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Abstract—As machine learning (ML) systems become central
to critical decision-making, concerns over fairness and potential
biases have increased. To address this, the software engineering
(SE) field has introduced bias mitigation techniques aimed at
enhancing fairness in ML models at various stages. Additionally,
recent research suggests that standard ML engineering practices
can also improve fairness; these practices, known as fairness-
aware practices, have been cataloged across each stage of the
ML development life cycle. However, fairness remains context-
dependent, with different domains requiring customized solu-
tions. Furthermore, existing specific bias mitigation methods
may sometimes degrade model performance, raising ongoing
discussions about the trade-offs involved.

In this paper, we empirically investigate fairness-aware prac-
tices from two perspectives: contextual and cost-effectiveness. The
contextual evaluation explores how these practices perform in
various application domains, identifying areas where specific fair-
ness adjustments are particularly effective. The cost-effectiveness
evaluation considers the trade-off between fairness improvements
and potential performance costs. Our findings provide insights
into how context influences the effectiveness of fairness-aware
practices. This research aims to guide SE practitioners in se-
lecting practices that achieve fairness with minimal performance
costs, supporting the development of ethical ML systems.

Index Terms—Machine Learning Fairness; Fairness-Aware
Practices; Cost-Effectiveness; Empirical Software Engineering.

I. INTRODUCTION

Machine Learning (ML) applications continue to spread in
diverse contexts, becoming integral in business operations due
to their impact on efficiency, decision-making, and innovation
[1]–[3]. However, this trend has raised ethical concerns around
fairness—the expectation that models make unbiased decisions
[4]. Bias in training data can lead models to make unfair
decisions, presenting ethical and legal risks [5], [6].

In response to these challenges, the software engineering
(SE) research community, particularly within SE for Artificial
Intelligence, has proposed multiple bias mitigation techniques,
i.e., methods designed to reduce or eliminate biases in machine
learning models by operating on data or algorithms. These so-
lutions have been categorized as pre-processing, in-processing,
and post-processing [7], based on the ML development stage
in which they operate. Different research evaluated these
solutions empirically [8]–[10], demonstrating their efficacy in
mitigating bias. As fairness is a context-dependent issue, i.e.,
different ethical concerns arise in different contexts [11], most

of the solutions proposed so far have been evaluated under
specific settings, including different application domains.

Nevertheless, fairness-specific adjustments have implica-
tions for the economic sustainability of businesses. This di-
mension refers to the financial sustainability of the software
over time [12]. In this regard, the application of these bias
mitigation solutions may impact operating costs in terms
of customer satisfaction, particularly with decreased perfor-
mances of the resulting models [4], [13]. De Martino et al. [12]
performed a benchmark study of the implications of applying
bias mitigation solutions on other sustainability dimensions,
such as the economic one, highlighting that applying these
algorithms involves complex trade-offs, particularly between
fairness and performance.

Drifting apart from specific bias mitigation methods, recent
research in SE highlighted how fairness in ML can be ad-
dressed by carefully selecting common engineering practices
during the development life cycle [14]. These practices have
been defined as fairness-aware practices—common practices
that have a positive impact on the fairness level of an ML
model—and they have been cataloged in the six stages of an
engineered ML development life cycle [15]. These start from
early stages, with practices like ‘Multi-objective Optimization’
or ‘Data Balancing’ in ‘Requirements Elicitation’ and ‘Data
Preparation’, to practices like ‘Model Outcomes Analysis’ in
the final stage of ‘Model Maintenance & Evolution’.

Furthermore, these practices have been evaluated through a
survey with expert ML developers [16], assessing the extent
to which these have a positive impact on fairness, how often
they are applied, and the perceived effort to be implemented.
Results show that the majority of these practices have a posi-
tive impact on fairness, according to practitioners. Still, only a
few of them are frequently applied despite not requiring high
effort to be implemented [16]. Additionally, these practices
appear to offer a distinct advantage in managing the fairness-
performance trade-off, as they can enhance both fairness and
model performance without the potential performance costs
sometimes associated with bias mitigation techniques [17].

Stemming from these considerations, this work presents
an empirical evaluation of fairness-aware practices with two
main focuses. First, we perform a contextual evaluation, in
which we select multiple application domains to understand if
specific areas require the application of specific fairness-aware
practices. Second, we introduce a novel evaluation metric to



perform the trade-off analysis targeting the cost-effectiveness
[18] of these practices. Such an evaluation is inspired by
previous work in SE [19] and aims at representing the trade-
off between the benefits of implementing a fairness practice
in relation to its cost in terms of performance loss.

To conduct our study, we select common datasets presented
and used in previous research [8], [11], [12] but spanning over
different contexts of application, e.g., Finance with the German
credit dataset [20] or Law with the COMPAS dataset [11].
Afterward, we select a set of fairness-aware practices based
on insights by practitioners regarding their positive impact
on fairness and frequency of application [16]. Finally, we
perform extensive experimentation with datasets and practices
evaluating fairness and performance metrics to establish the
cost of mitigating bias fairness through these practices. Re-
sults show that fairness-aware practices in ML models vary
in effectiveness and cost-effectiveness across domains and
datasets. Domains like Finance showed significant fairness
improvements, while Economic showed none. Practices like
Iterative Imputer, Simple Imputer, and Oversampling balanced
fairness and performance well, while Mutation Testing was less
effective. These results highlight the importance of context in
selecting and evaluating fairness practices.

Paper Structure. Section II reviews the research literature
relevant to our study, highlighting the key distinctions that
enable our work to push the state of the art forward. Section
III outlines the research questions and describes the method
used to address them. In Section IV, we present and analyze
the study’s findings and discuss the implications for both
researchers and practitioners. Section V addresses the primary
limitations of the study and the strategies we employed to
mitigate them. Lastly, Section VI offers concluding remarks.

II. BACKGROUND AND RELATED WORK

ML fairness, defined as the absence of bias against protected
groups in automated decision-making systems [4], has rapidly
gained importance in the Software Engineering field. This
heightened focus is reflected in a diverse and growing body of
research that explores fairness from multiple perspectives [6]–
[8], [21]. As ethical controversies surrounding ML applications
continue to surface [22], [23], they underscore an urgent need
to prioritize fairness in ML practices across the field.

Background. Research has proposed various bias miti-
gation approaches throughout the ML pipeline, categorized
as pre-, in-, and post-processing techniques. Pre-processing
methods address bias in training data, with solutions like
Chakraborty et al.’s [24] FAIR-SMOTE, a synthetic data
augmentation method that preserves model performance, and
reweighting techniques by Kamiran and Calders [25], which
adjust instance weights to enhance fairness. In-processing
techniques modify learning algorithms to mitigate bias during
training; for instance, Zhang et al. [26] utilized an adversarial
approach, while Chakraborty et al. [27] balanced fairness and
performance via multi-objective optimization. Finally, post-
processing methods adjust outputs after training to ensure fair-
ness. Galhotra et al. [28] proposed THEMIS, which identifies

bias using input perturbation, and Udeshi et al. [29] introduced
AEQUITAS to enhance bias detection efficiency. Black-box
and white-box fairness testing approaches, such as those by
Aggarwal et al. [30] and Zhang et al. [31], employ adversarial
sampling to detect and address biases.

Related Works. Recent research has advanced benchmark
studies for ML bias mitigation techniques. Hort et al. [10]
introduced FAIREA, a tool to benchmark bias mitigation
methods, focusing on five pre- and in-processing algorithms
and non-functional requirements. Chen et al. [32] used Fairea
in a large-scale study with seven algorithms, finding that mit-
igation methods can reduce ML accuracy, with effectiveness
varying by task, model, protected attribute, and metric set.
Zhang and Sun [9] adapted ML fairness methods for multiple
protected attributes, assessing six algorithms. Recently, Chen
et al. [8] benchmarked fairness improvements for multiple
protected attributes across eight techniques, while Hort et
al. [7] proposed a new approach to enhance both fairness
and accuracy. Finally, De Martino et al. [12] benchmarked
bias mitigation algorithms and explored the trade-offs among
social sustainability—fairness—, economic sustainability, and
environmental sustainability.

² Our Contribution.

In this work, we empirically evaluate fairness-aware
practices and their cost in performance loss. We advance
research by (1) evaluating underexplored fairness-aware
practices rather than specific bias mitigation techniques,
(2) performing a context-dependent and cost-effective
evaluation of these solutions, and (3) providing practi-
tioners with practical recommendations on the specific
set of fairness-aware practices to apply in their context.

III. RESEARCH DESIGN AND METHODS

The goal of this study is to evaluate the effectiveness of
fairness-aware practices in mitigating bias across different
contexts, with the purpose of assessing their impact and
understanding any performance trade-offs. The study con-
siders the perspective of both researchers and practitioners.
Researchers are interested in the implications of these prac-
tices on performance, contributing to the broader discourse
on bias mitigation in ML models. Practitioners, meanwhile,
seek practical recommendations for embedding fairness-aware
practices into their workflows to build fair ML systems.

A. Research Questions

Our empirical study was centered around two main research
questions. First, we aimed to quantitatively verify the pos-
itive impact of fairness-aware practices on bias mitigation,
complementing previous qualitative studies that relied on
expert opinions [16]. This builds on prior research assessing
specific bias mitigation methods [8], [12], which reported that
practitioners viewed these practices as beneficial for enhancing
ML model fairness. We sought to expand on these findings by
conducting experiments in diverse contexts to understand the
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Fig. 1. Overview of the research method proposed for our study.

contextual dependency of fairness practices. This led us to our
first research question:

RQ1. Contextual Fairness Evaluation.

To what extent can fairness-aware practices mitigate bias
in different contexts?

Our second objective was to examine the performance trade-
offs associated with fairness-aware practices, as the balance
between fairness and performance remains a challenge in
fairness research [12]. To this aim, we designed a cost-
effective analysis [18], i.e., a method for assessing the cost-
effectiveness of an intervention by calculating the ratio of its
cost to its effectiveness, considering the benefit as fairness
gains and the cost as performance loss. This is crucial for
both researchers and practitioners, as it can guide cost-effective
recommendations for selecting fairness practices that balance
fairness and efficiency in ML systems. This motivated our
second research question:

RQ2. Cost-Effective Evaluation.

What is the cost in terms of performance loss against
fairness improvements given by the application of
fairness-aware practices?

By exploring these two critical aspects, our study aims to
advance fair ML by evaluating practical, easy-to-implement
fairness-aware practices in terms of their bias mitigation effi-
cacy across contexts and their performance cost-effectiveness.
Figure 1 illustrates an overview of the research approach used
to address these questions, with subsequent sections detailing
the study objects and methods. Our reporting followed the
guidelines of Wohlin et al. [33] and the ACM/SIGSOFT
Empirical Standards [34],1 specifically the “General Standard”
guidelines given the nature of our study.

1Available at: https://github.com/acmsigsoft/EmpiricalStandards.

B. Practices Selection

The fairness-aware practices [14] evaluated in this study
were selected based on a recent survey of ML experts [16],
which assessed these practices’ impact on fairness, frequency
of application, and perceived implementation effort. By lever-
aging these findings, we identified a set of practices that of-
fered an optimal balance of high impact, moderate to frequent
application, and manageable implementation effort. These
practices were deemed suitable for an in-depth, quantitative
evaluation, particularly to understand their efficacy in enhanc-
ing fairness across various contexts and sensitive attributes.
Below, we detail each practice selected, the reasoning behind
its inclusion, and the specific implementation choices.

• Data Balancing [35]: Experts rated data balancing as
a technique with a medium-to-high impact on fairness,
achievable with relatively low effort [16]. The data bal-
ancing techniques selected for implementation include
LabelEncoder, Oversampling, and Undersampling due to
their popularity [36].

• Parameter Regularization [37], [38]: Despite experts iden-
tifying parameter regularization as requiring considerable
effort to be implemented, it was also noted for its
potentially high impact on fairness [16].

• Data Transformation [39]: This practice, frequently uti-
lized according to expert feedback, demands a medium-
to-high level of effort but has shown potential for positive
impact in different contexts [16]. Techniques chosen for
implementing data transformation include IterativeIm-
puter, SelectBest, and SimpleImputer.

• Metamorphic/Mutation Testing [40]: This practice was
selected due to its potential positive impact on fairness
combined with low implementation effort [16].

This selection allowed us to explore practices’ impact in
diverse settings and provide recommendations for practitioners
aiming to build fair ML models with minimal performance
trade-offs. As for some practices, different solutions have
been proposed, such as Oversampling and Undersampling for
Data Balancing, and we ended up with the selection of eight

https://github.com/acmsigsoft/EmpiricalStandards


different techniques. The code for all the practices is available
alongside the experiments in our online appendix [41].

C. Contexts and Datasets Selection

To conduct a comprehensive evaluation of fairness-aware
practices across different application domains, we selected
contexts from established fairness research, each represented
by a widely used fairness-related dataset [11], [42]. These
datasets, chosen for their relevance and prevalence in the
field, provide specific contextual settings, enabling us to assess
the effectiveness of bias mitigation methods within distinct
contexts. Below, we detail the datasets selected, the contexts
they represent, and the identified sensitive attributes.

• COMPAS Dataset : The COMPAS dataset is a risk assess-
ment tool containing data from 2013 and 2014. It is used
to estimate the likelihood of recidivism for defendants
and is categorized under the Recidivism Prediction con-
text [11]. The sensitive attributes are “Sex” and “Race”,
with the disadvantaged groups identified as “African-
American” for “Race” and “Female” for “Sex”.

• German Credit Dataset [20]: This dataset is used for
credit risk assessment, predicting whether a loan applicant
is a good or bad credit risk. It falls under the Finance con-
text [11]. The sensitive attributes are “GenderStatus” and
“Age”, with disadvantaged groups identified as “Female-
Divorced-Separated-Married” for “GenderStatus” and in-
dividuals under the age of 40 for “Age”.

• Adult Dataset [43]: Created to analyze U.S. population
characteristics—such as occupation, education, age, sex,
and race—this dataset, derived from census data, aims to
predict whether an individual’s income exceeds $50,000
per year. It represents the Economics context [11]. The
sensitive attributes in this dataset are “Race” and “Sex”,
with the disadvantaged groups being “Black” for “Race”
and “Female” for “Sex”.

• Bank Marketing Dataset [44]: This dataset comprises in-
formation on direct marketing campaigns by a Portuguese
bank from 2008 to 2013, with the objective of predicting
whether a client would subscribe to a bank deposit. It
falls within the Marketing context [11]. The sensitive
attributes are “Marital Status” and “Age”, with disadvan-
taged groups being “Married” for “Marital Status” and
individuals under 40 for “Age”.

• Communities and Crime Dataset [45]: Containing socioe-
conomic data from 46 U.S. states, this dataset is used to
predict the total number of violent crimes (including mur-
der, rape, robbery, and assault). It represents the Crime
context [11], with the sensitive attribute being “Race” and
the disadvantaged group identified as “Black”.

Each of these datasets serves as a context driver for our
evaluation, enabling us to observe the impact of fairness-
aware practices in settings specific to “law” or “economics
and business.” For instance, assessing practices on a dataset
like COMPAS offers insights into how these practices operate
within the law context, particularly the one of recidivism pre-
diction. This approach allows us to provide practical insights

into the contextual performance and potential trade-offs of
fairness-aware methods across distinct application domains.

D. Data Collection and Analysis

After selecting fairness-aware practices and fairness-related
datasets, we experimented with their combination to answer
our research questions. In this preliminary empirical study, we
focused on classification tasks, as they were the most applied
in fairness research [11]. Nonetheless, it is worth noting that
the selected datasets may be exploited for other tasks as well,
e.g., clustering or anomaly detection [11]. Concerning the
classification task that we implemented in both our RQs,
we leveraged the work by Fabris et al. [11] from which we
selected the contexts, as they also provided a classification
of fairness-related datasets alongside the specific tasks and
models that have been used to evaluate them. Hence, we finally
selected the Random Forest model, as it was among the most
commonly used for the chosen datasets. All the data and code
used to perform the experiments and evaluate the results are
available in our online appendix [41].

RQ1 — Contextual Fairness Evaluation. To address
our first research question, we conducted experiments using
Random Forest for the classification task. We began by
establishing a baseline: for each dataset, we trained the model
without applying any fairness-aware practices and evaluated its
fairness level. To assess model fairness, we used three widely
recognized metrics from fairness research [46]: Average Odds
Difference, which measures the absolute difference between
the rates of correct and incorrect classifications across two
groups; False Discovery Rate Difference, which indicates
disparities in false positive rates between distinct groups; and
Disparate Impact, defined as the ratio of positive outcomes
in the protected group to those in the non-protected group.
For each dataset, all the metrics were computed on one single
protected attribute, selected by considering the ones that were
most frequently evaluated in the literature [11]. We selected
“Sex” for the COMPAS and Adult datasets, “Age” for the Bank
Marketing dataset, “Gender” for the German credit dataset,
and “Race” for the Communities and Crime dataset. This
process resulted in an initial set of five baseline experiments.

Subsequently, we applied each selected fairness-aware prac-
tice individually to each dataset and re-trained the same
ML model used for the baseline. For each new model, we
recalculated the three fairness metrics, leading to 40 additional
experiments. Including the baseline, in our data collection
phase, we conducted 45 experiments in total.

To answer RQ1 and understand if the application of
fairness-aware practices may increase the models’ fairness
level in different contexts, we analyzed such data comparing
the baseline’s results with the metrics computed after the
application of the practices in different contexts. To verify
the significance of these results, we finally applied statistical
tests. We first assessed the normality of our data to determine
the appropriate statistical methods. Using the Shapiro-Wilk
test [47] with a significance level of α = 0.05, we found
that not all the studied datasets conformed to a normal



distribution, which led us to apply non-parametric methods.
Hence, we used the Wilcoxon signed-rank test [48] to assess
differences between the baselines and experiments involving
fairness-aware practices, testing the null hypothesis that no
significant differences exist. Given the limited sample sizes,
further evaluation was not deemed necessary. The application
of the Wilcoxon test allowed us to compute p-values and assess
statistical significance directly.

RQ2 — Cost-Effective Evaluation. To answer our second
research question, we followed the same steps as the first
one to collect the data. However, in this case, our objective
was to evaluate the model’s performance. Hence, we collected
standard performance metrics of the trained models such as
Precision, Recall, F1-score, and Accuracy [49]. By collecting
these data, we ended up with a dataset of experiments com-
posed of 45 rows: for each of the five datasets, we trained
an ML model and collected four performance metrics and
three fairness metrics, repeating this experiment nine times—
one for the baseline and eight for each fairness-aware practice
selected. After computing all these experiments and collecting
the metrics, we continued with the data analysis phase.

In the context of RQ2, our objective was to evalu-
ate the performance-fairness trade-off of applying fairness-
aware practices. Hence, the data analysis process slightly
changed from the first research question. We applied a cost-
effectiveness analysis [18], a technique used to evaluate the
cost-effectiveness ratio of an intervention by dividing its
costs by its effectiveness. In our case, we evaluated each
intervention—the application of a fairness-aware practice to an
ML model training—based on its effectiveness in enhancing
fairness relative to its cost in terms of model performance loss.
This approach enabled us to quantify the trade-offs between
improved fairness and reduced predictive accuracy, helping
identify the most efficient techniques for maintaining both
fairness and performance.

For each experiment with a fairness-aware practice applica-
tion, we calculated two measures: (1) the cost, computed as the
difference in performance between the baseline (B) model—
without intervention—and the models with the fairness-aware
practices applied (I), and (2) the effectiveness measured by
calculating the difference in fairness metrics between the
models with the fairness intervention and the baseline models.

With these two measures, we computed a cost-effectiveness
ratio by dividing the performance cost by the effectiveness in
improving fairness as follows:

Cost-effectiveness =
PerformanceB − PerformanceI

FairnessI − FairnessB

We used this metric as a comparative metric, enabling
us to identify which fairness-aware practice provided the
greatest fairness improvements with the least performance
compromise. A value lower than one indicated a more cost-
effective technique, as they yielded higher fairness gains per
unit of performance cost. Finally, for each dataset and fairness-
aware practice, we computed the cost-effectiveness ratio for all
the possible combinations of fairness and performance metrics.

We then aggregated these data by averaging the cost, effec-
tiveness, and cost-effectiveness ratios for each combination
of dataset and practice. This approach enabled a high-level
comparison, identifying which practices consistently balanced
fairness and performance.

IV. ANALYSIS AND DISCUSSION OF THE RESULTS

In the following sections, we present and discuss the results
of the empirical study for each dataset, followed by recom-
mendations based on overall cost-effectiveness. The discussion
is arranged according to the corresponding RQ.

TABLE I
WILCOXON SIGNED-RANK TEST P-VALUES FOR FAIRNESS METRICS
ACROSS CONTEXTS. SIGNIFICANT RESULTS (P <0.05) ARE COLORED

AND MARKED WITH AN ASTERISK (*)

Context (Dataset) AOD FDRD DI
Recidivism (COMPAS) 0.0391* 0.7422 0.1953
Economic (Adult) 0.0547 0.4609 0.1484
Marketing (Bank Marketing) 0.1670 0.0156* 0.0156*
Finance (German Credit) 0.0078* 0.0156* 0.0078*
Crime (Communities and Crime) 0.0422* 0.1077 1.0000

A. RQ1 — Contextual Fairness Evaluation

In our RQ1, we assessed the significance of fairness im-
provements achieved through fairness-aware practices applied
to ML models across various domains. Table I presents the
results of our statistical evaluation. More details are available
in our online appendix [41].

A key observation is the variation in fairness improvements
depending on the context and the specific fairness metrics. For
example, in the Recidivism and Crime contexts, significant
improvements were observed only in the AOD metric. Since
these contexts fall under the broader Social Sciences domain,
our findings indicate that fairness-aware practices may not
consistently yield high equity improvements in these areas.

Conversely, the Marketing domain showed significant im-
provements in the FDRD and DI metrics, while Finance
demonstrated the most robust results, with significant improve-
ments across all metrics. In contrast, the Economic domain
showed the weakest outcomes, with no metric achieving a
statistically significant improvement in fairness. These results
suggest that the effectiveness of fairness-aware practices is
context-sensitive, with some domains more responsive to fair-
ness interventions than others.

The varied significance levels across metrics and domains
underscore the complexity of achieving fairness in ML. The
effectiveness of fairness-aware practices appears to depend
heavily on the context of the application. This variability
highlights the need for comprehensive fairness evaluations
that account for multiple fairness metrics and domain-specific
factors. A universal approach to fairness may be insufficient;
researchers and practitioners should analyze the unique char-
acteristics of each domain to design tailored fairness-aware
solutions. Contextual factors must be carefully considered to



ensure that fairness-aware ML models address the specific
challenges of different real-world scenarios.

² RQ1 — Summary of the Results.

The results of our evaluation show that the effective-
ness of fairness-aware practices in ML models varies
across application domains and fairness metrics. Domains
like Finance demonstrated significant improvements in
all metrics, while Economic showed no improvement.
Fairness improvements were more limited in domains
like Recidivism and Crime, suggesting that the success of
these practices depends on the specific characteristics of
each domain. This highlights the importance of context-
specific fairness evaluations in ML.

B. RQ2 — Cost-Effective Evaluation

In the context of RQ2, we assessed the cost-effectiveness of
applying fairness-aware practices, where fairness gains were
treated as benefits and performance loss as costs. This allowed
us to recommend practices based on their relative trade-offs.
The results of this analysis are presented in Table II. For
each fairness-aware practice and dataset context, we report
the average cost-effectiveness ratio for each combination of
performance and fairness metrics computed. All the specific
results used for these evaluations, alongside data and code, are
available in our online appendix [41]. These values should be
interpreted as follows: if the cost-effectiveness value exceeds
one or falls below minus one for a specific practice on a
specific dataset, the performance loss incurred by that practice
outweighs its fairness improvement [18]. In Table II, we have
highlighted with colors and marked with an asterisk the values
indicating positive cost-effectiveness, meaning the specific
practice is recommended for that dataset. Values marked as
“NA” result from errors in computing the cost-effectiveness
ratios, such as divisions by zero.

For the Economic context, analyzing the Adult dataset,
both Iterative Imputer and Simple Imputer achieved the low-
est cost-effectiveness ratio (0.60), suggesting that these data
transformation techniques [39] offer the best balance between
fairness and performance. Label Encoder (0.8648) and Over-
sampling (0.1338) had cost-effectiveness ratios below one, in-
dicating that they improve fairness with minimal performance
loss. Similarly, Undersampling (0.0072) also demonstrated
a favorable trade-off, with high fairness gains relative to
a small performance cost. In contrast, SelectBest (3.3612)
and Regularization (1.5822) exceeded the threshold of one,
meaning they provide fairness improvements but with more
significant performance costs.

In the Marketing context, Mutation Testing (30.0711)
showed an extremely high cost-effectiveness ratio, indicating
a substantial performance loss with minimal fairness improve-
ment, making it highly unfavorable, alongside Undersampling
(-13.9254) and Regularization (-9.4770). Practices like Label
Encoder (-0.1725), Iterative Imputer (-0.6635), and SelectBest

(0.7065) displayed ratios close to zero, suggesting that their
fairness benefits outweigh their performance costs.

For the Crime context, Oversampling (0.3125) and Un-
dersampling (0.5744) exhibited low cost-effectiveness ratios,
making them effective choices as they provide significant
fairness improvements with minimal performance trade-offs.
Iterative Imputer (0.1914) and Simple Imputer (0.2162) also
showed favorable ratios, indicating they strike a good balance
between fairness gains and minimal performance loss. On
the other hand, Regularization (-0.0239) had a negative cost-
effectiveness, reflecting less desirable trade-offs. As a result,
Oversampling, Undersampling, Iterative Imputer, and Simple
Imputer are the most cost-effective choices for this dataset.

In the Recidivism prediction context, using the COMPAS
dataset, all practices showed cost-effectiveness ratios below
one, indicating they all provide fairness improvements with
relatively low performance costs, making them recommended
options. Particularly, Mutation Testing (0.0914) stands out for
offering one of the highest fairness improvements per unit of
performance loss, followed by Label Encoder (-0.1250).

Finally, for the Finance context represented by the Ger-
man Credit dataset, all practices demonstrated good cost-
effectiveness, except for Mutation Testing (-1.8315). The most
effective practices were Iterative Imputer, Simple Imputer, and
Label Encoder (-0.0158), which effectively increase fairness
without significantly harming performance. Oversampling (-
0.0837) and SelectBest (-0.4439) also showed good results.

This dataset-specific analysis highlights that fairness-aware
practices are not universally effective across different contexts.
Practices applied at the Data Preparation stage tend to perform
well, offering fairness improvements with minimal perfor-
mance costs, while Mutation Testing is notably less effective.
By focusing on practices with a low cost-effectiveness ratio,
we can better guide the selection of fairness-aware techniques
that optimize the balance between fairness and performance.

² RQ2 — Summary of the Results.

The cost-effectiveness analysis of fairness-aware prac-
tices across different datasets revealed that practices ap-
plied at the Data Preparation stage generally offer good
fairness improvements with minimal performance costs.
On the one hand, techniques like Iterative Imputer, Simple
Imputer, Label Encoder, Oversampling, and Undersam-
pling were consistently effective, providing a favorable
balance between fairness and performance. On the other
hand, Mutation Testing was generally less effective, show-
ing high-performance costs with minimal fairness gains.
Each dataset showed distinct results, highlighting the
importance of context in selecting the most cost-effective
practices.

V. THREATS TO VALIDITY

This section outlines potential threats to the validity of our
empirical study and the mitigation strategies applied.



TABLE II
AVERAGE COST-EFFECTIVENESS OF FAIRNESS-AWARE PRACTICES ACROSS CONTEXTS. AN ASTERISK HIGHLIGHTS RECOMMENDED PRACTICES.

Practice Economic (Adult) Marketing (Bank) Crime (Communities&Crime) Recidivism (COMPAS) Finance (German)
IterativeImputer 0.0060* -0.6635* 0.1914* 0.2873* -0.0158*
LabelEncoder 0.8648* -0.1725* NA -0.1250* -0.0158*
Mutation Testing -0.1423* 30.0711 2.8356 0.0914* -1.8315
Oversample 0.1338* NA 0.3125* 0.2464* -0.0837*
Regularization 1.5822 -9.4770 -0.0239* -0.5797* -0.7214*
SelectBest 3.3612 0.7065* -0.2439* 0.4941* -0.4439*
SimpleImputer 0.0060* NA 0.2162* 0.3241* -0.0158*
Undersample 0.0072* -13.9254 0.5744* 0.2477* -0.2180*

Internal Validity. Internal validity concerns whether our
results genuinely reflect the factors under study. A primary
threat is the specific implementation choices made for fairness-
aware practices. For instance, choosing a regular oversampling
technique over SMOTE [35] could impact results. To mitigate
this, we closely examined the definitions of these practices
[14] and based our implementation decisions on the original
design of the cataloged practices. However, alternative imple-
mentations could produce different outcomes, influencing both
performance and fairness results.

External Validity. External validity pertains to the gener-
alizability of our findings beyond the study’s specific setup.
We selected contexts for experimentation grounded in recent
research [11]. Furthermore, the datasets chosen for each con-
text are frequently used in fairness studies [8], [12], [46].
Nonetheless, our experimentation may not cover all possible
contexts, and further studies are needed to validate the broader
applicability of our findings. To support replication and further
research, all data and scripts are publicly accessible [41].

Construct Validity. Construct validity reflects how well the
study’s measurements align with the constructs being evalu-
ated. A potential threat is the choice of datasets to represent
different contexts. To address this, we selected widely used
datasets [11] that are pertinent to our focus on fairness-
performance trade-offs [8], [12], [24], [46]. Another considera-
tion is our selection of fairness metrics (AOD, FDRD, DI) and
performance metrics, which, though not exhaustive, are widely
recognized in the literature as robust fairness measures [8],
[46]. The ML model used could also have influenced results;
we, therefore, employed a well-established model common in
fairness research [8], [11]. For RQ2, we based our conclusions
on the established cost-effectiveness framework [18].

Conclusion Validity. Conclusion validity addresses the reli-
ability of our conclusions. A key threat lies in the statistical test
applied to RQ1, namely, the Wilcoxon signed-rank test [48].
This test assumes certain data distribution characteristics, and
violating these assumptions could impact results. To mitigate
this, we assessed the data distribution using the Shapiro-Wilk
test [47] to check for normality, ensuring we selected the most
appropriate test for reliable conclusions.

VI. CONCLUSION

This paper empirically examines fairness-aware prac-
tices—established ML engineering practices known to impact

fairness positively. To achieve this, we conducted a contextual
evaluation to assess the significance of fairness improvements
achieved by these practices. In this evaluation, we carefully
selected high-stakes application domains to explore whether
specific areas benefit from particular fairness-aware practices.
Second, we performed a cost-effectiveness evaluation, treating
performance loss as the cost of applying these practices and
fairness improvement as the benefit, assessing this trade-
off empirically. Our findings indicate that different contexts
may require tailored fairness adjustments, as not all practices
proved effective across all domains. Furthermore, the cost-
effectiveness evaluation revealed that some practices may not
be justifiable in specific contexts due to their performance
costs, providing practitioners with a preliminary recommen-
dation of which practice they should apply.

The insights gained from our study set the foundation for
our future research agenda. First, we plan to broaden our work
by including additional tasks, protected attributes, and context-
specific metrics to deepen the evaluation of selected practices.
Additionally, we aim to develop a recommender system to
guide practitioners, based on our extensive experiments, in
selecting optimal combinations of fairness-aware practices to
achieve fairness in ML systems.
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