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ABSTRACT
Large Language Models (LLMs) have rapidly transformed software
development, especially in code generation. However, their incon-
sistent performance, prone to hallucinations and quality issues,
complicates program comprehension and hinders maintainability.
Research indicates that prompt engineering—the practice of design-
ing inputs to direct LLMs toward generating relevant outputs—may
help address these challenges. In this regard, researchers have intro-
duced prompt patterns, structured templates intended to guide users
in formulating their requests. However, the influence of prompt
patterns on code quality has yet to be thoroughly investigated. An
improved understanding of this relationship would be essential to
advancing our collective knowledge on how to effectively use LLMs
for code generation, thereby enhancing their understandability in
contemporary software development. This paper empirically inves-
tigates the impact of prompt patterns on code quality, specifically
maintainability, security, and reliability, using the Dev-GPT dataset.
Results show that Zero-Shot prompting is most common, followed
by Zero-Shot with Chain-of-Thought and Few-Shot. Analysis of
7583 code files across quality metrics revealed minimal issues, with
Kruskal-Wallis tests indicating no significant differences among
patterns, suggesting that prompt structure may not substantially

impact these quality metrics in ChatGPT-assisted code generation.
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1 INTRODUCTION
Generative AI, particularly through Large Language Models (LLMs),
is driving significant changes across various domains [10], including
software engineering [15]. In this domain, LLMs are transforming
workflows by automating code generation, assisting in building soft-
ware components, aiding in decision-making, and identifying main-
tenance issues [15, 19]. As LLM integration expands, researchers are
actively studying how these models can support software engineer-
ing tasks, documenting their impact on productivity, quality, and
problem-solving in development workflows [3, 12, 20, 24, 30, 40].

Although LLMs have demonstrated substantial contributions to
software development tasks [2, 19], such as enhancing developers’
productivity, they are not without limitations. Their performance
often lacks consistency and remains vulnerable to “hallucinations,”
referring to the generation of incorrect or irrelevant outputs [16].
Consequently, when employing LLMs for tasks such as code gen-
eration, their outputs cannot be assumed accurate or ready for
immediate use. Instead, users must rigorously validate the results
and frequently engage in prolonged interactions with the tool to
achieve the desired outcome. This requirement undermines the
initial promise of increased productivity and efficiency, limiting
the tool’s effective and potentially transformative benefits. There-
fore, studying and acquiring foundational knowledge to effectively
utilize LLM in the shortest possible time has become essential.

To address these challenges, researchers have increasingly fo-
cused on prompt engineering defined as the practice of crafting pre-
cise inputs to improve LLM performance by guiding responses with-

out modifying model parameters [41]. Recent studies have indeed
shown that performance may vary by as much as 45.48% between
optimal and suboptimal prompts in some models, underscoring
the sensitivity of outputs to prompt design [9]. This emphasis on
prompt quality has led to the development of prompt patterns [49],
which are structured templates akin to design patterns that offer
reproducible frameworks for optimizing LLM output. Examples of
these patterns include formats that encourage step-by-step reason-
ing [17], define specific personas [23], or provide a few illustrative
examples [11], each crafted to enhance different aspects of LLM
performance. These patterns have consistently proven effective in
producing more reliable, contextually relevant outputs, leading to
greater accuracy in code generation [1].

While current research acknowledges the impact of prompt pat-
terns on code generation, there is a notable lack of studies investigat-
ing how these patterns affect the quality of generated code. Given the
existing body of knowledge, it is reasonable to expect that prompt
design could significantly influence aspects such as code maintain-
ability, security, and reliability. However, empirical studies in this
area remain limited, partly due to the challenges of constructing
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datasets that capture real-world usage scenarios. In response to this
gap, Xiao et al. [54] recently introduced the Dev-GPT dataset, a
collection of developer interactions with ChatGPT. Later on, Wu
et al. [53] conducted a preliminary analysis of prompt patterns with
a focus on code quality.

In order to contribute filling this research gap and provide novel
knowledge to the field of prompt engineering, we defined the fol-
lowing objective for this investigation.

◎ Paper Objective

Our objective was to advance understanding of the role of

prompt patterns in code generation through an investigation

into their relationship with various aspects of code quality,
focusing on maintainability, security, and reliability.

The scientific novelty lies in the analysis of how specific prompt
patterns could influence key quality attributes in generated code,
with direct implications for software developers. By examining
these dimensions, we provide insights into how prompt engineer-
ing can be refined to produce more understandable, secure, and
maintainable code, ultimately supporting developers in interpreting
and trusting LLM-generated outputs in diverse software develop-
ment contexts. The prompt patterns analyzed have been informed
by the work of Hou et al. [19] where we selected a set of the prompt
patterns that the authors considered the most easy to use.

Moreover, since the dataset used in the work contains only code
and conversations that were made using ChatGPT, the scope and
implications of this work can’t be generalized to all the LLMs.
Nonetheless, since ChatGPT is among the most widely used LLM
by practitoners in software development [42], our findings impacts
a large percentage of practitioners.

Concretely, this study provided three main contributions:
(1) An empirical analysis of prompt patterns and code

quality, revealing no statistically significant relationship be-
tween the prompt patterns analyzed and code quality across
maintainability, reliability, and security dimensions.

(2) A data contribution through a refined version of the Dev-
GPT dataset, with duplicates and redundancies removed
and enriched with metadata on conversation topics, prompt
patterns, and code quality metrics.

(3) A publicly available online appendix [4], containing all
data and scripts used in this study to support transparency
and reproducibility.

Structure of the paper. Section 2 summarizes the related literature
and how our work advances the current state of the art. Section
3 introduces the research questions driving our work and the re-
search methods employed to address them. Section 4, we present
the results of the study, while Section 5 provides the actionable
implications that our work has for researchers, educators, and prac-
titioners. In Section 6, we discuss the limitations of the work and
how we mitigated them while designing the study. Finally, Section
7 concludes the paper and outlines our future research agenda.

2 RELATEDWORK
Our work builds on the insights from several studies in the realm
of Large Language Models for software engineering.

In the context of LLM usage, a prompt is defined as a “set of

instructions or input data provided to a Large Language Model to

guide its output” [35]. Effective prompt design has been shown to
directly shape themodel’s generated responses. For instance, Brown
et al. [8] demonstrated that prompt engineering, that is, the practice
of crafting precise inputs to improve the capabilities of LLMs [57],
may sometimes yield results comparable to or even better than
model fine-tuning, which requires extensive task-specific training
data to adjust the model’s pre-trained weights. Indeed, prompt
engineering leverages the model’s existing knowledge, allowing for
optimized performance without the need for additional training.

Sasaki et al. [41] further defined prompt engineering patterns as “a
systematic approach to structuring interactions, providing a versatile

framework applicable across various domains”. The significance of
prompt engineering in software engineering has been pointed out
by White et al. [50], who found that effective prompt usage can
enhance early stages of the software development lifecycle. Similar
results were found by Arvidsson and Axell [5] and Rodriguez et
al. [39], who assessed the role of prompt engineering on require-
ments engineering and traceability recovery tasks, respectively.

Wang et al. [45, 46] examined prompt tuning in various code
intelligence tasks, such as defect prediction, code search, code sum-
marization, and code translation, demonstrating that prompt tuning
consistently outperforms traditional fine-tuning across these ar-
eas. Yu et al. [55] investigated automated code review, showing
that refined prompts can significantly improve the accuracy and
comprehensibility of code assessments. O’Brien et al. [33] studied
prompt effectiveness in code generation with GitHub Copilot,
analyzing how prompts interact with TODO comments to influ-
ence code suggestions. Hagar and Masuda [18] explored prompt
engineering in software testing, finding that customized prompts
can assist users of varying expertise, from beginners to experts, in
developing effective test architectures. More recent studies contin-
ued to expand the applications of prompt engineering in software
engineering. Li et al. [28] proposed a ChatGPT-based approach for
rapid source code development using structured prompts, which
improved both the speed and quality of code generation. Fagadau
et al. [14] empirically analyzed the impact of prompt variations
on automated method generation with GitHub Copilot, offering
insights into how different prompts can affect performance and
accuracy in generated methods.

With respect to these previous studies, our work is complemen-
tary, as we focus specifically on the impact of prompt patterns on
quality attributes. While previous research has demonstrated the
effectiveness of prompt engineering in various tasks, including code
generation, our work provides a deeper analysis of how prompt
patterns may affect maintainability, security, and reliability of the
code generated by LLMs.

A notable contribution to software engineering research was
introduced by Xiao et al. [54], who proposed Dev-GPT, a dataset
specifically designed to investigate how developers interact with
ChatGPT in software development contexts. The dataset comprises
29 778 ChatGPT prompts and responses, including 19 106 code
snippets, and is linked to software development artifacts such as
source code, commits, issues, and pull requests. Sourced from shared
ChatGPT conversations on GitHub and Hacker News, Dev-GPT
provides a valuable resource for examining developer queries, the
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effectiveness of ChatGPT for code generation and problem-solving,
and its broader impact on software engineering.

Building upon Dev-GPT, Wu et al. [53] examined the role of
prompt patterns in improving developer-ChatGPT interactions
throughout the software development lifecycle. The study focused
on (1) analyzing the structure and duration of developer-ChatGPT
conversations, (2) identifying prompt patterns that elicit high-quality
responses, and (3) optimizing these patterns for software develop-
ment tasks. As part of this investigation, the authors also eval-
uated the impact of individual prompt patterns on code quality
metrics, assessing responses based on code size, complexity, and
nesting levels. Leveraging the prompt patterns proposed by White
et al. [48]—which include techniques for enhancing input semantics,
customizing outputs, identifying errors, and refining prompts—the
researchers assigned quality scores to ChatGPT responses based
on an evaluation performed by models such as Code-Llama and
Mistral. The study identified multiple patterns, e.g., Output Cus-
tomization and Error Identification, as particularly effective, with the
former emerging as the most frequently used and impactful pattern,
especially in tasks like code generation and software management.

To the best of our knowledge, the work by Wu et al. [53] repre-
sented the first attempt to investigate the impact of prompt patterns
on software quality, making it the closest study to our investiga-
tion. When comparing the two studies, multiple aspects should be
noted. First, Wu et al. explored a broader range of software engi-
neering tasks, while our study focuses on code generation, enabling
a deeper analysis of how prompt patterns may impact multiple qual-
ity attributes of the ChatGPT-generated code. Additionally, Wu
et al. relied on a catalog of prompt patterns [48] that has yet to be
validated by the scientific research community and lacks evidence
of adoption by practitioners [19].

In contrast, our study focuses on a set of prompt patterns de-
tailed by Hou et al. [19] that are more commonly recognized by
practitioners. We specifically selected a set of basic patterns used
in a software engineering context, which are also the most easily
usable by non-expert practitioners due to their simple structure.

Finally, since Wu et al.’s initial analysis, the Dev-GPT dataset
has been expanded with new developer-ChatGPT interactions, en-
abling a more comprehensive exploration of prompt effectiveness.

² Related Work: Summary and Contribution.

Existing studies demonstrate that prompt engineering can
enhance a range of software engineering tasks, from require-
ments elicitation to software testing. However, the specific
impact of prompt engineering patterns on quality attributes
remains underexplored. While recent investigations have of-
fered initial insights, our work delivers a more comprehensive
analysis of these quality dimensions.

3 RESEARCH DESIGN
The goal of this work was to investigate the extent to which spe-
cific prompt patterns influence the quality attributes of source code
generated by LLMs, with the purpose of expanding current knowl-
edge in prompt engineering and potentially uncovering the side

effects of code generation on maintainability, reliability, and se-
curity. More specifically, our work seeks to verify the following
working hypothesis:
The use of different prompt patterns, which are hypothesized to affect

the performance of LLMs in generating source code, could lead to

variations in the quality of the generated code.

The hypothesis is supported by recent literature, e.g., [46, 50],
which highlights the promising role of prompt patterns in improv-
ing model outputs. However, despite their potential, prompt pat-
terns remain a developing area with definitions that lack explicit
consideration of quality attributes that are critical to software engi-
neering applications. For instance, current classifications include
prompt types like “Zero-shot”, which provide minimal structural
guidance to the model. This limited focus on quality-related aspects
differentiates prompt patterns from traditional design patterns,
highlighting the need for an empirical investigation that aligns
prompt engineering with quality outcomes, thereby directly sup-
porting our hypothesis.

3.1 Research Questions
To reach the defined goal and test the working hypothesis, we
formulated two research questions (RQs) aiming to shape and
guide the research process. In the following, we introduce each
research question along with its motivation.

? RQ1: Prominence of Prompt Patterns. What prompt

patterns are most commonly used in conversations with Chat-

GPT?

The first RQ seeks to identify the most commonly used prompt pat-
terns in conversations with ChatGPT. We informed the selection
of patterns utilizing the findings of [19], specifically selecting a set
of basic patterns that practitioners more commonly recognize and
use also due to their simple structure.

The specific choice of ChatGPT is that it is the most widely
used LLM by practitioners in software development [42], and so
our findings will impact a large percentage of practitioners. This
first question must be considered preliminary, but essential for our
research, as understanding the prominence of specific prompt pat-
terns provides a foundational context to interpret the findings of the
subsequent analysis. Additionally, this preliminary step may pro-
vide insights into the real-world usage of prompt patterns, thereby
informing researchers on which patterns are most likely to be ap-
plied in practice and guiding future work on optimizing prompt
design for practical applications.

? RQ2: Prompt Patterns and Code Quality. Is there a
statistical difference in the quality of ChatGPT-generated code

when using different prompt patterns?

The second research question forms the core of this work, guid-
ing the primary statistical analysis of the potential relationship
between different prompt patterns and the quality of generated
source code. Addressing this question is essential for achieving
the study’s overall objective, as it provides insights into how spe-
cific prompt patterns may affect key quality attributes in code. For
researchers, these insights expand current knowledge on prompt
engineering while offering practitioners practical guidance on se-
lecting prompt patterns to meet quality-related goals in real-world
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Figure 1: Overview of the Research Method Employed in Our Study.

applications. Figure 1 overviews the design of the research proce-
dure employed to address our two research questions. In particular,
we adopt multiple steps, as reported in the following:

(1) First, a dataset of conversations between practitioners and
ChatGPT was selected. This dataset, Dev-GPT, developed
during prior research [54], was deemed relevant for investi-
gating prompt patterns in software development [53]. Vari-
ous data preparation steps were undertaken, with the most
critical being topic classification, which allowed the identifi-
cation of conversations and prompts relevant to the target
users of our investigation, such as developers.

(2) Second, we used LLM-based classification to analyze each
conversation. Moreover we also employed a human valida-
tion process to ensure the quality of the results. These were
applied to classify the prompt pattern used by the developer
(addressing RQ1).

(3) Third, we used the well-known SonarQube to compute
quality metrics (specifically, the number of issues related to
maintainability, security, and reliability) of the source code
generated by the LLM in response to user requests.

(4) Finally, for each quality metric (our dependent variables), a
statistical test was conducted to determine whether there
were statistically significant differences in the metrics be-
tween the source code generated in response to different
prompt patterns (addressing RQ2). Since the characteris-
tics of the data, we employed Kruskal-Wallis test as a non-
parametric statistical test.

In terms of study design, we followed the guidelines by Wohlin
et al. [51]. In terms of reporting, we adhered to the ACM/SIGSOFT

Empirical Standards
1; In particular, we leveraged the “General Stan-

dard”, and “Repository Mining” guidelines ensuring to have all the
essential attributes and also some desirable attributes. For exam-
ple, as described in the guidelines we summarized and discussed
about the related works and also compared the contributions of the
present works in relation to them.

3.2 Variables of the Study
The variables of the study were two: the prompt pattern used in
the conversation (independent variable) and the quality metrics
(dependent variable) of the generated source code.

1Available at: https://github.com/acmsigsoft/EmpiricalStandards

Prompt Patterns. Regarding the independent variable, it was op-
erationalized using a categorical scale consisting of four prompt
pattern categories and their combination, frequently discussed
in the literature [19]:
• Zero-shot (ZS) [36]: It involves providing no examples within
the prompt, relying solely on the model’s pre-existing knowl-
edge to generate responses.

• Few-shot (FS) [32]: It includes a small set of examples within the
prompt to help guide the model’s understanding and response
generation.

• Chain-of-Thought (CoT) [47]: it uses prompts that encourage
step-by-step reasoning, aimed at enhancing the model’s logical
consistency and detail in responses.

• Personas [22]: It implements a specific, consistent character or
tone in the prompt, fostering contextualized responses aligned
with particular roles or perspectives.

The selection of these categories was deliberate, as we recognize
the existence of additional prompt patterns. First, the decision
was made to complement the work of Wu et al. [53], who relied
on a different scale developed during the early phases of LLM
development, which has since evolved into the scale used in
this study. Second, the chosen patterns are the basic patterns
present in literature [19], and the most easily usable also by
non-expert practitioners due to their simple structure. Given the
preliminary nature of this work, we argue that focusing on these
prominent patterns is more reasonable than using a broader, yet
less representative, set.2

Quality Metrics. Regarding the dependent variable, we opera-
tionalized three proxies of code quality such as (1) number of

maintainability issues; (2) number of reliability issues; and (3) num-

ber of security issues. The choice of these proxies come from three
main considerations. First and foremost, these metrics capture a
complementary and broad spectrum of quality attributes, offer-
ing insights into the multi-faceted nature of code quality. Indeed,
maintenance, reliability, and security provide critical perspectives
on how code performs over time, both in terms of robustness
and ease of future adaptations [21, 37]: as such, their inclusion

2As a methodological note, initially, we attempted to include all identified prompt
patterns in our scope. However, due to (1) excessive similarity between some patterns
and (2) the limited occurrence of others in the dataset, the results were unsatisfactory.
After multiple iterations with different configurations, we decided to focus on the four
key prompt patterns reported in the article.

https://github.com/acmsigsoft/EmpiricalStandards
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allowed us to assess software quality in a more comprehensive
manner, addressing not only immediate functionality but also
the longer-term aspects essential for sustainable and resilient
code. In the second place, the combination of these metrics aligns
with industry standards, such as ISO/IEC 25002,3 and has been
widely supported in software quality literature for evaluating
factors that affect the sustainability, stability, and security of
code over its lifecycle [6, 29, 43]. Last but not least, these proxies
align with practical considerations in the industry, where auto-
mated tools like SonarQube are commonly used to assess these
attributes [7, 44].

3.3 Context of the Study and Data Preparation
The dataset analyzed in this study, named Dev-GPT [54], consists
of conversations between developers and ChatGPT focused on
various software development tasks. Dev-GPT was assembled us-
ing OpenAI’s conversation-sharing feature. The dataset consists
of 6 json files representing different data sources used to elicit
conversations such as GitHub issues, pull requests, discussions,
commits, code files, and threads on Hacker News. To capture the
evolving nature of these interactions, data snapshots were taken
at multiple intervals, each reflecting the state of the dataset at a
particular time.

The dataset includes separate json files for each source where
the conversations had been taken. In total, Dev-GPT comprises
5494 conversation rounds, 29 788 total prompts containing 13 988
individual code snippets written across 113 different programming
languages and frameworks.

Our initial intention was to use the dataset as-is. However, a
preliminary manual review by the first two authors revealed that
the dataset contained duplicate conversations and, more critically,
included generic conversations that fell outside the scope of soft-
ware development. For example, one of the user prompts found in
the dataset was the following:

“Does USB-Cwithout Thunderbolt support two 4k@60Hz

monitors?”

To ensure that the dataset was reliable, relevant, and representa-
tive of software development conversations, we undertook a prelim-
inary data preparation process. We began by merging the various
files that make up Dev-GPT, removing duplicate conversations and
unnecessary attributes. Next, we applied a topic classification to
filter the conversations, retaining only those that were pertinent
to software engineering and development. Given the large volume
of prompts, we used a LLM-based classification to expedite this
process, relying on ChatGPT 4o-mini.4 Since the accuracy of this
classification is critical to the quality of our analysis, we also in-
volved 10 human experts recruited from our network to validate
the LLM-generated classifications. A statistically significant sample
of 380 prompts was divided among the experts, each of whom re-
viewed a subset of the prompts using a simple web application we
developed (available in the online appendix [4]). This application
allowed users to upload a json file containing prompts for sequen-
tial review, following the same instructions given to ChatGPT. The
3The ISO/IEC 25002 standard: https://www.iso.org/standard/78175.html.
4For the sake of space limitation, more details on the prompt used in this stage are
available in our online appendix [4].

experts confirmed all classifications made by the LLM, increasing
our confidence in the filtering process used to retain only conversa-
tions relevant to software engineering and software development.
Consequently, we used this filtered dataset for subsequent analyses.

3.4 Classification of Prompt Patterns
To address the research questions, it is necessary to analyze user
interactions with ChatGPT, focusing on identifying and classify-
ing instances of the four prompt patterns selected for the study
within these interactions. To classify the prompt patterns in the
filtered dataset, we developed an automated LLM-based classifica-
tion mechanism. As in the data preparation stage, we validated this
mechanism through manual analysis to ensure accuracy.
LLM-Based Prompt Pattern Classification. Weaimed to use the
LLAMA 3.1 70B5 LLM, but some initial tentative showed that
it had difficulties on some very long prompts that the dataset
contains. Due to hardware limitations, we were not able to over-
come this obstacle with other open-source models, and this led us
to opt for ChatGPT-4o mini (snapshot 2024-07-18). This model
was chosen among the others due to a sufficiently large context
window to process extensive prompts required for our exper-
imentation. Comparisons were made to ChatGPT 4o, but the
results did not diverge in a meaningful way, so we opted for using
4o mini given the lower cost per million tokens of input.
To improve the performance of the LLM, we adopted the self-
refine approach, as described by Madaan et al. [31], where the
model not only produces the initial outcome—in our case, the
detection of prompt patterns—but also generates feedback and
refines its results based on them. To put the self-refine ap-
proach in practice, we needed to develop three different prompts
for each step of the process6: the initial classification step, the
feedback step, and the refinement step. To increase the results
quality and make the process reliable, those prompts were built
using prompt engineering techniques, like Meta-Prompting [56],
Personas [22] and Emotion Prompting [27]. After drafting the
initial prompt, we conducted an iterative prompt refinement pro-

cess, testing its performance on a small subset of the dataset. This
approach ensured that the responses adhered to the specified task
while improving the prompt to minimize model hallucinations.
A notable adjustment was made to the feedback prompts for
classification tasks, which now explicitly constrain the model to
reason concisely within a fixed word limit. This change addressed
issues in the initial prompts, which were often overly verbose,
repetitive, and prone to inferring user intentions that were not
explicitly stated. Concretely, consider the following user prompt
contained in the dataset (Conversation_ID=4, first user prompt):

User Prompt

import cors from 'cors';

import axios from 'axios ';

import fs from 'fs';

import express from 'express ';

5https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1
6All the prompts used are available in the online appendix [4].

https://www.iso.org/standard/78175.html
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1


EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Della Porta et al.

import https from 'https ';

const options = {

key: fs.readFileSync('path -to-key')

,

cert: fs.readFileSync('path -to-cert

')

};

const app = express ();

let promptResponse = {};

In this prompt, the user provides code (we only reported a part
of it) and seeks information about its usage (without asking
for explicit help). We will take this prompt as an example to
comprehend the functioning of the self-refine approach better.
For this case, we were performing the task of classifying if a
prompt employs a zero-shot or a few-shot prompting pattern.
Following the self-refine, the prompt used were:

(1) Initial Classification Prompt: This generates the initial classi-
fication and accompanying reasoning by the LLM. This ex-
plicit reasoning is then used in the feedback step to generate
constructive feedback. Considering the exemplary prompt, its
initial classification was the following:

Initial Classification

Classification: Few-shot;
Reasoning: The prompt consists of multiple code snip-
pets and detailed implementation examples of server-
side functionality using Express, Axios, and other li-
braries. This indicates it is part of a broader instructional
context, typical of few-shot prompts that provide exam-
ples or detailed instructions to clarify a coding-related
query or task.

(2) Feedback Prompt: This prompt validates the classification and
generates feedback. To reach a convergence to a final classi-
fication of all the prompts, this prompt is explicitly written
to ask the LLM to write feedback if—when performing the
classification task again—it has some suggestions and feedback
to provide to the next execution of the task. If the LLM has no
feedback or suggestions and so agrees with the classification,
it has to return “None” as the answer. In the exemplary case,
the feedback provided by the LLM was the following:

Feedback Provided

Feedback: The classification as “Few-shot” is mislead-
ing because the text does not provide indicative exam-
ples or different variations of prompts that typically
characterize few-shot learning. Instead, it consists of
detailed implementation code without direct contextual
examples geared for specific tasks.

(3) Refinement Prompt: This is used when feedback is generated
in the previous step. This prompt is developed to instruct the
LLM to perform the classification task again, using the instruc-
tions of Step #1 but with the additional input provided by the
feedback. During the refinement process, the LLM produced
the following classification for the exemplary case, which is
actually the correct one:

Refinement Classification

Classification: Zero-shot;
Reasoning: The prompt consists solely of detailed im-
plementation code without any concrete examples or
variations to guide the desired outputs or tasks. There
are no explicit instructions or comparative prompting
typical of few-shot learning. Thus, it fits the character-
istics of a zero-shot prompt, where the task is presented
without demonstration.

In a preliminary analysis, we observed that the self-refine ap-
proach did not consistently converge to a final answer across all
elements in the dataset. To address this, we implemented two
stopping conditions: (1) when the feedback step produces no new
suggestions, and (2) when a fixed number of iterations is reached.
During experimentation, we found that by the fifth iteration, the
agreement rate between the feedback step and the initial classi-
fications declined significantly, indicating diminishing returns
from further iterations. Based on this trend, we set the maxi-
mum number of iterations to 5 to optimize the balance between
accuracy and efficiency in the classification process.

Automated Classification Validation. While the automated clas-
sification allowed us to streamline the data collection process,
potential misclassifications could impact the reliability of the
conclusions of the study. To assess the extent of these misclassi-
fications, we conducted a manual evaluation of the automated
mechanism. This evaluation aimed to ensure that the classifi-
cations met a high standard of accuracy, addressing the known
limitations of LLMs in sometimes producing inaccurate informa-
tion. For this purpose, two authors acted as independent inspectors,
each reviewing a representative sample of the classifications to
assess their validity. A random sample of 10% of the total classi-
fications produced by the LLM was selected for evaluation—we
deemed this sample sufficiently large to assess the automated
classifier. The two inspectors independently analyzed the con-
versations in the sample, labeling each conversation according
to the corresponding prompt pattern. To mitigate potential con-
firmation bias [34], they conducted their evaluations without
prior knowledge of the classifications assigned by the automated
mechanism and without any discussion of specific cases.
Following their independent assessments, the two inspectors con-
vened for a focused, two-hour in-person meeting to discuss their
findings. During this session, they addressed any disagreements
and reached consensus on all classifications. This collaborative
step resulted in a manually-curated oracle, which could be com-
pared against the classifications made by the automated classifier.
The comparison revealed a 97% match between the automated
and manual classifications, indicating a high level of accuracy
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in the automated mechanism. This high level of agreement indi-
cated that the automated classification mechanism was largely
accurate, providing confidence in the validity of our conclusions
and suggesting a limited margin of error.

3.5 Extraction of Source Code Quality Metrics
To evaluate the impact of prompt patterns on code quality, we com-
puted software quality metrics for the source code generated by
the prompts defined in the dataset using SonarQube. We decided
to use SonarQube because (1) the industry uses it since it is a
well-known tool used in those contexts to analyze code quality,
and (2) it has been used in various software engineering research
papers to assess code quality [13, 25, 26] as a proof of its reliability.
Starting with the source code snippets generated by ChatGPT in
the dataset, we created individual code files, assigning file exten-
sions based on the programming language indicated in the dataset.
We then executed SonarQube on each file, retrieving results via
the SonarQube Web API. The quality metrics obtained for each
snippet were recorded in the dataset. For snippets that encoun-
tered errors during compilation or analysis, we annotated these
cases accordingly to exclude them from the final set of successfully
analyzed files, ensuring accurate results.

3.6 Data Analysis
To address RQ1, we examined the distribution of prompt patterns
identified by the automated classifier within the filtered dataset.
We measured the frequency of each pattern individually (e.g., only
Zero-Shot or only Chain-of-Thought) as well as in combinationwith
other patterns (e.g., Zero-Shot with Chain-of-Thought, Few-Shots
with Personas).

To answerRQ2, we conducted statistical analyses by formulating
the following null and alternative hypotheses:

• Null Hypothesis: There are no significant differences in the
number of (H10) maintainability, (H20) reliability, and (H30)
security issues in the source code generated by ChatGPT
based on the prompt pattern used.

• Alternative Hypotehsis: There are significant differences
in the number of (H1a) maintainability, (H2a) reliability, and
(H3a) security issues in the source code generated by Chat-
GPT based on the prompt pattern used.

To assess differences across multiple groups, we initially selected
ANOVA for our analysis. However, as the assumptions for ANOVA
were not met, we instead employed the non-parametric Kruskal-
Wallis test with Dunn’s post hoc test to evaluate the hypotheses,
using a significance threshold of 𝜌 = 0.05. The statistical analysis
was conducted using JASP.7

4 ANALYSIS OF THE RESULTS
Following the experimentation process stated in the previous sec-
tion, in this section we will delve into the main findings and answer
the posed research questions.

7JASP website: https://jasp-stats.org

Table 1: Ranking of prompt patterns usage.

Rank Prompt Pattern #Occurrences
1 Zero-shot 10 034
2 Zero-shot with CoT 713
3 Few-shot 576
4 Zero-shot with Personas 334
5 Few-shot with Personas 134
6 Zero-shot with CoT and Personas 107
7 Few-shot with CoT 94
8 Few-shot with CoT and Personas 49

4.1 RQ1—Prompt Patterns Prominence
The complete, filtered dataset included 3188 conversations and a
total of 27 065 user prompts directed to ChatGPT.

Table 1 presents the final distribution, revealing a strong pref-
erence for Zero-Shot prompting, with 10 034 instances, far sur-
passing other patterns such as Zero-Shot with Chain-of-Thought
(713 instances) and Few-Shot (576 instances). This preference for
Zero-Shot prompting likely reflects developers’ inclination toward
simplicity and efficiency, as it requires minimal setup and leverages
the model’s built-in capabilities.

This finding may be due to various reasons. First, Zero-Shot
prompts are highly adaptable across a variety of coding tasks, al-
lowing developers to quickly gauge the model’s capabilities without
the need for extensive customization, which is particularly bene-
ficial in exploratory phases of development. Second, this pattern
has a low barrier to entry, which may be attractive to developers
unfamiliar with advanced prompting techniques, as more complex
patterns like Chain-of-Thought or Personas require a higher level
of understanding and structuring to maximize their effectiveness.
Consequently, Zero-Shot prompting may be preferred as it aligns
well with the time-efficient, agile workflows often seen in software
development, where minimal setup enables rapid iterations and
fast prototyping.

Another possible interpretation of this preference is that develop-
ers may rely on the model’s pre-trained knowledge and reasoning
capabilities to produce quick, actionable insights or initial drafts
without extensive guidance, trusting that the model will yield satis-
factory results. However, the lower use of advanced patterns, such
as Chain-of-Thought or Personas, could suggest an underutilization
of techniques that may provide significant advantages in scenarios
demanding nuanced reasoning or context-specific responses. Thus,
while Zero-Shot prompting remains the default for everyday use,
these findings also highlight an opportunity for further training on
prompt engineering, which could help developers make better use
of advanced patterns to address complex tasks effectively.

| RQ1—Prompt Patterns Presence in Conversation

The most used prompt pattern in developers conversations
is Zero-Shot as shown in Table 1 with 10 034 occurrences,
Zero-Shot with CoT with 713 occurrences and Few-Shot with
576 occurrences.

https://jasp-stats.org
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Table 2: Descriptive Statistics of the code quality metrics.

Maintainability Reliability Security
# of Occurrences 7624 7624 7624
Median 0.000 0.000 0.000
Mean 0.413 0.095 0.002
Std. Deviation 1.855 0.472 0.047
Minimum 0.000 0.000 0.000
Maximum 30.000 12.000 2.000

4.2 RQ2—Prompt Patterns and Code Quality
We generated a total of 8748 code files from the selected conversa-
tions for evaluation by SonarQube. Of these, 369 Java files were
excluded from analysis due to SonarQube license limitations. Out
of the remaining 8379 files, 755 failed to pass the compilation stage
and were subsequently excluded from further analysis. To prevent
misinterpretation of these uncompiled files as error-free, we anno-
tated their corresponding json entries with a flag, clearly indicating
that these files were not analyzed.

Themetrics calculated on the final pool of 7583 files are presented
in Table 2. The ‘Security’ dimension was the least frequent in the
dataset, with only 50 occurrences, indicating few security issues
across the analyzed code snippets. In contrast, ‘Maintainability’ had
the highest number of issues, totaling 3400 across all files, followed
by ‘Reliability’, with 750 issues. These overall metrics suggest that
maintainability is the most frequently affected quality dimension,
which may reflect the general coding practices and limitations of
prompt patterns in sustaining code maintainability.

Detailed results by prompt pattern are shown in Tables 3, 4, and
5. For maintainability, the ZS configuration shows the highest num-
ber of occurrences (6534), with a mean of 0.433 and a substantial
standard deviation of 1.953, indicating notable variability in main-
tainability issues within this pattern. This high variability suggests
that while many ZS-generated snippets are maintainable, some
exhibit significant maintainability concerns. In contrast, the FS-
CoT-Personas configuration, though less frequent (7 occurrences),
exhibits the highest meanmaintainability issues (1.286) with a lower
standard deviation (1.604), indicating a smaller but more concen-
trated set of issues in this pattern. The median for maintainability
remains 0 across all configurations, implying that the majority of
code snippets are free from maintainability issues, which is con-
sistent across reliability and security metrics. For reliability, mean
values are generally low, ranging from 0.000 to 0.429, with FS-CoT-
Personas showing the highest mean and a slightly elevated stan-
dard deviation of 1.134, indicating some inconsistency but generally
fewer issues than maintainability. Security issues are particularly
sparse, with mean values close to zero for all configurations and a
maximum value of 2.000 only in FS-CoT-Personas, highlighting the
rarity of significant security issues in the considered code snippets.

These distributions indicate that, while the FS-CoT-Personas
configuration may correlate with slightly higher incidences of all
issue types, most prompt patterns, particularly ZS, result in minimal
issues across reliability and security. This analysis suggests that
while there are some differences across prompt patterns, the overall
impact on code quality metrics is limited, with most configurations
yielding generally issue-free code, especially regarding reliability

and security. From a statistical standpoint, two key decisions were
made based on the observed distributions: (1) the FS-CoT-Personas
configuration was excluded from the analysis due to its low oc-
currence count, and (2) given the substantial number of outliers,
we performed the analysis twice—once including all values and
once excluding outliers. This dual approach ensured a thorough
and consistent evaluation, as the outliers lacked a discernible pat-
tern or explanation. Notably, the results of the no-outliers analysis
mirrored those of the full dataset. The findings of the statistical test,
including outliers, are detailed in Table 6, with a summary of key
results provided below.

• ‘Maintainability’: The test produced a statistic of 3.801 with
6 degrees of freedom, yielding a 𝜌-value of 0.704. This indi-
cates no statistically significant differences inmaintainability
across treatments. The effect size (Rank 𝜖2 = 4.996 × 10−4)
indicates a negligible effect.

• ‘Reliability’: The test statistic is 11.583 with 6 degrees of free-
dom, and a 𝜌-value of 0.072. While this 𝜌-value approaches
significance, it is greater than 0.05, indicating no significant
difference across treatments. The effect size of 0.002 suggests
a minimal impact.

• ‘Security’: The test statistic is 2.144 with 6 degrees of free-
dom, with 𝜌-value=0.906. This indicates a lack of significant
differences across treatments. The Rank 𝜖2 of 2.818 × 10−4
reflects a negligible effect.

| RQ2—Prompt Patterns and Source Code Quality

The statistical test revealed no statistically significant differ-
ences among the prompt patterns for any of the issue variables,
resulting in the rejection of all three alternative hypotheses
and the confirmation of null hypotheses.

5 DISCUSSIONS AND IMPLICATIONS
This section provides a contextual analysis of our findings and
highlights potential directions for future research.

5.1 On the Practitioner’s Use of Prompt Patterns
The results of RQ1 indicate a clear preference for Zero-Shot prompt-
ing among developers, with significantly higher usage than more
complex patterns like Few-Shot, Chain-of-Thought, or Personas.
As observed in the analysis of the results, this trend may be at-
tributed to the simplicity, immediacy, and adaptability of Zero-Shot

prompting, which aligns with the efficiency demands of developer
workflows, particularly in the exploratory and prototyping phases.
By minimizing setup time and requiring no additional context, Zero-
Shot prompts allow developers to quickly gauge model capabilities
across a wide range of tasks, making it an appealing choice for
practitioners focused on speed and agility. Another key factor influ-
encing this preference may be the current knowledge and familiarity

level within the developer community regarding advanced prompt

engineering techniques. As a relatively novel area, prompt engineer-
ing is still gaining traction, and many practitioners may be less
familiar with patterns that involve higher levels of structuring, such
as Chain-of-Thought or Personas. This lack of familiarity, combined
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Table 3: Descriptive statistics for Maintainability issues.

MAINTAINABILITY ZS ZS-CoT FS ZS-Personas FS-Personas ZS-CoT-Personas FS-CoT-Personas FS-CoT
# of Occurrences 6534 441 390 129 21 32 7 63
Median 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
Mean 0.433 0.263 0.236 0.488 0.190 0.281 1.286 0.365
Std. Deviation 1.953 0.881 0.827 2.020 0.512 0.683 1.604 1.406
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 30.000 10.000 7.000 14.000 2.000 3.000 4.000 10.000

Table 4: Descriptive statistics for Reliability issues.

RELIABILITY ZS ZS-CoT FS ZS-Personas FS-Personas ZS-CoT-Personas FS-CoT-Personas FS-CoT
# of Occurrences 6534 441 390 129 21 32 7 63
Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean 0.101 0.059 0.051 0.109 0.000 0.125 0.429 0.032
Std. Deviation 0.491 0.318 0.291 0.419 0.000 0.554 1.134 0.177
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 12.000 3.000 4.000 2.000 0.000 3.000 3.000 1.000

Table 5: Descriptive statistics for Security issues.

SECURITY ZS ZS-CoT FS ZS-Personas FS-Personas ZS-CoT-Personas FS-CoT-Personas FS-CoT
# of Occurrences 6534 441 390 129 21 32 7 63
Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean 0.002 0.000 0.000 0.000 0.000 0.000 0.286 0.000
Std. Deviation 0.045 0.000 0.000 0.000 0.000 0.000 0.756 0.000
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 1.000 0.000 0.000 0.000 0.000 0.000 2.000 0.000

Table 6: Results of the Kruskal-Wallis statistical test.

Fixed Factor Statistic df 𝜌-value Rank 𝜖2

Maintainability 3.801 6 0.704 4.996 ∗ 10−4
Reliability 11.583 6 0.072 0.002
Security 2.144 6 0.906 2.818 ∗ 10−4

with the additional effort required to set up these prompts effec-
tively, may explain why developers gravitate toward Zero-Shot
prompts by default, even if other techniques could potentially offer
enhanced results for tasks requiring deeper reasoning or contextual
awareness. Thus, the findings support previous research indicating
that simplicity and usability often drive the adoption of LLM tools
in software engineering tasks [38].

These findings highlight an opportunity for further dissemination

and education. As prompt engineering continues to evolve, increas-
ing awareness of these techniques could enable developers to select
patterns more strategically, tailoring them to the complexity and
specificity of their tasks.

 Implication 1: Researchers should develop a standard-
ized catalog of prompt patterns for code generation tasks,
capturing not only the patterns themselves but also guide-
lines for their effective use in specific scenarios. Educators

can play a key role in disseminating this knowledge by inte-
grating prompt engineering strategies into software engineer-
ing curricula, thereby equipping practitioners with a broader
toolkit to tackle diverse coding challenges more effectively.

5.2 Prompt Patterns vs Source Code Quality
In addressing RQ2, our analysis reveals that different prompt pat-
terns do not produce statistically significant differences in main-
tainability, reliability, or security metrics. Although there is some
variability in descriptive statistics, particularly within Few-Shot,
Chain-of-Thought, and Personas configurations, the Kruskal-Wallis
test yielded negligible effect sizes across all metrics, suggesting that
prompt patterns alone may not be a decisive factor in influencing
code quality.

One explanation for these findings is that ChatGPT are inher-
ently designed to respond effectively to basic prompt structures,
making them relatively insensitive to finer adjustments introduced
by more structured prompt patterns. Additionally, as prior work
highlights [48], users’ unfamiliarity with advanced prompt engi-
neering techniques may contribute to the limited usage of complex
patterns, as observed in RQ1. This low adoption of advanced pat-
terns could, in turn, restrict researchers’ ability to fully understand
how these patterns might impact code quality, particularly in com-
plex or high-stakes coding tasks. Therefore, further evaluations of
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complex prompt patterns may be worthwhile, especially as practi-
tioners’ familiarity with prompt engineering continues to grow.

 Implication 2: Findings suggest that practitioners can
often achieve satisfactory quality results in code generation
tasks using simple prompting techniques, such as Zero-Shot
prompting. However, for researchers, this study highlights
the need for additional evaluations of complex prompt pat-
terns to better understand their impact on code quality in
specialized contexts.

5.3 Evaluating Prompt Patterns and Quality
Implications in Dev-GPT Code Generation

Our findings suggest that most code generated by ChatGPT is
relatively free from major quality issues. However, maintainability
issues are more prevalent than reliability or security concerns,
indicating that ChatGPT may sometimes struggle with structural
or stylistic aspects that support maintainable code.

On the one hand, these observations imply that the current set
of quality metrics may not fully capture the dimensions of how dif-
ferent prompt patterns impact the quality of generated code. While
simple prompts appear to yield satisfactory results for the consid-
ered tasks, more complex scenarios may require refined, context-
sensitive metrics that better associate prompt patterns with specific
quality outcomes. By developing qualitative metrics, researchers
could gain a more accurate understanding of how prompt engi-
neering influences code quality, especially in cases where advanced
prompt patternsmight play a significant role. On the other hand, the
dataset itself could benefit from additional diversity in task types
and complexity. ExpandingDev-GPT to include more varied coding
scenarios would allow for a deeper evaluation of how advanced
prompt patterns function across different contexts. Such diversifi-
cation would enhance the study of how prompt engineering affect
code quality, supporting both routine and complex development
needs.

 Implication 3: The research community should priori-
tize qualitative analyses and diversified datasets in prompt en-
gineering research. Developing context-sensitive metrics and
datasets with varied coding tasks would enable an improved
understanding of code quality in LLM outputs, benefiting
both standard and specialized software development tasks.

6 THREATS TO VALIDITY
This study presents several threats to validity that we considered
as a result of our design [52].

Threats to Internal Validity. Threats in this category concern
the extent to which observed effects can be attributed to the vari-
ables studied rather than other factors. In this study, code quality
assessments may be affected by the limitations of SonarQube,
potentially impacting the consistency of maintainability, reliabil-
ity, and security metrics. Additionally, biases may be introduced
through the iterative self-refinement process with the LLM if feed-
back loops fail to converge. This risk was mitigated by implement-
ing a maximum iteration limit and conducting manual verification
by domain experts.

Threats to Construct Validity. Threats in this category refer to
the accuracy with which study measures capture the concepts they
intend to represent. In this research, categorizing prompt patterns
into specific types—Zero-shot, Few-shot, Chain-of-Thought, and
Personas—may oversimplify how prompt patterns affect code gen-
eration, as nuances in pattern design and implementation are not
fully captured. Patterns were selected based on prevalent literature
to address this. Furthermore, employing AI tools to support the
classification process may have introduced some inaccuracies, as
LLMs are known for occasional hallucinations. However, automatic
analysis was supplemented with a manual review conducted by
both the authors and external experts, ensuring robust results and
mitigating potential risks.

Threats to External Validity. These threats concern the gen-
eralizability of findings beyond the study’s specific conditions.
The use of a single dataset (Dev-GPT) and a specific LLM model
(ChatGPT-4o mini) may limit the applicability of results to other
datasets or models. In this respect, future work should consider ad-
ditional datasets and alternative LLMs to validate the results across
different contexts.

Threats to Conclusion Validity. Threats in this category exam-
ine whether the statistical analyses accurately reflect relationships
between variables. In this study, the Kruskal-Wallis test, a non-
parametric alternative to ANOVA, helps to address potential issues
related to normality and variance assumptions in the data. How-
ever, this test’s reliance on rank-based analysis may still introduce
limitations, particularly in detecting subtle effects. Care was taken
to set significance thresholds to minimize the risk of Type I and II
errors, thereby enhancing the robustness of the study’s findings.

7 CONCLUSIONS
This study explored the relationship between prompt patterns and
the quality of source code. An automated prompt classification
mechanism, powered by ChatGPT, was employed to (1) isolate
prompts specifically related to software engineering and (2) iden-
tify the presence of four distinct prompt pattern types. The gener-
ated code from ChatGPT, as documented in the Dev-GPT dataset,
was assessed for maintainability, reliability, and security using the
widely recognized tool SonarQube. The collected data supported
an empirical analysis to investigate the correlation between prompt
patterns and the aforementioned code quality metrics. The results
indicated that there is no statistically significant relationship be-
tween the analyzed prompt patterns and code quality across the
evaluated dimensions. As part of our future research we aim to
deepen the analysis by considering more dimensions of code quality
such as functional correctness or code smells.
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