of LLMs in ESE.

Importance of Effective Prompt Engineering: Besides
prompt engineering, which is an essential component of the
work, we may want to emphasize the importance of a struc-
tured process to the use of LLMs. Well-defined and validated
prompts are essential for generating accurate and relevant
outputs. Previous studies [11], [12] focused only on the first
step of the proposed framework in Figure 2, limiting their
potential for improvement. LLMs should undergo a prelim-
inary evaluation process that includes prompt engineering,
refinement, accuracy assessment, and testing multiple models.
For example, Silva et al. [11] only used ChatGPT to find code
smells in a Java code dataset. However, comparing multiple
LLMs with the same prompt could yield better results due
to differing architectures and training data. As such, this
experience report provides a concrete framework for reporting
the set of activities we have found useful in conducting
research with LLMs.

Standardization of LLMs Guidelines: There is a need to
standardize both the reporting of results and the development
of prompt engineering practices within mining studies using
LLMs. Establishing clear guidelines for consistent reporting
will improve comparability across studies, resulting in more
robust analyses and better-informed decisions [26]. Standard-
izing prompt engineering practices will provide a systematic
approach to creating and refining prompts, leading to more
effective and reliable results from LLMs. To facilitate this,
we advocate for the integration of an LLM usage framework
PRIMES into existing empirical standards. Incorporating such
guidelines will help standardize methodologies and reporting
practices when employing LLMs in mining studies.

Enhancing Reproducibility: Our research highlights the
importance of reproducibility when working with LLMs in
software repository mining. By systematically tracking model
outputs and their sources, we have developed a framework
that ensures the transparency and traceability of our findings.
Prioritizing reproducibility helps validate results and provides
a solid foundation for future research efforts. However, chal-
lenges such as model hallucinations and biases need to be
acknowledged, as they can undermine trust in LLM outputs.

Extension and Adaptability of the Proposed Framework:
While our study focused on particular aspects of software
repository mining, the methods and insights gained can be
adapted to various contexts. Future research could investigate
the relevance of our results across different software domains
to assess the generalizability of our framework PRIMES.
Additionally, incorporating feedback from subsequent stud-
ies and user experiences will enable iterative improvements,
enhancing the framework’s adaptability to diverse analytical
scenarios, such as code quality assessment and automated
testing. One potential direction includes the creation and ex-
tension of a metrics catalog to benchmark multiple LLMs and
consider their trade-off. Exploring the integration of emerging
technologies can further enrich the framework’s capabilities,
making it a robust resource for researchers and practitioners.

In conclusion, our findings contribute to advancing the use
of LLMs in software repository mining studies. By sharing our
experiences and a preliminary framework, we aim to both: (a)
promote the right usage of LLMs for dataset enhancement
(for automated and efficient data collection, requiring less
manual work), considering monetary expenditure, time costs,
and potential impact on the environment [16]; and, (b) foster a
collaborative environment in the ESE community encouraging
continuous improvement and innovation in the acknowledged
the limitations and challenges that pave the future work.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish re-
search project GAISSA (TED2021-130923B-I00 by MCIN/
AEI/10.13039/501100011033). This work has been partially
supported by the European Union - NextGenerationEU
through the Italian Ministry of University and Research,
Projects PRIN 2022 “QualAI: Continuous Quality Improve-
ment of AI-based Systems” (grant n. 2022B3BP5S , CUP:
H53D23003510006).

REFERENCES

[1] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers,
“Using an llm to help with code understanding,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[2] M. M. Imran, P. Chatterjee, and K. Damevski, “Uncovering the causes
of emotions in software developer communication using zero-shot llms,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, 2024, pp. 1–13.

[3] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” ACM Transactions on Software
Engineering and Methodology, 2023.

[4] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, “Chatgpt
prompt patterns for improving code quality, refactoring, requirements
elicitation, and software design,” in Generative AI for Effective Software
Development. Springer, 2024, pp. 71–108.

[5] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein, and T. F.
Bissyandé, “Is chatgpt the ultimate programming assistant–how far is
it?” arXiv preprint arXiv:2304.11938, 2023.

[6] A. Della Porta, V. De Martino, G. Recupito, C. Iemmino, G. Catolino,
D. Di Nucci, and F. Palomba, “Using large language models to support
software engineering documentation in waterfall life cycles: Are we
there yet?” 2024.

[7] R. Tufano, A. Mastropaolo, F. Pepe, O. Dabić, M. Di Penta, and
G. Bavota, “Unveiling chatgpt’s usage in open source projects: A
mining-based study,” in 2024 IEEE/ACM 21st International Conference
on Mining Software Repositories (MSR). IEEE, 2024, pp. 571–583.

[8] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering: Sur-
vey and open problems,” in 2023 IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering (ICSE-FoSE).
IEEE, 2023, pp. 31–53.

[9] V. De Martino, S. Martı́nez-Fernández, and F. Palomba, “Do developers
adopt green architectural tactics for ml-enabled systems? a mining
software repository study,” arXiv preprint arXiv:2410.06708, 2024.

[10] J. Castaño, R. Cabañas, A. Salmerón, D. Lo, and S. Martı́nez-Fernández,
“How do machine learning models change?” 2024.

[11] L. L. Silva, J. Silva, J. E. Montandon, M. Andrade, and M. T. Valente,
“Detecting code smells using chatgpt: Initial insights,” in Proceedings
of the 18th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2024, pp. 400–406.

[12] J. Shin, C. Tang, T. Mohati, M. Nayebi, S. Wang, and H. Hem-
mati, “Prompt engineering or fine tuning: An empirical assessment of
large language models in automated software engineering tasks,” arXiv
preprint arXiv:2310.10508, 2023.

[13] Y. Zhang, “Detecting code comment inconsistencies using llm and
program analysis,” in Companion Proceedings of the 32nd ACM Inter-
national Conference on the Foundations of Software Engineering, 2024,
pp. 683–685.

[14] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha,
“A systematic survey of prompt engineering in large language models:
Techniques and applications,” arXiv preprint arXiv:2402.07927, 2024.

[15] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du,
A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot
learners,” arXiv preprint arXiv:2109.01652, 2021.

[16] G. Wang, Z. Sun, Z. Gong, S. Ye, Y. Chen, Y. Zhao, Q. Liang, and
D. Hao, “Do advanced language models eliminate the need for prompt
engineering in software engineering?” arXiv preprint arXiv:2411.02093,
2024.

[17] T. B. Brown, “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[18] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[19] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[20] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, 2023.

[21] S. Baltes and P. Ralph, “Sampling in software engineering research: A
critical review and guidelines,” Empirical Software Engineering, vol. 27,
no. 4, p. 94, 2022.

[22] “Chatgpt api keys,” https://openai.com/index/openai-api/, 2024.
[23] “Getting started - anthropic,” https://docs.anthropic.com/en/api/

getting-started, 2024.
[24] H. Järvenpää, P. Lago, J. Bogner, G. Lewis, H. Muccini, and I. Ozkaya,

“A synthesis of green architectural tactics for ml-enabled systems,” in
Proceedings of the 46th International Conference on Software Engineer-
ing: Software Engineering in Society, 2024, pp. 130–141.

[25] “Home — Great Expectations — docs.greatexpectations.io,” https://
docs.greatexpectations.io/docs/home/, [Accessed 29-10-2024].

[26] Z. Codabux, F. Fard, R. Verdecchia, F. Palomba, D. Di Nucci,
and G. Recupito, Teaching Mining Software Repositories. Cham:
Springer Nature Switzerland, 2024, pp. 325–362. [Online]. Available:
https://doi.org/10.1007/978-3-031-71769-7 12

https://openai.com/index/openai-api/
https://docs.anthropic.com/en/api/getting-started
https://docs.anthropic.com/en/api/getting-started
https://docs.greatexpectations.io/docs/home/
https://docs.greatexpectations.io/docs/home/
https://doi.org/10.1007/978-3-031-71769-7_12

	Introduction
	Related work
	Using LLMs for ESE: Methodological Insights
	Creation of Prompts for Piloting (① in Figure 2)
	Prompt Pilot Test: Validation and Iterative Refinement of the Prompt on a Single LLM (②)
	Evaluation among multiple LLMs (③)
	Output Validation (④)

	Discussions and Outlook
	References

